初一初二数学知识点总结
数学初一至初二知识点总结

数学初一至初二知识点总结1.01 整数- 整数的定义与性质- 整数的加减法- 整数的乘法- 整数的除法- 整数的混合运算1.02 一元一次方程- 一元一次方程的定义与性质- 一元一次方程的解法:等式加减法、等式乘法、移项变号法、等式代入法- 一元一次方程应用题1.03 一元一次不等式- 一元一次不等式的定义与性质- 一元一次不等式的解法:图像法、逻辑法1.04 因式分解- 因式分解的基本概念- 因式分解的方法与步骤:公因式提取法、提公因式法、分组法、升幂与降幂相加减法- 因式分解的应用题1.05 整式的加减- 整式的定义与性质- 整式的加减法:同类项的加减法、异类项的加减法1.06 分式- 分式的定义与性质- 分式的加减法- 分式的乘除法- 分式方程的解法1.07 二元一次方程组- 二元一次方程组的定义与性质- 二元一次方程组的解法:消元法、代入法、等式相加法、等式相减法1.08 二元一次不等式组- 二元一次不等式组的定义与性质- 二元一次不等式组的解法:图像法、逻辑法1.09 一元二次方程- 一元二次方程的定义与性质- 一元二次方程的解法:公式法、配方法、完全平方式、两等式相减法- 一元二次方程的应用题1.10 二元二次方程- 二元二次方程的定义与性质- 二元二次方程的解法:消元法、代入法、等式相加法、等式相减法- 二元二次方程的应用题1.11 比例- 比例的定义与性质- 比例的计算、变化关系- 比例的应用题1.12 百分数- 百分数的定义与性质- 百分数的计算、变化关系- 百分数的应用题1.13 利率- 利率的定义与性质- 利率的计算、变化关系- 利率的应用题1.14 指数与科学计数法- 指数的定义与性质- 指数的运算法则- 科学计数法的定义与性质- 科学计数法的应用题1.15 平方根与立方根- 平方根的定义与性质- 平方根的计算、变化关系- 立方根的定义与性质- 立方根的计算、变化关系1.16 基本概率- 概率的定义与性质- 概率的计算公式- 概率的应用题1.17 等差数列- 等差数列的定义与性质- 等差数列的通项公式- 等差数列的求和公式- 等差数列的应用题1.18 等比数列- 等比数列的定义与性质- 等比数列的通项公式- 等比数列的求和公式- 等比数列的应用题1.19 质因数分解- 质因数的定义与性质- 质因数分解的步骤与应用1.20 互质数与最大公约数- 互质数的定义与性质- 最大公约数的计算、应用- 欧几里得算法的步骤与应用1.21 公倍数与最小公倍数- 公倍数的定义与性质- 最小公倍数的计算、应用1.22 分解质因数法- 分解质因数法的步骤与应用1.23 乘法公式的推广- 乘法公式的子集与应用1.24 平方差公式与完全平方式- 平方差公式的证明与应用- 完全平方式的应用1.25 整式的乘法- 整式的乘法法则- 整式的乘法应用题1.26 除法公式- 除法公式的步骤与应用1.27 有理数的乘除法- 有理数的乘除法法则- 有理数的乘除法应用题1.28 向量- 向量的定义与性质- 向量的加法与数乘- 向量的坐标表示- 向量的模、方向、方向角- 向量的共线、共面- 向量的平行、垂直- 向量的利用1.29 等式的基本性质- 等式的基本性质与应用1.30 不等式的性质- 不等式的基本性质与应用1.31 一次函数- 一次函数的定义与性质- 一次函数的图像、性质- 一次函数的应用题1.32 二次函数- 二次函数的定义与性质- 二次函数的图像、性质- 二次函数的应用题1.33 绝对值函数- 绝对值函数的定义与性质- 绝对值函数的图像、性质- 绝对值函数的应用题1.34 一次不等式- 一次不等式的定义与性质- 一次不等式的解法- 一次不等式的应用题1.35 二次不等式- 二次不等式的定义与性质- 二次不等式的解法- 二次不等式的应用题1.36 一元二次方程组- 一元二次方程组的定义与性质- 一元二次方程组的解法- 一元二次方程组的应用题1.37 绝对值不等式- 绝对值不等式的定义与性质- 绝对值不等式的解法- 绝对值不等式的应用题1.38 平方根和普通数的关系- 平方根和普通数的关系与计算1.39 平方根与圆- 平方根与圆的关系与计算1.40 方程的整数解与整式因式分解- 方程的整数解与整式因式分解的关系与应用1.41 二元一次方程组的解法- 二元一次方程组的解法1.42 二元二次方程组的解法- 二元二次方程组的解法1.43 根式- 根式的定义、性质与化简- 根式的加减乘除与应用1.44 整式的乘方- 整式的乘方原则与应用1.45 整式与分式的混合运算- 整式与分式的混合运算应用题1.46 整式方程与分式方程- 整式方程与分式方程的定义与应用1.47 同底数幂的运算- 同底数幂的基本计算与应用1.48 科学记数法- 科学记数法的应用解题1.49 根式的乘除法- 根式的乘除法原则与应用1.50 根式方程- 根式方程的定义与应用1.51 同底数幂的乘方- 同底数幂的乘方计算与应用1.52 指数函数- 指数函数的定义与性质- 指数函数的图像、性质- 指数函数的应用题1.53 对数函数- 对数函数的定义与性质- 对数函数的图像、性质- 对数函数的应用题1.54 正比例函数- 正比例函数的定义与性质- 正比例函数的图像、性质- 正比例函数的应用题1.55 反比例函数- 反比例函数的定义与性质- 反比例函数的图像、性质- 反比例函数的应用题1.56 累加与累乘- 累加与累乘的基本概念与应用1.57 利息- 利息的计算公式和应用1.58 等差数列和等比数列的迭代计算- 等差数列和等比数列的迭代计算应用1.59 一次函数与坐标系- 一次函数与坐标系的关系与应用1.60 二次函数与平面图形- 二次函数与平面图形的关系与应用1.61 直线与方程- 直线与方程的关系与应用1.62 抛物线与平面图形- 抛物线与平面图形的关系与应用1.63 圆与平面图形- 圆与平面图形的关系与应用1.64 空间图形的计算- 三维空间图形的相关计算与应用1.65 等差数列和等比数列的迭代计算- 等差数列和等比数列的迭代计算应用1.66 扩号的应用- 扩号的使用原则与应用1.67 代数的应用- 代数的定义、原则及应用1.68 二项式定理与组合数学- 二项式定理与组合数学的原理以及应用1.69 不等式方程与不等式组- 不等式方程与不等式组的原理与应用1.70 引用- 数学知识体系、学科基础、综合技能1.71 牛顿插值公式- 牛顿插值公式的定义、原理以及应用1.72 高次插值公式- 高次插值公式的定义、原理以及应用1.73 代数方程与几何问题- 代数方程与几何问题的原理与应用1.74 分布式定电位问题的代数解法- 分布式定电位问题的原理与应用1.75 求平面镜像点的代数解法- 求平面镜像点的原理与应用1.76 稠密度分布积分计算- 稠密度分布积分计算的原理与应用1.77 高斯积分法- 高斯积分法的原理与应用1.78 数列与解析几何问题- 数列与解析几何问题的原理与应用1.79 代数化解力学问题- 代数化解力学问题的原理与应用1.80 代数化解动力学问题- 代数化解动力学问题的原理与应用1.81 代数化解电磁学问题- 代数化解电磁学问题的原理与应用1.82 代数化解光学问题- 代数化解光学问题的原理与应用1.83 代数的应用- 代数的定义、原则及应用1.84 数论数与应用- 数论数与应用的相关原理与应用1.85 极限与应用- 极限与应用的相关原理与应用1.86 概率论与应用- 概率论与应用的相关原理与应用1.87 统计学与应用- 统计学与应用的相关原理与应用1.88 组合数学与应用- 组合数学与应用的相关原理与应用1.89 离散数学与应用- 离散数学与应用的相关原理与应用1.90 代数与应用- 代数与应用的相关原理与应用1.91 代数表达式的含义与应用- 代数表达式的含义与应用的相关原理与应用1.92 代数运算与应用- 代数运算与应用的相关原理与应用1.93 代数无意义符号的含义与应用- 代数无意义符号的含义与应用的相关原理与应用1.94 代数的思考与应用- 代数的思考与应用的相关原理与应用1.95 代数定理与应用- 代数定理与应用的相关原理与应用1.96 代数的计算与应用- 代数的计算与应用的相关原理与应用1.97 代数的理解与应用- 代数的理解与应用的相关原理与应用1.98 运算法则与应用- 运算法则与应用的相关原理与应用1.99 运算的含义与应用- 运算的含义与应用的相关原理与应用1.100 代数式的推广与应用- 代数式的推广与应用的相关原理与应用1.101 数学的发展与应用- 数学的发展与应用的相关原理与应用1.102 代数的综合应用- 代数的综合应用的相关原理与应用1.103 代数思维与应用- 代数思维与应用的相关原理与应用1.104 代数知识的整合与应用- 代数知识的整合与应用的相关原理与应用1.105 代数公式的推导与应用- 代数公式的推导与应用的相关原理与应用1.106 代数实践与应用- 代数实践与应用的相关原理与应用1.107 代数结构与应用- 代数结构与应用的相关原理与应用1.108 字母与数的关系与应用- 字母与数的关系与应用的相关原理与应用1.109 数学语言的运用与应用- 数。
七到八年级的数学知识点

七到八年级的数学知识点随着中学阶段的到来,学生开始接触到更高层次的数学知识。
这些知识点不仅提高了学生们的逻辑思维和分析能力,还为日后更深入的学习打下了坚实的基础。
下面是七到八年级的数学知识点。
一、代数与方程式1. 代数式的基本运算代数式在加、减、乘、除时需要保持形式上的一致性。
2. 一元一次方程式包含一个未知数的线性方程式,可用加减消元或代入消元法求解。
3. 一元一次不等式解不等式时需要注意乘以负数时要反向不等关系。
4. 一元一次方程式组同时包含两个或两个以上的未知数的线性方程组,可用消元或代入法求解。
5. 二次方程式二次方程式的求解可用配方法、公式法和图像法。
二、几何1. 几何图形的基本性质点、线、面的基本概念以及几何图形的分类、特征和性质。
2. 平面直角坐标系用平面直角坐标系描述几何图形的位置、形态和特征等。
3. 直线与角直线的基本性质和分类、角的基本概念和分类,如补角、余角、相邻角、对顶角等等。
4. 三角形三角形的基本概念、性质和分类,并且学习如何计算三角形的面积和周长。
5. 圆圆的基本概念和性质,如弧、弦、切线、割线等。
三、函数1. 函数的定义和性质函数的标志、函数关系、函数的定义域、值域、单调性等概念。
2. 一次函数和二次函数学习一次函数和二次函数的基本概念、函数图像、解析式、性质等。
3. 变量的关系两个或两个以上变量之间的关系,如正比例、反比例等。
4. 函数的应用函数在解决实际问题中的应用,如最值问题、率的问题等等。
四、统计和概率1. 数据的收集和整理数据的分类、整理、描述等基本概念。
2. 统计基本分布常见的离散型随机变量,如二项分布、柏松分布等。
3. 概率的基本概念概率的定义、基本性质,以及概率的计算方法。
4. 事件的概率根据事件的相互关系计算事件的概率,如加法定理、乘法定理等。
5. 概率的应用概率在解决实际问题中的应用,如古典概型、几何概型等。
综上所述,七到八年级的数学知识点涵盖了代数与方程式、几何、函数、统计和概率等多方面的知识。
初一到初三数学知识点

初一到初三数学知识点初一到初三数学知识点总结:1. 有理数的运算:包括加法、减法、乘法、除法以及它们的混合运算。
掌握有理数的运算规则,如正负数的加减法,以及乘除法的符号变化。
2. 代数初步:学习代数式的基本运算,包括合并同类项、去括号、分配律等。
理解变量和常数的概念,以及如何表示简单的代数表达式。
3. 一元一次方程:学习解一元一次方程的方法,如移项、合并同类项、系数化为1等。
理解方程的解和解方程的概念。
4. 二元一次方程组:掌握二元一次方程组的解法,如代入法和加减消元法。
理解方程组的解和解方程组的概念。
5. 不等式:学习不等式的基本概念,包括不等号的含义、不等式的解集和解不等式的方法。
6. 函数的初步:了解函数的概念,包括自变量、因变量、函数的表达式和函数图像。
学习简单的线性函数和它们的图像。
7. 几何初步:学习点、线、面的基本性质,以及平面几何的基本概念,如角度、线段、平行线、垂线等。
8. 三角形:掌握三角形的分类,如等边、等腰、直角三角形等。
学习三角形的内角和定理、外角定理以及三角形的面积计算。
9. 四边形:了解四边形的基本性质,包括平行四边形、矩形、菱形、正方形等。
学习四边形的性质和面积计算。
10. 圆:学习圆的基本性质,包括圆心、半径、直径、圆周角、弦、弧等。
掌握圆的面积和周长的计算方法。
11. 立体几何:了解立体图形的基本性质,如长方体、正方体、圆柱、圆锥、球等。
学习立体图形的表面积和体积的计算。
12. 概率初步:学习概率的基本概念,包括随机事件、概率的计算方法和简单的概率问题。
13. 统计初步:了解数据的收集、整理和描述方法,包括数据的分类、图表的绘制和基本的统计量计算。
14. 数列:学习数列的基本概念,包括等差数列和等比数列的定义、通项公式和求和公式。
15. 代数方程:学习一元二次方程的解法,如配方法、公式法、因式分解法等。
了解高次方程和方程组的解法。
16. 函数和图象:进一步学习函数的性质,包括函数的单调性、奇偶性、极值和最值。
初中的全部数学知识点

初中的全部数学知识点初中数学是为高中数学学习打下基础的重要阶段,涵盖了丰富的知识内容。
以下是对初中数学知识点的详细梳理。
一、数与代数1、有理数有理数包括整数和分数。
整数又包括正整数、零和负整数;分数包括正分数和负分数。
有理数的运算有加、减、乘、除、乘方。
加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得 0。
减法法则:减去一个数,等于加上这个数的相反数。
乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与 0 相乘都得 0。
除法法则:除以一个不等于 0 的数,等于乘这个数的倒数;0 除以任何一个不等于 0 的数,都得 0。
乘方运算:求 n 个相同因数的积的运算,叫做乘方。
2、实数实数包括有理数和无理数。
无理数是无限不循环小数,如π、\(\sqrt{2}\)等。
平方根:如果一个数的平方等于 a,那么这个数叫做 a 的平方根。
算术平方根:正数 a 的正的平方根叫做 a 的算术平方根。
立方根:如果一个数的立方等于 a,那么这个数叫做 a 的立方根。
实数的运算与有理数的运算类似,只是在涉及无理数时要注意其近似值的计算。
3、代数式用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子叫做代数式。
单独的一个数或一个字母也是代数式。
整式:单项式和多项式统称为整式。
单项式是数或字母的积,单独的一个数或一个字母也是单项式;多项式是几个单项式的和。
整式的运算包括加减乘除。
乘法公式:平方差公式\((a+b)(ab)=a^2 b^2\),完全平方公式\((a\pm b)^2 = a^2 \pm 2ab + b^2\)分式:形如\(\dfrac{A}{B}\)(A、B 是整式,且 B 中含有字母,B≠0)的式子叫做分式。
分式的运算包括加减乘除。
4、方程与不等式一元一次方程:只含有一个未知数,并且未知数的次数是 1 的整式方程。
七年级到八年级数学知识点

七年级到八年级数学知识点在初中阶段,数学是必修的学科之一,每一个学生都需要认真学习掌握其中的知识点。
从七年级到八年级,数学的内容也会有所变化和加深,本文将会介绍七年级到八年级数学中的重点知识点。
一、代数式代数式是初中阶段学习数学的基础,因此在学习中需要重点掌握。
七年级学习代数式的基础知识,比如常数、变量、系数、项、多项式等概念,以及代数式的基本运算法则,如加减乘除等。
在八年级中,会更深入地学习多项式的因式分解、代数式的合并同类项等内容。
二、二次根式二次根式是七年级和八年级数学中比较重要的知识点之一。
在七年级中,学生需要掌握二次根式的含义和求解方法,如二次根式的简化、合并、拆分等。
在八年级中,会更深入地学习二次根式的加减乘除,以及二次根式的化简与应用等。
三、平面图形平面图形是初中数学的另一个重点知识点,需要学生熟练掌握各种平面图形的名称、性质、计算等内容。
在七年级中,学生需要学习三角形、四边形等基本图形的面积和周长计算法则;在八年级中,学生需要进一步学习平面图形的相似、全等等性质,以及三角形的三条中线、三角形的外心等知识。
四、线性方程组线性方程组是初中数学的一个比较难的概念,需要学生的数学基础比较好才能够理解和掌握。
在七年级中,学生需要学习二元一次方程组的解法;在八年级中,学生需要更深入学习一元二次方程组和三元一次方程组等内容,能够快速准确地解出线性方程组的解。
五、立体几何立体几何是七年级和八年级数学中比较难的知识点之一,需要学生掌握各种几何体的名称、表面积和体积计算法则等。
在七年级中,学生需要学习各种立体几何体的名称、性质等内容;在八年级中,学生需要学习各种立体几何体的表面积和体积计算法则,以及应用题的解法等。
以上就是七年级到八年级数学中的重点知识点,学生需要认真学习掌握这些知识点,才能够在数学学习中更好地发挥自己的能力。
希望本文能够帮助到初中阶段的学生,更好地掌握数学知识点。
初一初二数学知识点总结

初一初二数学知识点总结•相关推荐初一初二数学知识点总结在平平淡淡的学习中,大家都没少背知识点吧?知识点就是掌握某个问题/知识的学习要点。
为了帮助大家掌握重要知识点,以下是小编精心整理的初一初二数学知识点总结,欢迎大家借鉴与参考,希望对大家有所帮助。
初一初二数学知识点总结11、单项式的定义:由数或字母的积组成的式子叫做单项式。
说明:单独的一个数或者单独的一个字母也是单项式.2、单项式的系数:单项式中的数字因数叫这个单项式的系数.说明:⑴单项式的系数可以是整数,也可能是分数或小数。
如3x 的系数是3的32系数是1;4.8a的系数是4.8; 3⑵单项式的系数有正有负,确定一个单项式的系数,要注意包含在它前面的符号,4xy2的系数是4;2x2y的系数是4;⑶对于只含有字母因数的单项式,其系数是1或-1,不能认为是0,如ab的系数是-1;ab的系数是1;⑷表示圆周率的π,在数学中是一个固定的常数,当它出现在单项式中时,应将其作为系数的一部分,而不能当成字母。
如2πxy的系数就是2.3、单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数.说明:⑴计算单项式的次数时,应注意是所有字母的指数和,不要漏掉字母指数是1的情况。
如单项式2xyz的次数是字母z,y,x的指数和,即4+3+1=8,而不是7次,应注意字母z的指数是1而不是0;⑵单项式的指数只和字母的指数有关,与系数的指数无关。
⑶单项式是一个单独字母时,它的指数是1,如单项式m的指数是1,单项式是单独的一个常数时,一般不讨论它的次数;4、在含有字母的式子中如果出现乘号,通常将乘号写作“* ”或者省略不写。
5、在书写单项式时,数字因数写在字母因数的前面,数字因数是带分数时转化成假分数.。
初一初二数学知识点总结2一、目标与要求1.通过处理实际问题,让学生体验从算术方法到代数方法是一种进步;2.初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念;3.培养学生获取信息,分析问题,处理问题的能力。
初二数学知识点总结归纳

初二数学知识点总结归纳初二数学知识点总结归纳如下:
1. 整数
- 整数的概念和性质
- 整数的加法、减法、乘法、除法
- 整数的运算性质和规律
2. 有理数
- 有理数的概念和性质
- 有理数的加法、减法、乘法、除法
- 有理数的运算性质和规律
3. 分数
- 分数的概念和基本性质
- 分数的加法、减法、乘法、除法
- 分数的化简和比较大小
- 分数的运算性质和规律
4. 方程与不等式
- 一元一次方程的解
- 一元一次方程组的解
- 一元一次不等式的解
- 一元一次不等式组的解
5. 几何
- 线段、角、三角形、四边形的性质
- 图形的相似性质
- 圆的性质、圆周率的定义
- 三角形的面积和勾股定理
- 平行线的性质和平行线相交定理
- 直线、平面、立体图形的投影问题
6. 数据统计与概率
- 数据的收集、整理和展示
- 数据的中心趋势和离散程度的描述
- 概率的基本概念和计算方法
- 简单事件、复合事件的概率计算
这些是初二数学的基本知识点,掌握了这些知识可以为学习更高级的数学打下坚实的基础。
初一到初三数学知识点总结

初一到初三数学知识点总结一、初一数学知识点总结1. 整数√初一的数学主要学习正整数、负整数的概念及运算法则,例如同号数相加,异号数相加,绝对值等。
2. 分数√学习分数的概念和分数的加减乘除运算。
3. 一元一次方程√学习一元一次方程的概念及解法,包括用通俗方法解方程、用等式性质解方程等。
4. 比例与比例式√学习比例的概念,及比例式的变形和应用。
5. 数据√学习数据的收集、整理、分析方法,学会绘制统计图表。
6. 几何√学习平行线与角、相交线与角等几何基本概念和基本图形的性质。
二、初二数学知识点总结1. 一元一次方程与一元二次方程√学习一元一次方程与一元二次方程的含义及解的方法,同时要学会应用到实际问题中。
2. 多项式√学习多项式的基本概念、多项式的加减乘除以及多项式的因式分解和提公因式等。
3. 几何√学完平面图形的性质,学习平行四边形、梯形、圆的性质及计算等。
4. 直角三角形与勾股定理√学习直角三角形的性质、三角函数的概念及运用,同时也要学习勾股定理的应用。
5. 图形的相似√学习相似三角形的性质、比的运用,区别检验相似三角形、判定两个平面图形是否相似等。
6. 统计√学习统计样本、频数分布、频数分布表及绘制各种统计图表。
三、初三数学知识点总结1. 二次函数√学习二次函数的概念、图像及性质,函数的最值问题及二次函数与一元二次方程的关系。
2. 数列√学习等差数列、等比数列及它们的前n项和的计算,应用到生活中。
3. 三角函数√学习三角函数的概念、性质及图像,利用三角函数解实际问题。
4. 空间几何√学习空间图形的性质与计算,空间图形的投影与沿截面的截面图等。
5. 概率√学习独立事件、互斥事件、概率的计算、事件的并、交及补等。
6. 统计√学习随机变量的概念、离散型与连续型随机变量及它们的概率分布等。
以上就是初一到初三数学知识点总结,初一到初三数学知识点博大精深,要想学好数学,一定要打好数学的基础。
希望同学们能够认真学习,掌握好这些知识点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学知识点总结第一册第一章有理数1.1正数和负数以前学过的0以外的数前面加上负号“-”的书叫做负数。
以前学过的0以外的数叫做正数。
数0既不是正数也不是负数,0是正数与负数的分界。
在同一个问题中,分别用正数和负数表示的量具有相反的意义1.2有理数1.2.1有理数正整数、0、负整数统称整数,正分数和负分数统称分数。
整数和分数统称有理数。
1.2.2数轴规定了原点、正方向、单位长度的直线叫做数轴。
数轴的作用:所有的有理数都可以用数轴上的点来表达。
注意事项:⑴数轴的原点、正方向、单位长度三要素,缺一不可。
⑵同一根数轴,单位长度不能改变。
一般地,设是一个正数,则数轴上表示a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。
1.2.3相反数只有符号不同的两个数叫做互为相反数。
数轴上表示相反数的两个点关于原点对称。
在任意一个数前面添上“-”号,新的数就表示原数的相反数。
1.2.4绝对值一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。
一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;0的绝对值是0。
在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。
比较有理数的大小:⑴正数大于0,0大于负数,正数大于负数。
⑵两个负数,绝对值大的反而小。
1.3有理数的加减法1.3.1有理数的加法有理数的加法法则:⑴同号两数相加,取相同的符号,并把绝对值相加。
⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0。
⑶一个数同0相加,仍得这个数。
两个数相加,交换加数的位置,和不变。
加法交换律:a+b=b +a 三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变。
加法结合律:(a+b)+c=a+(b+c) 1.3.2有理数的减法有理数的减法可以转化为加法来进行。
有理数减法法则:减去一个数,等于加这个数的相反数。
a-b=a+(-b)1.4有理数的乘除法1.4.1有理数的乘法有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数同0相乘,都得0。
乘积是1的两个数互为倒数。
几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数。
两个数相乘,交换因数的位置,积相等。
ab=ba 三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
(ab)c=a(bc)一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
a(b+c)=ab+ac 数字与字母相乘的书写规:⑴数字与字母相乘,乘号要省略,或用“”⑵数字与字母相乘,当系数是1或-1时,1要省略不写。
⑶带分数与字母相乘,带分数应当化成假分数。
用字母x表示任意一个有理数,2与x的乘积记为2x,3与x的乘积记为3x,则式子2x+3x是2x与3x的和,2x与3x叫做这个式子的项,2和3分别是着两项的系数。
一般地,合并含有相同字母因数的式子时,只需将它们的系数合并,所得结果作为系数,再乘字母因数,即ax+bx=(a+b)x 上式中x是字母因数,a与b分别是ax与bx这两项的系数。
去括号法则:括号前是“+”,把括号和括号前的“+”去掉,括号里各项都不改变符号。
括号前是“-”,把括号和括号前的“-”去掉,括号里各项都改变符号。
括号外的因数是正数,去括号后式子各项的符号与原括号式子相应各项的符号相同;括号外的因数是负数,去括号后式子各项的符号与原括号式子相应各项的符号相反。
1.4.2有理数的除法有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。
a÷b=a•(b≠0) 两数相除,同号得正,异号得负,并把绝对值相除。
0除以任何一个不等于0的数,都得0。
因为有理数的除法可以化为乘法,所以可以利用乘法的运算性质简化运算。
乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。
1.5有理数的乘方1.5.1乘方求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
在an中,a叫做底数,n叫做指数,当an看作a的n次方的结果时,也可以读作a的n 次幂。
负数的奇次幂是负数,负数的偶次幂是正数。
正数的任何次幂都是正数,0的任何正整数次幂都是0。
有理数混合运算的运算顺序:⑴先乘方,再乘除,最后加减;⑵同级运算,从左到右进行;⑶如有括号,先做括号的运算,按小括号、中括号、大括号依次进行1.5.2科学记数法把一个大于10的数表示成a×10n的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学记数法。
用科学记数法表示一个n位整数,其中10的指数是n-1。
1.5.3近似数和有效数字接近实际数目,但与实际数目还有差别的数叫做近似数。
精确度:一个近似数四舍五入到哪一位,就说精确到哪一位。
从一个数的左边第一个非0 数字起,到末位数字止,所有数字都是这个数的有效数字。
对于用科学记数法表示的数a×10n,规定它的有效数字就是a中的有效数字。
第二章一元一次方程2.1从算式到方程2.1.1一元一次方程含有未知数的等式叫做方程。
只含有一个未知数(元),未知数的指数都是1(次),这样的方程叫做一元一次方程。
分析实际问题中的数量关系,利用其中的相等关系列出方程,是数学解决实际问题的一种方法。
解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。
2.1.2等式的性质等式的性质1 等式两边加(或减)同一个数(或式子),结果仍相等。
等式的性质2 等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
2.2从古老的代数书说起——一元一次方程的讨论⑴把等式一边的某项变号后移到另一边,叫做移项。
2.3从“买布问题”说起——一元一次方程的讨论⑵方程中有带括号的式子时,去括号的方法与有理数运算中括号类似。
解方程就是要求出其中的未知数(例如x),通过去分母、去括号、移项、合并、系数化为1等步骤,就可以使一元一次方程逐步向着x=a的形式转化,这个过程主要依据等式的性质和运算律等。
去分母:⑴具体做法:方程两边都乘各分母的最小公倍数⑵依据:等式性质2 ⑶注意事项:①分子打上括号②不含分母的项也要乘2.4再探实际问题与一元一次方程第三章图形认识初步3.1多姿多彩的图形现实生活中的物体我们只管它的形状、大小、位置而得到的图形,叫做几何图形。
3.1.1立体图形与平面图形长方体、正方体、球、圆柱、圆锥等都是立体图形。
此外棱柱、棱锥也是常见的立体图形。
长方形、正方形、三角形、圆等都是平面图形。
许多立体图形是由一些平面图形围成的,将它们适当地剪开,就可以展开成平面图形。
3.1.2点、线、面、体几何体也简称体。
长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体。
包围着体的是面。
面有平的面和曲的面两种。
面和面相交的地方形成线。
线和线相交的地方是点。
几何图形都是由点、线、面、体组成的,点是构成图形的基本元素。
3.2直线、射线、线段经过两点有一条直线,并且只有一条直线。
两点确定一条直线。
点C线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点。
类似的还有线段的三等分点、四等分点等。
直线桑一点和它一旁的部分叫做射线。
两点的所有连线中,线段最短。
简单说成:两点之间,线段最短。
3.3角的度量角也是一种基本的几何图形。
度、分、秒是常用的角的度量单位。
把一个周角360等分,每一份就是一度的角,记作1;把1度的角60等分,每份叫做1分的角,记作1;把1分的角60等分,每份叫做1秒的角,记作1。
3.4角的比较与运算3.4.1角的比较从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。
类似的,还有叫的三等分线。
3.4.2余角和补角如果两个角的和等于90(直角),就说这两个角互为余角。
如果两个角的和等于180(平角),就说这两个角互为补角。
等角的补角相等。
等角的余角相等。
本章知识结构图第四章数据的收集与整理收集、整理、描述和分析数据是数据处理的基本过程。
4.1喜爱哪种动物的同学最多——全面调查举例用划记法记录数据,“正”字的每一划(笔画)代表一个数据。
考察全体对象的调查属于全面调查。
4.2调查中小学生的视力情况——抽样调查举例抽样调查是从总体中抽取样本进行调查,根据样本来估计总体的一种调查。
统计调查是收集数据常用的方法,一般有全面调查和抽样调查两种,实际中常常采用抽样调查的方式。
调查时,可用不同的方法获得数据。
除问卷调查、访问调查等外,查阅文献资料和实验也是获得数据的有效方法。
利用表格整理数据,可以帮助我们找到数据的分布规律。
利用统计图表示经过整理的数据,能更直观地反映数据规律。
4.3课题学习调查“你怎样处理废电池?”调查活动主要包括以下五项步骤:一、设计调查问卷⑴设计调查问卷的步骤①确定调查目的;②选择调查对象;③设计调查问题⑵设计调查问卷时要注意:①提问不能涉及提问者的个人观点;②不要提问人们不愿意回答的问题;③提供的选择答案要尽可能全面;④问题应简明;⑤问卷应简短。
二、实施调查将调查问卷复制足够的份数,发给被调查对象。
实施调查时要注意:⑴向被调查者讲明哪些人是被调查的对象,以及他为什么成为被调查者;⑵告诉被调查者你收集数据的目的。
三、处理数据根据收回的调查问卷,整理、描述和分析收集到的数据。
四、交流根据调查结果,讨论你们小组有哪些发现和建议?五、写一份简单的调查报告第二册第五章相交线与平行线5.1相交线5.1.1相交线有一个公共的顶点,有一条公共的边,另外一边互为反向延长线,这样的两个角叫做邻补角。
两条直线相交有4对邻补角。
有公共的顶点,角的两边互为反向延长线,这样的两个角叫做对顶角。
两条直线相交,有2对对顶角。
对顶角相等。
5.1.2 两条直线相交,所成的四个角中有一个角是直角,那么这两条直线互相垂直。
其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
注意:⑴垂线是一条直线。
⑵具有垂直关系的两条直线所成的4个角都是90。
⑶垂直是相交的特殊情况。
⑷垂直的记法:a⊥b,AB⊥CD。
画已知直线的垂线有无数条。
过一点有且只有一条直线与已知直线垂直。
连接直线外一点与直线上各点的所有线段中,垂线段最短。
简单说成:垂线段最短。
直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
5.2平行线5.2.1平行线在同一平面,两条直线没有交点,则这两条直线互相平行,记作:a∥b。
在同一平面两条直线的关系只有两种:相交或平行。
平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
5.2.2直线平行的条件两条直线被第三条直线所截,在两条被截线的同一方,截线的同一旁,这样的两个角叫做同位角。