七年级应用题专项练习

合集下载

(完整word版)上海七年级数学应用题专项练习

(完整word版)上海七年级数学应用题专项练习

一元一次方程应用题知能点1:市场经济、打折销售问题×100%(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润商品成本价(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售.1 一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?2。

一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?若设这种自行车每辆的进价是x元,那么所列方程为()A.45%×(1+80%)x—x=50B. 80%×(1+45%)x —x = 50C. x—80%×(1+45%)x = 50D.80%×(1—45%)x - x = 503.某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折.4.一家商店将某种型号的彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠".经顾客投拆后,拆法部门按已得非法收入的10倍处以每台2700元的罚款,求每台彩电的原售价.知能点2: 方案选择问题6.某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,•经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行精加工,每天可加工16吨,如果进行精加工,每天可加工6吨,•但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工.方案二:尽可能多地对蔬菜进行粗加工,没来得及进行加工的蔬菜,•在市场上直接销售.方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.你认为哪种方案获利最多?为什么?7.某市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50•元月基础费,然后每通话1分钟,再付电话费0。

初中数学应用题专项练习

初中数学应用题专项练习

初中数学应用题专项练习
这份文档提供了一些初中数学应用题的专项练。

这些题目涵盖了初中数学中的各种应用题类型,有助于学生提高解决实际问题的能力。

1. 购物问题
问题1
小明去超市购买了___、香蕉和橙子。

苹果每斤3元,香蕉每斤2元,橙子每斤4元。

小明购买了1斤苹果,2斤香蕉和0.5斤橙子。

他一共花了多少钱?
问题2
某商场进行了打折促销活动,原价为100元的商品打7折。

小华买了一件原价100元的商品,那么他实际支付了多少钱?
2. 比例问题
问题1
某地区有A、B两个城市,A城市的人口为100万人,B城市的人口为80万人。

如果将A城市的人口增长20%,B城市的人口增长15%,那么两个城市的人口相差多少?
问题2
一辆汽车以每小时60公里的速度行驶,需要6小时才能到达目的地。

如果汽车的速度增加了50%,那么现在需要多少时间才能到达目的地?
3. 比较大小问题
问题1
请按照从小到大的顺序排列下列数字:0.8,1/4,0.5,0.6。

问题2
小明和小红比较两个数的大小。

小明说5/6比3/4大,小红说5/6比3/4小。

谁说的对?
这份文档中的题目只是初中数学应用题的一小部分,但涵盖了一些常见的题型。

通过解答这些题目,学生们可以巩固对数学知识的理解,并培养解决实际问题的能力。

希望这些练习对学生们的学习有所帮助!。

七年级上册数学应用题及答案

七年级上册数学应用题及答案

七年级上册数学应用题及答案第一章:数的认识1.1 整数应用题 1.1.1计算:\( 3 + 5 \times 2 - 4 \div 2 \)答案:9应用题 1.1.2计算:\( 7 - 3 \times 2 + 5 \div 2 \)答案:3.51.2 分数应用题 1.2.1计算:\( \dfrac{5}{7} + \dfrac{3}{4} \) 答案:\(\dfrac{31}{28}\)应用题 1.2.2计算:\( \dfrac{7}{9} - \dfrac{1}{3} \) 答案:\(\dfrac{4}{9}\)第二章:代数式2.1 代数式的运算应用题 2.1.1计算:\( 3a - 2b + 4c \)答案:\(3a - 2b + 4c\)应用题 2.1.2计算:\( 5(a - b) + 2(b - c) \)答案:\(5a - 3b + 2c\)第三章:几何初步3.1 点、线、面的关系应用题 3.1.1已知点A(2,3),B(4,6),求线段AB的长度。

答案:\(AB = \sqrt{(4-2)^2 + (6-3)^2} = \sqrt{10}\) 3.2 角应用题 3.2.1已知直角三角形的两个锐角分别是30°和60°,求第三个角(直角)的度数。

答案:90°第四章:方程与不等式4.1 线性方程应用题 4.1.1解方程:\( 2x + 3 = 7 \)答案:\(x = 2\)4.2 不等式应用题 4.2.1解不等式:\( 3x - 7 > 2 \)答案:\(x > 3\)第五章:数据处理5.1 平均数应用题 5.1.1某班有5名学生,他们的成绩分别是85,90,88,87,92,求该班的平均成绩。

答案:\( \dfrac{85 + 90 + 88 + 87 + 92}{5} = 88\)5.2 概率应用题 5.2.1从一副52张的扑克牌中随机抽取一张,求抽到红桃的概率。

七年级数学不等式应用题专项练习(含答案解析)

七年级数学不等式应用题专项练习(含答案解析)

一元一次不等式应用题专项练习1.某校两名教师带若干名学生去旅游,联系了两家标价相同的旅游公司,经洽谈后,甲公司优惠条件是1名教师全额收费,其余7.5折收费;乙公司的优惠条件是全部师生8折收费.试问:当学生人数超过多少人时,甲旅游公司比乙旅游公司更优惠?2.有人问一位老师:“您所教的班级有多少名学生?”老师说一半学生在学数学,四分之一的学生在学音乐,七分之一的学生在学外语,还剩不足6位学生在玩足球.”求这个班有多少位学生?3.某工程队要招聘甲、乙两种工人150人,甲、乙两种工种的月工资分别为600元和1000元,现要求乙种工种的人数不少于甲种工种人数的2倍,问甲、乙两种工种各招聘多少人时,可使得每月所付工资最少?4.某商店以每辆300元的进价购入200辆自行车,并以每辆400元的价格销售.两个月后自行车的销售款已超过这批自行车的进货款,问这时至少已售出多少辆自行车?5.某校为了奖励在数学竞赛中获奖的学生,买了若干本课外读物准备送给他们,如果每人送3本,则还余8本;如果前面每人送5本,则最后一人得到的课外读物不足3本,设该校买了m本课外读物,有x名学生获奖,请解答下列问题:(1)用含x的代数式表示m;(2)求出该校的获奖人数及所买课外读物的本数.6.某果品公司要请汽车运输公司或火车货运站将60t水果从A地运到B地.已知汽车和火车从A地到B地的运输路程都是Skm,两家运输单位除都要收取运输途中每吨每小时5元的冷藏费用外,其他收取的费用和有关运输资料由表列出:运输工具行驶速度(km/h)运输单价(元/t.km)装卸费用汽车50 2 3000火车80 1.7 4620(1)分别写出这两家运输单位运送这批水果所要收取的总费用y1元和y2元(用含S的式子表示);(2)为减少费用,当s=100km时,你认为果品公司应该选择哪一家运输单位更为合算?7.用甲、乙两种原料配制成某种果汁,已知这两种原料的维生素C的含量及购买这两种原料的价格如表:甲种原料乙种原料维生素C含量(单位/千克) 800 200原料价格(元/kg)18 14(1)现制作这种果汁200kg,要求至少含有52 000单位的维生素C,试写出所需甲种原料的质量x(kg)应满足的不等式;(2)如果还要求购买甲、乙两种原料的费用不超过1 800元,那么请你写出所需甲种原料的质量x(kg)应满足的另一个不等式.8.如图,用锤子以相同的力将铁钉垂直钉入木块,随着铁钉的深入,铁钉所受的阻力也越来越大.当未进入木块的钉子长度足够时,每次钉入木块的钉子长度是前一次.已知这个铁钉被敲击3次后全部进入木块(木块足够厚),且第一次敲击后铁钉进入木块的长度是2cm,若铁钉总长度为acm,求a的取值范围.9.为了抓住世博会商机,某商店决定购进A,B两种世博会纪念品,若购进A种纪念品10件,B种纪念品5件,需要1000元;若购进A种纪念品4件,B种纪念品3件,需要550元,(1)求购进A,B两种纪念品每件需多少元?(2)若该商店决定拿出1万元全部用来购进这两种纪念品,考虑到市场需求,要求购进A种纪念品的数量不少于B 种纪念品数量的6倍,且不超过B种纪念品数量的8倍,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?10.某汽车制造厂开发了一款新式电动汽车,计划一年生产安装240辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人;他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)如果工厂招聘n (0<n <10)名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?(3)在(2)的条件下,工厂给安装电动汽车的每名熟练工每月发2000元的工资,给每名新工人每月发1200元的工资,那么工厂应招聘多少名新工人,使新工人的数量多于熟练工,同时工厂每月支出的工资总额W (元)尽可能地少?11.某地区果农收获草莓30吨,枇杷13吨,现计划租用甲、乙两种货车共10辆将这批水果全部运往省城,已知甲种货车可装草莓4吨和枇杷1吨,乙种货车可装草莓、枇杷各2吨.(1)该果农安排甲、乙两种货车时有几种方案请您帮助设计出来;(2)若甲种货车每辆要付运输费2 000元,乙种货车每辆要付运输费1 300元,则该果农应选择哪种运输方案才能使运费最少,最少运费是多少元?12.开学初,小芳和小亮去学校商店购买学习用品,小芳用18元钱买了1支钢笔和3本笔记本;小亮用31元买了同样的钢笔2支和笔记本5本.(1)求每支钢笔和每本笔记本的价格;(2)校运会后,班主任拿出200元学校奖励基金交给班长,购买上述价格的钢笔和笔记本共48件作为奖品,奖给校运会中表现突出的同学,要求笔记本数不少于钢笔数,共有多少种购买方案?请你一一写出.13.为执行中央“节能减排,美化环境,建设美丽新农村”的国策,我市某村计划建造A 、B 两种型号的沼气池共20个,以解决该村所有农户的燃料问题.两种型号沼气池的占地面积、使用农户数及造价见下表:型号 占地面积 (单位:m 2/个 )使用农户数 (单位:户/个) 造价(单位:万元/个) A 15 18 2B 20 30 3已知可供建造沼气池的占地面积不超过365m 2,该村农户共有492户.(1)满足条件的方案共有几种?写出解答过程;(2)通过计算判断,哪种建造方案最省钱?参考答案1.解:设学生人数为x人,每人旅游价格为a元,甲公司需要的花费为:a+(1+x)×75%a,乙公司需要的花费为:(x+2)×80%a,由题意得,a+(1+x)×75%a<(x+2)×80%a.2.解:不足6位学生说明剩下人数在1和5之间.设有x人,则0<x﹣x﹣x﹣x≤50<x﹣0.5x﹣0.25x﹣x≤5解得9<x≤46,这些整数里,∵x,x,x都表示学生人数,∴必须为整数,∴学生总数应为28的倍数,∴只有28能被28整除.故这个班一共有学生28人.3.解:设招聘甲种工种的工人为x人,则招聘乙种工种的工人为(150﹣x)人,依题意得:150﹣x≥2x解得:x≤50即0≤x≤50(2分)再设每月所付的工资为y元,则y=600x+1000(150﹣x)=﹣400x+150000(4分)∵﹣400<0,∴y随x的增大而减小又∵0≤x≤50,∴当x=50时,∴y最小=﹣400×50+150000=130000(元)∴150﹣x=150﹣50=100(人)答:甲、乙两种工种分别招聘50,100人时,可使得每月所付的工资最少为130000元.4.解:设已售出x辆自行车,两个月后自行车的销售款已超过这批自行车的进货款,由题意得,400x>300×200,解得:x>150.故至少已售出151辆自行车,两个月后自行车的销售款已超过这批自行车的进货款.5.解:(1)m=3x+8;(2)根据题意得:,解得:5<x<6,因为x为正整数,所以x=6,把x=6代入m=3x+8得,m=26,答:该校获奖人数为6人,所买课外读物为26本.6.解:(1)y1=(2×60)s+5××60+3000=126s+3000;y2=(1.7×60)s+5××60+4620=105.75s+4620;(2)当s=100km时,y1=3000+126×100=15600(元),y2=105.75×100+4620=15195(元).故为减少费用,果品公司应选择火车货运站运送这批水果更为合算.7.解:(1)若所需甲种原料的质量为xkg,则需乙种原料(200﹣x)kg.根据题意,得800x+200(200﹣x)≥52000;(2)由题意得,18x+14(200﹣x)≤1800.8.解:∵每次钉入木块的钉子长度是前一次的.已知这个铁钉被敲击3次后全部进入木块(木块足够厚),且第一次敲击后铁钉进入木块的长度是2cm,根据题意得:敲击2次后铁钉进入木块的长度是2+1=3cm,而此时还要敲击1次故长度要大于3cm,第三次敲击进去最大长度是前一次的二分之一,也就是第二次的一半=0.5cm所以a的最大长度为2+1+0.5=3.5cm,故a的取值范围是:3<a≤3.5.9.解:(1)设A,B两种纪念品每件需x元,y元.,解得:.答:A,B两种纪念品每件需25元,150元;(2)设购买A种纪念品a件,B种纪念品b件.,解得≤b≤.则b=29;30;31;32;33;则a对应为226,220;214;208,202.答:商店共有5种进货方案:进A种纪念品226件,B种纪念品29件;或A种纪念品220件,B种纪念品30件;或A种纪念品214件,B种纪念品31件;或A种纪念品208件,B种纪念品32件;或A种纪念品202件,B种纪念品33件;(3)解法一:方案1利润为:226×20+29×30=5390(元);方案2利润为:220×20+30×30=5300(元);方案3利润为:214×20+30×31=5210(元);方案4利润为:208×20+30×32=5120(元);方案5利润为:202×20+30×33=5030(元);故A种纪念品226件,B种纪念品29件利润较大为5390元.解法二:解:设利润为W元,则W=20a+30b,∵25a+150b=1000,∴a=400﹣6b,∴代入上式得:W=8000﹣90b,∵﹣90<0,∴W随着b的增大而减小,∴当b=29时,W最大,即此时a=226时,W最大,∴W最大=8000﹣90×29=5390(元),答:方案获利最大为:A种纪念品226件,B种纪念品29件,最大利润为5390元.10. 解:(1)设每名熟练工和新工人每月分别可以安装x、y辆电动汽车.根据题意,得,解得.答:每名熟练工和新工人每月分别可以安装4、2辆电动汽车.(2)设工厂有a名熟练工.根据题意,得12(4a+2n)=240,2a+n=10,n=10﹣2a,又a,n都是正整数,0<n<10,所以n=8,6,4,2.即工厂有4种新工人的招聘方案.①n=8,a=1,即新工人8人,熟练工1人;②n=6,a=2,即新工人6人,熟练工2人;③n=4,a=3,即新工人4人,熟练工3人;④n=2,a=4,即新工人2人,熟练工4人.(3)结合(2)知:要使新工人的数量多于熟练工,则n=8,a=1;或n=6,a=2;或n=4,a=3.根据题意,得W=2000a+1200n=2000a+1200(10﹣2a)=12000﹣400a.要使工厂每月支出的工资总额W(元)尽可能地少,则a应最大.显然当n=4,a=3时,工厂每月支出的工资总额W(元)尽可能地少.11. 解:(1)设应安排x辆甲种货车,那么应安排(10﹣x)辆乙种货车运送这批水果,由题意得:,解得5≤x≤7,又因为x是整数,所以x=5或6或7,方案:方案一:安排甲种货车5辆,乙种货车5辆;方案二:安排甲种货车6辆,乙种货车4辆;方案三:安排甲种货车7辆,乙种货车3辆.(2)在方案一中果农应付运输费:5×2 000+5×1300=16 500(元)在方案二中果农应付运输费:6×2 000+4×1 300=17 200(元)在方案三中果农应付运输费:7×2 000+3×1 300=17 900(元)答:选择方案一,甲、乙两种货车各安排5辆运输这批水果时,总运费最少,最少运费是16 500元.12. 解:(1)设每支钢笔x元,每本笔记本y元.依题意得:,解得:,答:每支钢笔3元,每本笔记本5元.(2)设买a支钢笔,则买笔记本(48﹣a)本,依题意得:,解得:20≤a≤24,∴一共有5种方案.方案一:购买钢笔20支,则购买笔记本28本;方案二:购买钢笔21支,则购买笔记本27本;方案三:购买钢笔22支,则购买笔记本26本;方案四:购买钢笔23支,则购买笔记本25本;方案五:购买钢笔24支,则购买笔记本24本.13. 解:(1)设建造A型沼气池x个,则建造B型沼气池(20﹣x)个,依题意得:,解得:7≤x≤9.∵x为整数∴x=7,8,9,所以满足条件的方案有三种.(2)解法①:设建造A型沼气池x个时,总费用为y万元,则:y=2x+3(20﹣x)=﹣x+60,∴y随x增大而减小,当x=9时,y的值最小,此时y=51(万元).∴此时方案为:建造A型沼气池9个,建造B型沼气池11个.解法②:由(1)知共有三种方案,其费用分别为:方案一:建造A型沼气池7个,建造B型沼气池13个,总费用为:7×2+13×3=53(万元).方案二:建造A型沼气池8个,建造B型沼气池12个,总费用为:8×2+12×3=52(万元).方案三:建造A型沼气池9个,建造B型沼气池11个,总费用为:9×2+11×3=51(万元).∴方案三最省钱.。

7年级奥数应用题专项练习

7年级奥数应用题专项练习

7年级奥数应用题专项练习7年级奥数应用题专项练习篇一1、爸爸早上8:00上班,11:30下班;下午1:30上班,5:00下班,爸爸一天的工作时间是多少?2、刘强骑摩托车匀速行驶到汽车站乘汽车,如每小时行30千米,则早到1/4小时,如每小时行15千米,则迟到1/12小时,如果打算提前五分钟到,那么摩托车的速度应是多少?3、一项工程,甲单独做需要15天,乙和丙单独做各需要10天.甲做了一段时间后离开,乙、丙合作要4天完成。

甲做了多少天?4、甲乙两打字员合打一份稿件,完成时甲打了稿件的5/9,已知甲单独打6.4小时完成,乙单独打几小时完成?5、一批零件,甲乙两人合作12天可以完成。

他们合作若干天后,乙因事请假,乙这时只完成了总任务的十分之三。

甲继续做,从开始到完成任务用了14天。

请问:甲单独做了多少天?6、修一段公路,原计划120人50天完工。

工作一个月(按30天计算)后,有20人被调走,赶修其他路段。

这样剩下的人需比原计划多干多少天才能完成任务?7年级奥数应用题专项练习篇二1.14千克大豆的价钱与8千克花生的价钱相等,已知1千克花生比1千克大豆贵1.2元,求大豆和花生的单价各是多少?2.一种毛线每千克48.36元,买3千克应付多少元?买0.6千克呢?3.安可去水果摊买西瓜,老婆婆的西瓜每千克卖0.45元。

安可挑了一个大西瓜,重10.7千克,安可要应该付多少钱呢?4.一堆煤3.6吨,计划可以烧10天,改进炉灶后,每天比原计划节约0.06吨,这堆煤现在可以烧多少天?5.修一条长6.4千米的公路,前3个月平均每月筑1.2千米,剩下的每月修1.4千米,还要几个月完成?6.小明用10.2元买文具,买了6支铅笔,每支0.45元,余下的钱买圆珠笔,每支2.5元,可以买多少支?7年级奥数应用题专项练习篇三1、甲乙两列火车分别从A、B两地同时出发相向而行,甲车每小时行驶75千米,乙车每小时行驶69千米,经过18小时两车途中相遇,两地间的铁路长多少千米?2、甲乙两车分别从相距480千米的A、B两城同时出发相向而行,已知甲车从A城到B城需要6小时,乙车从B城到A城需要12小时,两车出发后几小时相遇?3、甲乙两列火车同时从相距700千米的两地开出,甲车每小时行75千米,经过5小时相遇,乙车每小时行多少千米?4、甲乙两队学生从相隔18千米的两地同时出发相向而行。

七年级数学应用题带答案

七年级数学应用题带答案

七年级数学应用题带答案七年级数学应用题带答案1【题目1】b处的兔子和a处的狗相距56米。

兔子从b处逃跑,狗同时从a处跳出追兔子,狗一跳2米,狗跳3次的时间和兔子跳4次的时间相同。

兔子跳出112米后被狗追上,问兔子一跳多少米?【解答】狗和兔子的速度比是(112+56):112=3:2,狗跳3次跳了2×3=6米,兔子就跳6×2/3=4米,所以兔子每跳一次4÷4=1米【题目2】甲乙两车分别从a、b两地同时开出,相对而行,4小时后甲车行了全程的1/4,乙车行的`路程比全程的12.5%少60千米,甲乙两车继续行驶735千米相遇。

求ab两地相距多少千米?【解答】735-60=675千米占全程的1-1/4-12.5%=5/8,所以两地之间的距离是675÷5/8=1080千米。

【题目3】火车每分钟行1050米,从车头与一个路标并列到车尾离开这个路标3分钟后一辆摩托车以每分钟1200米的速度从这个路标出发,摩托车出发25分钟后,与火车的车头正好并列,求这列火车的长。

【解答】摩托车行了1200×25=30000米,车尾行了1050×(25+3)=29400米。

所以火车长30000-29400=600米。

【题目4】在同一路线上有abcd四个人,每人的速度固定不变。

已知a在12时追上c,14时时与d迎面相遇,16时时与b迎面相遇。

而b在17时时与c迎面相遇,18时追上d,那么d在几时迎面遇到c。

【解答】把12时ab的距离看作单位1,四人速度分别用abcd来表示。

a+b=1/4,b+c=1/5。

2(a+d)+6(b-d)=4(a+b),得出b-d=1/2(a+b)=1/2×1/4=1/8,12时c和d相距2×(1/4-1/8)=1/4,c+d=1/5-1/8=3/40,所以需要的时间是1/4÷3/40=10/3小时,即在15时20分的时候c和d相遇。

七年级二元一次方程应用题专项练习

二元一次方程组解应用题练习题一、数字问题1、一个两位数,比它十位上的数与个位上的数的和大9;如果交换十位上的数与个位上的数,所得两位数比原两位数大27,求这个两位数.2、一个两位数的十位数字与个位数字的和是7,如果这个两位数加上45,则恰好组成这个个位数字与十位数字对调后的两位数,求这个两位数.二、利润问题1、一件商品如果按定价打九折出售可以盈利20%;如果打八折出售可以盈利10元,问此商品的定价是多少三、配套问题1、某厂共有120名生产工人,每个工人每天可生产螺栓25个或螺母20个,如果一个螺栓与两个螺母配成一套,那么每天安排多名工人生产螺栓,多少名工人生产螺母,才能使每天生产出来的产品配成最多套2、某车间有38名工人生产某种螺栓和螺母,每人每天能生产螺栓12个或螺母18个,为了合理分配劳力,使生产的螺栓和螺母配套(3个螺栓套5个螺母),则应分配多少人生产螺栓,多少人生产螺母四、行程问题1、甲、乙二人相距6km,二人同向而行,甲3小时可追上乙;相向而行,1小时相遇。

二人的平均速度各是多少2、一列匀速行驶的火车通过一座160米长的铁路桥用了30秒,若它以同样的速度穿过一段200米长的隧道用了32秒,求这列火车的速度和长度.五、货运问题1、某船的载重量为300吨,容积为1200立方米,现有甲、乙两种货物要运,其中甲种货物每吨体积为6立方米,乙种货物每吨的体积为2立方米,要充分利用这艘船的载重和容积,甲、乙两重货物应各装多少吨六、工程问题1、某服装厂接到生产一种工作服的订货任务,要求在规定期限内完成,按照这个服装厂原来的生产能力,每天可生产这种服装150套,按这样的生产进度在客户要求的期限内只能完成订货的45;现在工厂改进了人员组织结构和生产流程,每天可生产这种工作服200套,这样不仅比规定时间少用1天,而且比订货量多生产25套,求订做的工作服是几套要求的期限是几天2、一项工程甲单独做需12天完成,乙单独做需18天完成,计划甲先做若干天后离去,再由乙完成,实际上甲只做了计划时间的一半便因事离去,然后由乙单独承担,而乙完成任务的时间恰好是计划时间的2倍,则原计划甲、乙各做多少天七、分配问题一批货物要运往某地,1、货主准备租用汽运公司的甲、乙两种货车,已知过去租用这两种汽车运货的情况如左表所示,现租用该公司5辆甲种货车和6辆乙种货车,一次刚好运完这批货物,问这批货物有多少吨2、某校师生到甲、乙两个工厂参加劳动,如果从甲厂抽9人到乙厂,则两厂的人数相同;如果从乙厂抽5人到甲厂,则甲厂的人数是乙厂的2倍,到两个工厂的人数各是多少3、某幼儿园分萍果,若每人3个,则剩2个,若每人4个,则有一个少1个,问幼儿园有几个小朋友八、年龄问题.1、甲对乙说:“当我的岁数是你现在的岁数时,你才4岁”.乙对甲说:“当我的岁数是你现在的岁数时,你将61岁”.请你算一算,甲、乙现在各多少岁2、父子的年龄差30岁,五年后父亲的年龄正好是儿子的3倍,问今年父亲和儿子各是多少岁九、增长率问题1、某单位甲、乙两人去年共分得现金9000元今年共分得现金12700元. 已知今年分得的现金甲增加50%,乙增加30%,. 两人今年分得的现金各是多少元2、某市现有42万人口,计划一年后城镇人口增加%,农村人口增加工厂%,这样全市人口将增加1%,求这个市现在的城镇人口与农村人口十、浓度分配问题1、要配浓度是45%的盐水12千克,现有10%的盐水与85%的盐水,这两种盐水各需多少十一、几何问题1、如图:用8块相同的长方形拼成一个宽为48厘米的大长方形,每块小长方形的长和宽分别是多少十二、航行问题1、A市至B市的航线长1200千米,一架飞机从A市顺风飞往B市需2小时30分,从B 市逆风飞往A市需3小时20分,求飞机无风飞行的速度与风速十三、方案设计问题1、某地生产一种绿色蔬菜,若在市场上直接销售,每吨利润为1 000元;经粗加工后销售,每吨利润可达4 500元;经精加工后销售,每吨利润涨至7 500元。

七年级数学上册综合算式专项练习题有理数的加减乘除(应用题)

七年级数学上册综合算式专项练习题有理数的加减乘除(应用题)在数学学科中,有理数的加减乘除是一个重要的知识点。

掌握了有理数的加减乘除,可以帮助我们解决各种实际问题,提高数学运算能力。

本篇文章将围绕七年级数学上册综合算式专项练习题有理数的加减乘除应用题展开讨论。

一、有理数的加法应用题1. 在一个游戏中,小明得到了3个正数奖励,其数值分别为5, 7和9。

小红得到了2个负数奖励,其数值分别为-4和-8。

问两人奖励的总和是多少?解:小明的奖励总和为5 + 7 + 9 = 21,小红的奖励总和为-4 + (-8) = -12。

两人奖励的总和为21 + (-12) = 9。

2. 一辆汽车在第一个小时以每小时50公里的速度向东行驶,接下来的3个小时以每小时40公里的速度向西行驶。

求这辆汽车行驶的总距离。

解:汽车向东行驶的距离为50 * 1 = 50公里,向西行驶的距离为40 * 3 = 120公里。

总距离为50 + (-120) = -70公里。

由于距离是一个标量,取绝对值后为70公里。

二、有理数的减法应用题1. 小明每月的零花钱是100元,他每个月都能省下20元。

问3个月后他的零花钱剩余多少?解:小明每个月省下的金额为20 * 3 = 60元。

零花钱剩余为100 - 60 = 40元。

2. 一个国家的外汇储备为200亿美元,今年减少了80亿美元。

问今年外汇储备剩余多少?解:外汇储备减少了80亿美元,剩余为200 - 80 = 120亿美元。

三、有理数的乘法应用题1. 一桶牛奶有5升,小明买了3桶牛奶,他一家每天喝掉1/4桶牛奶,问这3桶牛奶能够供应他们家多少天?解:一桶牛奶每天能够供应的天数为1 / (1/4) = 4天。

三桶牛奶共能够供应的天数为4 * 3 = 12天。

2. 一块土地的面积为60平方米,经过3次分割,每次分割都将面积减少1/3,问现在的土地面积是多少平方米?解:每次分割土地的面积减少1/3,经过3次分割后,剩余面积为60 * (1 - 1/3) * (1 - 1/3) * (1 - 1/3) = 60 * (2/3) * (2/3) * (2/3) = 60 * 8/27 = 160/3 平方米。

人教版数学七年级上册应用题专项(附答案)

人教版数学七上应用题专项练习一、相遇问题对应数量关系式:速度×时间=路程快者路程+慢者路程=总路程(快者速度+慢者速度)×相遇时间=相遇路程1.AB两地相距75千米,甲车速度50千米每小时从A地出发,乙车速度40千米每小时从B地出发。

同时出发相对而行,几小时后相距30千米?2.甲乙两车从相距300千米的AB两地同时出发,甲速度是乙速度的1.5倍,4小时后相遇,乙速度是多少?3.甲乙两地相距600千米,慢车速度40千米每小时从甲地出发,快车速度60千米每小时从乙地出发;如果让慢车先走55分钟后,快车再出发,求快车开出多少小时后两车相遇?二、追及问题数量关系式:两者的路程差=追及路程/以追及时间为等量关系式1.同时不同地:快者时间=慢者时间快者路程—慢者路程=原来相距路程①甲车在乙车前方600米处,甲速度40千米每小时,乙车速度60千米每小时,同时出发,乙车几小时能追上甲车?②AB两地相距62千米,甲从A出发,每小时行14千米,乙从B出发每小时行18千米,若甲在前乙在后,两人同时同方向出发,几小时后乙超过甲10千米?2.同地不同时:先走者的时间=后走者的时间+时间差先走者的路程=慢走者的路程①慢车从车站开出,每小时行48千米,45分钟后,一快车从同车站同向开出,1.5小时追上了慢车,快车的速度是多少?②古代一队士兵去城外进行训练,以每小时5千米的速度行进,走了18分钟,城内要将一个重要信息传给队长,通讯员骑马以每小时14千米的速度按原路追赶。

通讯员多久能追上?三、环形跑道相遇追及问题同地反向:两者路程和=一圈的路程同地同向:两者路程差=一圈的路程1.一条环形跑道长400米,甲每分钟行450米,乙每分钟行250米;甲乙两人同时同地反向出发,几分钟后再相遇?甲乙两人同时同地同向出发,几分钟后再相遇?2.甲乙两人在400米的环形跑道上跑步,若同时同地同向跑则3分20秒相遇一次;若同时同地反向跑则40秒相遇,求甲的速度是每秒多少米?四、年龄问题等量关系式:大小年龄差永远不会变,一年一岁,人人平等1.现在儿子的年龄是8岁,父亲的年龄是儿子年龄的4倍,几年后父亲年龄是儿子年龄的3倍?3.父亲和女儿的年龄和是91,当父亲的年龄是女儿现在年龄的2倍的时候,女儿的年龄是父亲现在年龄的三分之一,求女儿现在的年龄?4.现在甲的年龄是乙的2倍,8年后两人年龄和是76岁,现在甲比乙大几岁?五、行船问题顺流航速=船的静水速度+水流速度逆流速度=船的静水速度-水流速度顺流速度×顺流时间=顺流路程逆流速度×逆流时间=逆流路程顺程+逆程=总路程1.一艘船航行于A,B两个码头之间,顺水航行需要2个小时,逆水航行需要4个小时,已知水流速度是4千米/时,求这两个码头之间的距离?2.一艘轮船每小时行15千米,它逆水6小时行了72千米,如果它顺水行驶同样长的航程需要多少小时?六、飞行问题顺风速=飞机无风速+风速逆风速=飞机无风速-风速顺风速×顺风时间=顺风路程逆风速×逆风时间=逆风路程顺程+逆程=总路程1.一架飞机在两地之间飞行风速为16千米/小时,顺飞飞行需要3小时,逆风飞行需要5小时,求无风时飞机的航速和两地之间的航程?七、利润率问题利润率=(利润÷进价)×100%进价(成本价)+利润=售价利润=进价(成本价)×利润率1.某商品进价500元,按标价的九折销售,利润率为15.2%,求商品的标价是多少元?2.某商品进价2000元,标价为3000元,商店要求以利润不低于5%的售价打折出售,售货员可以打几折出售此商品?3.工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利利润相等,该工艺品每件的进4.一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件扔获利15元,这种服装的进价是多少?八、和差倍分的问题问题的特点:已知两个量之间存在和倍差关系,可以求这两个量的多少。

初一有理数应用题30题(有答案)

有理数应用题专项练习30题(有答案)1.某巡警骑摩托车在一条南北大道上来回巡逻,一天早晨,他从岗亭出发,中午停留在A处,规定向北方向为正,当天上午连续行驶情况记录如下(单位:千米):+5,﹣4,+3,﹣7,+4,﹣8,+2,﹣1.(1)A处在岗亭何方?距离岗亭多远?(2)若摩托车每行驶1千米耗油a升,这一天上午共耗油多少升?2.某工厂生产一批零件,根据要求,圆柱体的内径可以有0.03毫米的误差,抽查5个零件,超过规定内径的记作正数,不足的记作负数,检查结果如下:+0.025,﹣0.035,+0.016,﹣0.010,+0.041(1)指出哪些产品合乎要求?(2)指出合乎要求的产品中哪个质量好一些?3.某奶粉每袋的标准质量为454克,在质量检测中,若超出标准质量2克,记作为+2克,若质量低于3克以上的,则这袋奶粉为不合格,现在抽取10袋样品进行质量检测,结果如下(单位:克).袋号 1 2 3 4 5 6 7 8 9 10记作﹣2 0 3 ﹣4 ﹣3 ﹣5 +4 +4 ﹣6 ﹣3(1)这10袋奶粉中有哪几袋不合格?(2)质量最多的是哪袋?它的实际质量是多少?(3)质量最少的是哪袋?它的实际质量是多少?4.蜗牛从某点0开始沿一东西方向直线爬行,规定向东爬行的路程记为正数,向西爬行的路程记为负数.爬过的各段路程依次为(单位:厘米):+4,﹣3,+10,﹣9,﹣6,+12,﹣10.①求蜗牛最后的位置在点0的哪个方向,距离多远?②在爬行过程中,如果每爬1厘米奖励一粒芝麻,则蜗牛一共得到多少粒芝麻?③蜗牛离开出发点0最远时是多少厘米?5.某巡警车在一条南北大道上巡逻,某天巡警车从岗亭A处出发,规定向北方向为正,当天行驶纪录如下(单位:千米)-10,﹣9,+7,﹣15,+6,﹣5,+4,﹣2(1)最终巡警车是否回到岗亭A处?若没有,在岗亭何方,距岗亭多远?(2)摩托车行驶1千米耗油0.2升,油箱有油10升,够不够?若不够,途中还需补充多少升油?6.某市公交公司在一条自西向东的道路旁边设置了人民公园、新华书店、实验学校、科技馆、花园小区站点,相邻两个站点之间的距离依次为3km、1.5km、2km、3.5km.如果以新华书店为原点,规定向东的方向为正,向西的方向为负,设图上1cm长的线段表示实际距离1km.请画出数轴,将五个站点在数轴上表示出来.7.生活与应用:在一条笔直的东西走向的马路上,有少年宫、学校、超市、医院四家公共场所.已知少年宫在学校东300米,超市在学校西200米,医院在学校东500米.(1)你能利用所学过的数轴知识描述它们的位置吗?(2)小明放学后要去医院看望生病住院的奶奶,他从学校出发向西走了200米,又向西走了﹣700米,你说他能到医院吗?8.东方红中学位于东西方向的一条路上,一天我们学校的李老师出校门去家访,他先向西走100米到聪聪家,再向东走150米到青青家,再向西走200米到刚刚家,请问:(1)如果把这条路看作一条数轴,以向东为正方向,以校门口为原点,请你在这条数轴上标出聪聪家与青青家的大概位置(数轴上一格表示50米).(2)聪聪家与刚刚家相距多远?(3)聪聪家向西20米所表示的数是多少?(4)你认为可用什么办法求数轴上两点之间的距离?9.小明到坐落在东西走向的大街上的文具店、书店、花店和玩具店购物,规定向东走为正.已知小明从书店购书后,走了100m到达玩具店,再走﹣65m到达花店,又继续走了﹣70m到达文具店,最后走了10m到达公交车站.(1)书店距花店有多远?(2)公交车站在书店的什么位置?(3)若小明在四个店各逗留10min,他的步行速度大约是每分钟35m,小明从书店购书一直到公交车站一共用了多少时间?10.王老师到坐落在东西走向的阜城大街上的文具店、书店、花店和玩具店购物,规定向东为正.已知王老师从书店购书后,走了110m到达玩具店,再走﹣75m到达花店,又继续走了﹣50m到达文具店,最后走了25m到达公交车站牌.(1)书店距花店有多远?(2)公交车站牌在书店的什么位置?(3)若王老师在四个店各逗留10min,他的步行速度大约是每分钟26m,王老师从书店购书一直到公交车站一共用了多少时间?11.已知蜗牛从A点出发,在一条数轴上来回爬行,规定:向正半轴运动记作“+”,向负半轴运动记作“﹣”,从开始到结束爬行的各段路程(单位:cm)依次为:+7,﹣5,﹣10,﹣8,+9,﹣6,+12,+4(1)若A点在数轴上表示的数为﹣3,则蜗牛停在数轴上何处,请通过计算加以说明;(2)若蜗牛的爬行速度为每秒,请问蜗牛一共爬行了多少秒?12.上午8点,某人驾驶一辆汽车从A地出发,向东记为正,向西记为负.记录前4次行驶过程如下:﹣15公里,+25公里,﹣20公里,+30公里,若要汽车最后回到A地,则最后一次如何行驶?已知汽车行驶的速度为55千米/小时,在这期间他办事花去2小时,问他回到A地的时间.13.有一只小虫从某点出发,在一条直线上爬行,若规定向右爬行的路程记为正,向左爬行的路程记为负,小虫爬行各段路程依次记为(单位:厘米):﹣5,﹣4,+10,﹣3,+8.(1)小虫最后离出发点多少厘米?(2)如果小虫在爬行过程中,每爬行一厘米就得到一粒芝麻,问小虫最终一共可得到多少粒芝麻?(3)若小虫爬行的速度始终不变,并且爬完这段路程用了6分钟,求小虫的爬行速度是多少?14.一个小虫从点O出发在一条直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程为负数,爬行的路程依次为(单位:厘米):+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)小虫最后是否能回到出发点O?(2)小虫离开出发点O最远时是多少厘米?(直接写出结果即可.)(3)在爬行过程中,如果每爬1厘米奖励两粒芝麻,则小虫共可得多少粒芝麻?15.体育课全班女生进行了百米测验,达标成绩为18秒,下面是第一小组8名女生的成绩记录,其中“+”表示成绩大于18秒,“﹣”表示成绩小于18秒.﹣1 +0.8 0 ﹣1.2 ﹣0.1 0 +0.5 ﹣0.6这组女生的达标率为多少平均成绩为多少秒?16.体育课上对七年级(1)班的8名女生做仰卧起坐测试,若以16次为达标,超过的次数用正数表示,不足的次数用负数表示.现成绩抄录如下:+2,+2,﹣2,+3,+1,﹣1,0,+1.问:(1)有几人达标?(2)平均每人做几次?17.一振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位mm):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求停止时所在位置距A点何方向,有多远?(2)如果每毫米需时0.02秒,则共用多少秒?18.出租车司机小李某天下午营运全是在东西走向的人民大道进行的.如果规定向东为正,向西为负,他这天下午行车里程如下(单位:千米)+15,﹣3,+14,﹣11,+10,﹣12,+4,﹣15,+16,﹣18(1)将最后一名乘客送到目的地时,小李距下午出发地点的距离是多少千米?(2)若汽车耗油量为a公升/千米,这天下午汽车共耗油多少公升?19.某储蓄所,某日办理了7项储蓄业务:取出9.5万元,存入5万元,取出8万元,存入12万元,存入23万元,取出10.25万元,取出2万元,求储蓄所该日现金增加多少万元?20.小明去一水库进行水位变化的实地测量,他取警戒线作为0m,记录了这个水库一周内的水位变化情况(测量前一天的水位达到警戒水位,单位:m,正号表示水位比前一天上升,负号表示比前一天下降星期一二三四五六日水位变化(m)+0.15 ﹣0.2 +0.13 ﹣0.1 +0.14 ﹣0.25 +0.16(1)这一周内,哪一天水库的水位最高?哪一天的水位最低?最高水位比最低水位高多少?(2)与测量前一天比,一周内水库水位是上升了还是下降了?21.在一次食品安检中,抽查某企业10袋奶粉,每袋取出100克,检测每100克奶粉蛋白质含量与规定每100克含量(蛋白质)比较,不足为负,超过为正,记录如下:(注:规定每100g奶粉蛋白质含量为15g)﹣3,﹣4,﹣5,+1,+3,+2,0,﹣1.5,+1,+2.5(1)求平均每100克奶粉含蛋白质为多少?(2)每100克奶粉含蛋白质不少于14克为合格,求合格率为多少?22.某中学定于11月举行运动会,组委会在修整跑道时,工作人员从甲处开工,规定向南为正,向北为负,从开工处甲处到收工处乙处所走的路程为:+10,﹣3,+4,﹣2,+13,﹣8,﹣7,﹣5,﹣2,(单位:米)(1)甲处与乙处相距多远?(2)工作人员离开甲处最远是多少米?(3)工作人员共修跑道多少米?23.为了保护广大消费者的利益,最近工商管理人员在一家面粉店总抽查了20袋面粉,称得它们的重量如下(单位:千克):25、25、24、24、23、24、24、25、26、25、23、23、24、25、25、24、24、26、26、25.请你计算这20袋面粉的总重量和每袋的平均重量,你能找出比较简单的计算方法吗?请你试试,根据你的计算结果,你对这次检查情况有什么看法?(每袋面粉的标准重量为:25千克)24.每袋大米的标准重量为50千克,10袋大米称重记录如图所示.(1)与标准重量比较,10袋大米总计超过多少千克或不足多少千克?(2)10袋大米的总重量是多少千克?25.体育课上,全班男同学进行了100米测验,达标成绩为15秒,下表是某小组8名男生的成绩测试记录,其中“+“表示成绩大于15秒.﹣0.8 +1 ﹣1.20 ﹣0.7+0.6 ﹣0.4﹣0.1问:(1)这个小组男生的达标率为多少?()(2)这个小组男生的平均成绩是多少秒?26.在体育课上,赵老师对七年级1班的部分男生进行了引体向上的测试,该项目的标准为不低于7个.现在赵老师以能做7个引体向上为标准,超过的次数用正数表示,不足的次数用负数表示,其中8名男生的成绩记录如下:3 ﹣2 0 4 ﹣1 ﹣3 0 1 (1)8名男生有百分之几达到标准?(2)他们共做了多少个引体向上?27.公路养护小组乘车沿南北公路巡视维护,某天早晨从A地出发,晚上最后到达B地,约定向北为正方向,当天的行驶记录如下(单位:千米):+18,﹣9,+7,﹣14,+15,﹣6,﹣8,问B地在A地何方,相距多少千米?若汽车行驶每千米耗油a升,求该天共耗油多少升?28.某辆出租车一天下午以公园为出发地在东西方向行驶,向东走为正,向西走为负,行车里程(单位:公里),依先后次序记录如下:+9、﹣3、﹣5、+6、﹣7、+10、﹣6、﹣4、+4、﹣3、+7(1)将最后一名乘客送到目的地时,出租车离公园多远?在公园的什么方向?(2)若出租车每公里耗油量为0.1升,则这辆出租车每天下午耗油多少升?29.10盒火柴如果以每盒100根为标准,超过的根数记作正数,不足的根数记作负数,每盒数据记录如下:+3,+2,0,﹣1,﹣2,﹣3,+3,﹣2,﹣2,﹣1,10盒火柴共有多少根?30.某登山队5名队员以二号高地为基地,开始向海拔距二号高地500米的顶峰冲击,设他们向上走为正,行程记录如下(单位:米):+150,﹣32,﹣43,+205,﹣30,+25,﹣20,﹣5,+30,﹣25,+75.(1)他们最终有没有登上顶峰?如果没有,那么他们离顶峰还差多少米?(2)登山时,5名队员在进行全程中都使用了氧气,且每人每米要消耗氧气0.04升.他们共使用了氧气多少升?有理数应用题30题参考答案:1.(1)∵+5﹣4+3﹣7+4﹣8+2﹣1=﹣6,又∵规定向北方向为正,∴A处在岗亭的南方,距离岗亭6千米.(2)∵|+5|+|﹣4|+|+3|+|﹣7|+|+4|+|﹣8|+|+2|+|﹣1|=34,又∵摩托车每行驶1千米耗油a升,∴这一天上午共耗油34a升.2.依据题意产品允许的误差为±0.03,即(+0.03﹣﹣0.03)之间.故:(1)第一、三、四个产品符合要求,即(+0.025,+0.016,﹣0.010).(2)其中第四个零件(﹣0.010)误差最小,所以第四个质量好些3.(1)4号袋低于标准质量4克,6号袋低于标准质量5克,9号袋低于标准质量6克,质量都低于3克以上,故4、6、9号袋不合格;(2)表中标注+4克的,超过标准质量4克,超过准质量最多,是7,8号袋,它的实际质量是454+4=458克;(3)表中标注﹣6的,低于标准质量6克,低于准质量最多,是9号袋,它的实际质量是454﹣6=448克4.①(+4)+(﹣3)+(+10)+(﹣9)+(﹣6)+(+12)+(﹣10),=(﹣3)+(﹣9)+(﹣6)+(+4)+(+12)+(+10)+(﹣10)=(﹣18)+(+16)+0=﹣2(厘米),所以蜗牛最后的位置在点0西侧,距离点0为2厘米;②|+4|+|﹣3|+|+10|+|﹣9|+|﹣6|+|+12|+|﹣10|=4+3+10+9+6+12+10=54(厘米),所以蜗牛一共得到54料芝麻;③如图所示,最远时为11厘米.5.(1)﹣10﹣9+7﹣15+6﹣5+4﹣2=﹣24,即可得最终巡警车在岗亭A处南方24千米处.(2)行驶路程=10+9+7+15+6+5+4+2=58千米,需要油量=58×0.2=11.6升,故油不够,需要补充1.6升6.解:数轴如图所示:7.(1)(2)(﹣200)+700=500米,则他在医院的东500米,他能到医院8.(1)依题意可知图为:(2)∵|﹣100﹣(﹣150)|=50(m),∴聪聪家与刚刚家相距50米.(3)聪聪家向东20米所表示的数是﹣100+20=﹣80.(4)求数轴上两点间的距离可用右边的点表示的数减去左边的点表示的数9.如图所示:(1)书店距花店35米;(2)公交车站在书店的西边25米处;(3)小明所走的总路程:100+|﹣65|+|﹣70|+10=245(米),10.如图所示:(1)书店距花店35米;(2)公交车站牌在书店的东边10米处;(3)王老师所走的总路程:110+|﹣75|+|﹣50|+25=260(米),260÷26=10(分钟),10+4×10=50(分钟).答:王老师从书店购书一直到公交车站一共用了50分钟.11.(1)依题意得﹣3+(+7)+(﹣5)+(﹣10)+(﹣8)+(+9)+(﹣6)+(+12)+(+4)=0,∴蜗牛停在数轴上的原点;(2)(|+7|+|﹣5|+|﹣10|+|﹣8|+|+9|+|+12|+|+4|+|﹣6|)÷=122cm.∴蜗牛一共爬行了122秒12.由题意得:﹣15+25﹣20+30=﹣20,∵向东记为正,向西记为负,∴﹣20表示向西行驶20公里;汽车共行驶15+25+20+30+20=110公里,用时为:110÷55=2,∴共用时2+2=4小时,故回到A地的时间为8+4=12点13.(1)(﹣5)+(﹣4)+10+(﹣3)+8=[(﹣5)+(﹣4)+(﹣3)]+(10+8)=﹣12+18=6(厘米).答:小虫最后离出发点6厘米.(2)|﹣5|+|﹣4|+|10|+|﹣3|+|8|=30.答:小虫最终一共可得到30粒芝麻.(3)由(2)知:小虫共爬行了30厘米,故其爬行速度为:30÷6=5(厘米/分钟).答:小虫的爬行速度为5厘米/分钟14.(1)∵(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10)=5﹣3+10﹣8﹣6+12﹣10,=5+10+12﹣3﹣8﹣6﹣10=27﹣27=0,∴小虫最后可以回到出发点;(2)+5+(﹣3)=2,(+5)+(﹣3)+(+10)=12,(+5)+(﹣3)+(+10)+(﹣8)=4,(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)=﹣2,(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+12=10;所以,小虫离开出发点O最远时是12厘米;(3)(|+5|+|﹣3|+|+10|+|﹣8|+|﹣6|+|+12|+|﹣10|)×2=(5+3+10+8+6+12+10)×2=54×2=108,所以小虫共可得108粒芝麻15.由题意可知,达标的人数为6人,所以达标率6÷8×100%=75%.平均成绩为:18+=18+(﹣0.2)=17.8(秒)16.(1)∵16次为达标,超过的次数用正数表示,∴达标的人数6人.(2)八名女生所做的总次数是:(16+2)+(16+2)+(16﹣2)+(16+3)+(16+1)+(16﹣1)+16+(16+1)=134,所以平均次数是=16.7517.(1)根据题意可得:向右为正,向左为负,由8次振动记录可得:10﹣9+8﹣6+7.5﹣6+8﹣7=5.5,故停止时所在位置在A点右边5.5mm处;(2)一振子从一点A开始左右来回振动8次,共10+9+8+6+7.5+6+8+7=61.5mm.如果每毫米需时0.02秒,故共用61.5×0.02=1.23秒则耗油118×a=118a公升.答:将最后一名乘客送到目的地时,小李距下午出发地点的距离是0千米;若汽车耗油量为a公升/千米,这天下午汽车共耗油118a公升19.根据题意可设:存入为“+”,取出为“﹣”;则储蓄所该日现金增加量等于(﹣9.5)+(+5)+(﹣8)+(12)+(+23)+(﹣10.25)+(﹣2)=+10.25万元.故储蓄所该日现金增加10.25万元20.(1)本周水位依次为0.15m,﹣0.05m,0.08m,﹣0.02m,0.12m,﹣0.13m,0.03m.故星期一水库的水位最高,星期六水库的水位最低.最高水位比最低水位高0.15m+0.25m=0.4m.(2)上升了,上升了0.15﹣0.2+0.13﹣0.1+0.14﹣0.25+0.16=0.18m21.(1)+15=14.6(g);(2)其中﹣3,﹣4,﹣5,﹣1.5为不合格,那么合格的有6个,合格率为=60%22.(1)10﹣3+4﹣2+13﹣8﹣7﹣5﹣2=10+4+13﹣3﹣2﹣8﹣7﹣5﹣2=27﹣27=0(米),∴甲处与乙处相距0米,即在原处.(2)工作人员离开甲处的距离依次为:10,7,11,9,22,14,7,2,0(米),∴工作人员离开甲处最远是22米.(3)10+3+4+2+13+8+7+5+2=54(米),∴工作人员共修跑道54米23.以25千克为标准重量,超过25千克记为正数,不足25千克记为负数.25×20+[0+0+(﹣1)+(﹣1)+(﹣2)+(﹣1)+(﹣1)+0+1+0+(﹣2)+(﹣2)+(﹣1)+(﹣1)+1+1+0]=490 (千克),490÷20=24.5(千克).答:总重量为490kg,平均重量24.5kg.在今后的抽查中,应严格把关,保护广大消费者的利益24.(1)与标准重量比较,10袋大米总计超过1+1+1.5﹣1+1.2+1.3﹣1.3﹣1.2+1.8+1.1=5.4千克;(2)10袋大米的总重量是50×10+5.4=505.4千克25.(1)成绩记为正数的不达标,只有2人不达标,6人达标.这个小组男生的达标率=6÷8=75%;(2)﹣0.8+1﹣1.2+0﹣0.7+0.6﹣0.4﹣0.1=﹣1.6 15﹣1.6÷8=14.8秒答:(1)这个小组男生的达标率为75%.(2)这个小组男生的平均成绩是14.8秒26.(1)∵8名男生有5个人达到标准,即5÷8×100%=62.5%,8名男生有62.5%达到标准;(2)10+5+7+11+6+4+7+8=58或3﹣2+0+4﹣1﹣3+0+1=2,7×8+2=58,他们共做了58个引体向上27.(1)约定向北为正方向,则向南为负方向,当天的行驶记录相加就是车的现在位置,18﹣9+7﹣14+15﹣6﹣8=3 (千米),故B地在A地北方3千米处.(2)要求该天共耗油多少升要先求该车走了多少路然后×a,即(18+9+7+14+15+6+8)×a=77a(升),故该天共耗油77a升28.(1)(+9)+(﹣3)+(﹣5)+(+6)+(﹣7)+(+10)+(﹣6)+(﹣4)+(+4)+(﹣3)+(+7)=9﹣3﹣5+6﹣7+10﹣6﹣4+4﹣3+7=9+10﹣3﹣5﹣3=8,∴将最后一名乘客送到目的地时,出租车离公园8公里,在公园的东方8公里处.(2)|+9|+|﹣3|+|﹣5|+|+6|+|﹣7|+|+10|+|﹣6|+|﹣4|+|+4|+|﹣3|+|+7=9+3+5+6+7+10+6+4+4+3+7=64,∵64×0.1=6.4(升),∴这辆出租车每天下午耗油6.4升29.先求超过的根数:(+3)+(+2)+0+(﹣1)+(﹣2)+(﹣3)+(+3)+(﹣2)+(﹣2)+(﹣1)=﹣3;则10盒火柴的总数量为:100×10﹣3=997(根).答:10盒火柴共有997根30.(1)根据题意得:150﹣32﹣43+205﹣30+25﹣20﹣5+30+75﹣25=330米,500﹣330=170米.(2)根据题意得:150+32+43+205+30+25+20+5+30+75+25=640米,640×0.04×5=128升.答:(1)他们没能最终登上顶峰,离顶峰害有170米;(2)他们共使用了氧气128升第11页共11 页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级上册应用题专题讲解一、列方程解应用题的一般步骤(解题思路)(1)审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设—设出未知数:根据提问,巧设未知数.(3)列—列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解—解方程:解所列的方程,求出未知数的值.(5)答—检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位)二、各类题型解法分析一元一次方程应用题归类汇集:行程问题,工程问题,和差倍分问题(生产、做工等各类问题),等积变形问题,调配问题,分配问题,配套问题,增长率问题,数字问题,方案设计与成本分析,古典数学,浓度问题等。

(一)和、差、倍、分问题——读题分析法这类问题主要应搞清各量之间的关系,注意关键词语。

仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套……”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.1.倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。

2.多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。

增长量=原有量×增长率现在量=原有量+增长量例1.某单位今年为灾区捐款2万5千元,比去年的2倍还多1000元,去年该单位为灾区捐款多少元?例2.旅行社的一辆汽车在第一次旅程中用去油箱里汽油的25%,第二次旅程中用去剩余汽油的40%,这样油箱中剩的汽油比两次所用的汽油少1公斤,求油箱里原有汽油多少公斤?(二)等积变形问题等积变形是以形状改变而体积不变为前提。

常用等量关系为:原料体积=成品体积。

常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式V=底面积×高=S·h=2r h②长方体的体积V=长×宽×高=abc例3.现有直径为0.8米的圆柱形钢坯30米,可足够锻造直径为0.4米,长为3米的圆柱形机轴多少根?(三)数字问题1.要搞清楚数的表示方法:一个三位数,一般可设百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且1≤a≤9,0≤b≤9,0≤c≤9),则这个三位数表示为:100a+10b+c.2.数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n 表示,连续的偶数用2n+2或2n-2表示;奇数用2n+1或2n—1表示。

例4.有一个三位数,个位数字为百位数字的2倍,十位数字比百位数字大1,若将此数个位与百位顺序对调(个位变百位)所得的新数比原数的2倍少49,求原数。

例5.一个三位数,三个数位上的数字之和是17,百位上的数比十位上的数大7,个位上的数是十位上的数的3倍,求这个三位数.(四)商品利润问题(市场经济问题或利润赢亏问题)(1)销售问题中常出现的量有:进价(或成本)、售价、标价(或定价)、利润等。

(2)利润问题常用等量关系:商品利润=商品售价-商品进价=商品标价×折扣率-商品进价%100⨯=商品进价商品利润商品利润率%100-⨯=商品进价商品进价商品售价 (3)商品销售额=商品销售价×商品销售量商品的销售利润=(销售价-成本价)× 销售量(4)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.即商品售价=商品标价×折扣率.例6:一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获 利15元,这种服装每件的进价是多少?例6*:某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折?(五)行程问题——画图分析法利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.1.行程问题中的三个基本量及其关系:路程=速度×时间 时间=路程÷速度 速度=路程÷时间2.行程问题基本类型(1)相遇问题: 快行距+慢行距=原距(2)追及问题:快行距-慢行距=原距(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度水流速度=(顺水速度-逆水速度)÷2(4)环路问题甲乙同时同地背向而行:甲路程—乙路程=环路一周的距离甲乙同时同地同向而行:快者的路程—慢者的路程=环路一周的距离抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.即顺水逆水问题常用等量关系:顺水路程=逆水路程.常见的还有:相背而行;行船问题;环形跑道问题。

例7:甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。

(1)慢车先开出1小时,快车再开。

两车相向而行。

问快车开出多少小时后两车相遇?(2)两车同时开出,相背而行多少小时后两车相距600公里?(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?(此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。

)例8:一轮船在甲、乙两码头之间航行,顺水航行需要4小时,逆水航行需要5小时,水流的速度为2千米/时,求甲、乙两码头之间的距离。

(六)工程问题1.工程问题中的三个量及其关系为:工作总量=工作效率×工作时间=工作总量工作效率工作时间=工作总量工作时间工作效率2.经常在题目中未给出工作总量时,设工作总量为单位1。

即完成某项任务的各工作量的和=总工作量=1.工程问题常用等量关系:先做的+后做的=完成量.例9:将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?例10:一个蓄水池有甲、乙两个进水管和一个丙排水管,单独开甲管6小时可注满水池;单独开乙管8小时可注满水池,单独开丙管9小时可将满池水排空,若先将甲、乙管同时开放2小时,然后打开丙管,问打开丙管后几小时可注满水池?例11:一项工程甲单独做需要10天,乙需要12天,丙单独做需要15天,甲、丙先做3天后,甲因事离去,乙参与工作,问还需几天完成?(七)储蓄问题1.顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率.2.储蓄问题中的量及其关系为:利息=本金×利率×期数 本息和=本金+利息%100⨯=本金利息利率 利息税=利息×税率(20%)例12:某同学把250元钱存入银行,整存整取,存期为半年。

半年后共得本息和252.7元,求银行半年期的年利率是多少?(不计利息税)(八)配套问题:这类问题的关键是找对配套的两类物体的数量关系。

例13:某车间有28名工人生产螺栓和螺母,每人每小时平均能生产螺栓12个或螺母18个,应如何分配生产螺栓和螺母的工人,才能使螺栓和螺母正好配套(一个螺栓配两个螺母)?例14:机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?(九)劳力调配问题这类问题要搞清人数的变化,常见题型有:(1)既有调入又有调出;(2)只有调入没有调出,调入部分变化,其余不变;(3)只有调出没有调入,调出部分变化,其余不变。

例15.某厂一车间有64人,二车间有56人。

现因工作需要,要求第一车间人数是第二车间人数的一半。

问需从第一车间调多少人到第二车间?例16.学校分配学生住宿,如果每室住8人,还少12个床位,如果每室住9人,则空出两个房间。

求房间的个数和学生的人数。

(十)比例分配问题比例分配问题的一般思路为:设其中一份为x ,利用已知的比,写出相应的代数式。

常用等量关系:各部分之和=总量。

例17:甲、乙、丙三个人每天生产机器零件数为甲、乙之比为4:3;乙、丙之比为6:5,又知甲与丙的和比乙的2倍多12件,求每个人每天生产多少件?(十一)年龄问题例19:兄弟二人今年分别为15岁和9岁,多少年后兄的年龄是弟的年龄的2倍?例20:三位同学甲乙丙,甲比乙大1岁,乙比丙大2岁,三人的年龄之和是41,求乙同学的年龄。

(十二)比赛积分问题例21:某企业对应聘人员进行英语考试,试题由50道选择题组成,评分标准规定:每道题的答案选对得3分,不选得0分,选错倒扣1分。

已知某人有5道题未作,得了103分,则这个人选错了道题。

例22:某学校七年级8个班进行足球友谊赛,采用胜一场得3分,平一场得1分,负一场得0分的记分制。

某班与其他7个队各赛1场后,以不败的战绩积17分,那么该班共胜了几场比赛?(十三)方案选择问题例23:某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3•种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?(十四)古典数学问题例24:100个和尚100个馍,大和尚每人吃两个,小和尚两人吃一个,问有多少大和尚?多少小和尚?例25:有若干只鸡和兔子,他们共有88个头,244只脚,鸡和兔各有多少只?(十五)增长率问题例26:民航规定:乘坐飞机普通舱旅客一人最多可免费携带20千克行李,超过部分每千克按飞机票价的1.5%购买行李票。

一名旅客带了35千克行李乘机,机票连同行李费共付了1323元,求该旅客的机票票价。

(十六)浓度问题常用等量关系式: 溶液的质量溶质的质量浓度 . 例27:有含盐20%的盐水5千克,要配制成含盐8%的盐水,需加水 7.5 千克。

某化工厂现有浓度为15%的稀硫酸175千克,要把它配成浓度为25%的硫酸,需要加入浓度为50%的硫酸多少千克?例28:有甲、乙两种铜和银的合金,甲种合金含银25%,乙种合金含银37.5%,现在要熔制含银30%的合金100千克,两种合金应各取多少?补偿练习:1. 某商店开张,为了吸引顾客,所有商品一律按八折优惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少元?2. 一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?3.一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?若设这种自行车每辆的进价是x元,那么所列方程为()A.45%×(1+80%)x-x=50B. 80%×(1+45%)x - x = 50C. x-80%×(1+45%)x = 50D.80%×(1-45%)x - x = 504.某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折.5.一家商店将某种型号的彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”.经顾客投拆后,拆法部门按已得非法收入的10倍处以每台2700元的罚款,求每台彩电的原售价.2:方案选择问题1、已知:我市出租车收费标准如下:乘车里程不超过2公里的一律收费2元;乘车里程超过2公里的,除了收费2元外超过部分按每公里1.4元计费。

相关文档
最新文档