空调循环泵的选择

合集下载

空调水泵选型

空调水泵选型
暖通空调水泵选型要点
水泵简介:
冷冻水泵: 在冷冻水环路中驱动水进行循环流动的装臵。 我们知道,空调房间内的末端(如风机盘 管,空气处理机组等)需要冷水机组提供 的冷水,但是冷冻水由于阻力的限制不会 自然流动,这就需要水泵驱动冷冻水进行 循环以达到换热的目的。
冷却水泵: 在冷却水环路中驱动水进行循环流动的装臵。 我们知道,冷却水在进入冷水机组后带走 制冷剂一部分热量,而后流向冷却塔将这 部分热量释放掉。而冷却水泵就是负责驱 动冷却水在机组与冷却塔这个闭合环路中 进行循环。外形同冷冻水泵。
水管路比摩阻计算图 (1mmH2O=9.80665Pa)
局部阻力: 水流动时遇到弯头、三通及其他配件时, 因摩擦及涡流耗能而产生的局部阻力计算 公式为: Hd=ζ×(ρ×V2/2) 式中ζ——局部阻力系数,见下面的表格 V——水流速,m/s。
阀门及管件的局部阻力系数(ζ)表
三通局部阻力系数
③水管总阻力 水流动总阻力H(Pa)包括沿程阻力Hf和 局部阻力Hd,即: H=Hf+Hd
(3)补水泵扬程: 扬程为定压点与最高点距离+水泵吸水端和 出水端阻力+3~5mH2O的富裕扬程。 例题: 一幢约100m高的高层建筑,安装有海尔水 冷螺杆HX300数台,采用闭式空调水系统, 试估算冷冻水泵所需的扬程。
解答: 1.冷水机组蒸发器阻力,查产品样册:60 kPa(6m水柱); 2.管路阻力:取冷冻机房内的除污器、集水器、分水器及管路等 的阻力为50 kPa;取输配侧管路长度300m与比摩阻300 Pa/m,则摩 擦阻力为300*300=90000 Pa=90 kPa;如考虑输配侧的局部阻力为 摩擦阻力的50%,则局部阻力为90 kPa*0.5=45 kPa;系统管路的总 阻力为50 kPa+90 kPa+45 kPa=185 kPa(18.5m水柱); 3.空调末端装臵阻力:空气处理机组的阻力一般比风机盘管阻力 大,故取前者的阻力为45 kPa(4.5m水柱)(可以参照产品样册确 定); 4.二通调节阀,Y型过滤器等的阻力:取40 kPa(4.0m水柱)。 5. 水系统的各部分阻力之和为:60 kPa+185kPa+45 kPa+40 kPa=330 kPa(33m水柱) 6.水泵扬程:取15%的安全系数,则扬程 H=33m*1.15=37.95m。 根据以上估算结果,可以基本掌握类同规模建筑物的空调水系统的压 力损失值范围,尤其应防止因未经过计算,过于保守,而将系统压力 损失估计过大,水泵扬程选得过大,导致能量浪费。

01 空调、采暖循环水泵的扬程流量及补水、定压等相关计算

01 空调、采暖循环水泵的扬程流量及补水、定压等相关计算

3、补水泵流量J4、补水泵扬程补水泵扬程应保证补水压力比系统补水点压力高30~5G L (m³/h)122.58最远楼层接入口到主机的局部损失(Pa)冷水机组蒸发器水压降(Pa)1680060000(通过环路局部阻力计算)(查主机参数)1.716.12最远楼层接入口到主机的局部损失(Pa)高差(m)冷水机组蒸发器水压降(Pa)57000700005.8210.007.14空调水系统循环水泵的设计(1)两管制空调水系统,宜分别设置冷水和热水循(2) 如果冷水循环泵要兼作热水循环泵使用时,使水泵运行的台数和单台水泵的流量、扬程与系(3) 复式泵系统中的一次泵,宜与冷水机组的台一般不设备用泵。

(4) 复式泵系统中二次泵的台数,应按系统的分每个分区的水泵数量不宜少于两台。

(5) 热水循环泵的台数不应少于两台,应考虑设(6) 选择配置水泵时,不仅应分析和考虑在部分特别是非24h 连续使用的空调系统,如办公楼、少流量、降低扬程的可能性。

(7) 根据减振要求宜在水泵下配置减振器。

(8) 应用在高层建筑中的循环水泵,必须考虑泵泵的承压要求。

(9) 冷水系统的循环水泵,宜选择低比转数的单G>500m3 /h 时,宜选用双吸泵。

(10) 在水泵的进出水管接口处,应安装减振接头(11)在水泵出水管的止回阀与出口阀之间宜连接(12) 水泵进水和出水管上的阀门,宜采用截止阀(13) 在循环水泵的进、出水管之间,应设置带止积,应大于或等于母管截面积的1/2; 止回阀的流泵的进水管段上,应设置安全阀,并宜将超压泄10%44.49冷冻水循环水泵L =K*Q/(1.163*△t)(m)20%备注压力余量(Pa)50000 5.10流量(m³/h) 4.1G R (m³/h)39.72H L (kPa)H J (kPa)90.7060.00扬程(m)7.05空调热水循环水泵系统单位水容量估算值如右表6.9.1R =K*Q/(1.163*△t)m)调热水阻力估算公式:G L )^²×HL +H J30~50kPa计算扬程7.8扬程(m)《全国民用建筑工程设计技术措》,P98的设计与配置,应遵循以F原则:空调水系统,宜分别设置冷水和热水循环泵。

暖通空调系统水泵的使用与选型

暖通空调系统水泵的使用与选型

暖通空调系统水泵的使用与选型1、冷水泵:在冷水环路中,驱动水进行循环流动的装置。

我们知道,空调房间内的末端(如风机盘管,空气处理机组等)需要冷水机组提供的冷水,但是冷水由于阻力的限制不会自然流动,这就需要水泵驱动冷水进行循环以达到换热的目的。

2、冷却水泵:在冷却水环路中驱动水进行循环流动的装置。

我们知道,冷却水在进入冷水机组后带走制冷剂一部分热量,而后流向冷却塔将这部分热量释放掉。

而冷却水泵就是负责驱动冷却水在机组与冷却塔这个闭合环路中进行循环。

外形同冷冻水泵。

3、补水泵:空调补水所用装置,负责将处理后的软化水打入系统中。

外形同上水泵。

常用的水泵有卧式离心泵和立式离心泵,它们都可以用在冷水系统,冷却水系统和补水系统中。

对于机房面积大的地方可以用卧式离心泵,对于机房面积较小的地方可以考虑使用立式离心泵。

水泵并联运行情况水泵并联运行时,流量有所衰减;当并联台数超过3台时,衰减尤为厉害。

故建议:1)选用多台水泵时,要考虑流量的衰减,一般附加5%~10%的余量。

2)水泵并联不宜超过3台,即进行制冷主机选择时也不宜超过3台。

3)大中型工程应分别设置冷、热水循环泵。

一般,冷水泵和冷却水泵的台数应和制冷主机一一对应,并考虑一台备用。

补水泵一般按照一用一备的原则选取,以保证系统可靠的补水。

4、水泵流量的计算:1)冷水泵/冷却水泵流量计算公式:L=Q×(1.15~1.2)/(5℃×1.163)式中:Q为制冷主机的制冷量,kW;L为冷水/冷却水泵的流量,m3/h。

2)补给水泵的流量:正常补给水量为系统循环水量的1%~2%,但是选择补给水泵时,补给水泵的流量除应满足上述水系统的正常补水量外,还应考虑发生事故时所增加的补给水量,因此,补给水泵的流量通常不小于正常补水量的4倍。

补给水箱的有效容积可按1~1.5h的正常补水量考虑。

5、水泵扬程的确定:1)冷水泵扬程的组成:制冷机组蒸发器水阻力:一般为5~7m H2O;末端设备(空气处理机组、风机盘管等)表冷器或蒸发器水阻力:一般为5~7m H2O(具体值可参看产品样本);回水过滤器,二通调节阀等的阻力:一般为3~5m H2O;分水器、集水器水阻力:一般一个为3m H2O;制冷系统水管路沿程阻力和局部阻力损失:一般为7~10m H2O;综上所述,冷水泵扬程为26~35m H2O,一般为32~36m H2O。

浅析中央空调循环水泵的选择

浅析中央空调循环水泵的选择

浅析中央空调循环水泵的选择摘要:空气调节系统中采用循环水泵输送冷热介质以满足冬夏空调的要求,同时应最大限度地降低能耗。

本文通过分析中央空调系统水泵运行工况,强调了合理选择循环水泵扬程的重要性,,提出在水泵的选择设计中,应注意水泵的性能曲线及管网的特性曲线对于水泵运行的影响,以节约能源。

该方法在空调设计中,具有实际应用意义。

关键词:管路特性曲线水泵性能曲线并联扬程节能一:引言随着经济的持续发展和人们对居住环境舒适性要求的提高,中央空调在商业和民用建筑中越来越普及,其能耗在社会总能耗中所占比例也在不断上升。

暖通空调系统耗能约占建筑总能耗的65%左右。

目前建筑系统中风机水泵的电力消耗占我国城镇建筑运行电耗的10%以上。

造成水泵能耗过高的主要原因之一是:设计与设备选择时无准确的设计与选择方法,使水泵性能与管网不匹配,扬程偏大。

因此,水泵的合理选择和匹配,是中央空调水系统正常运行和节能的关键。

本文对中央空调中循环水泵选型设计的相关问题进行了探讨。

二:空调循环水泵的配置原则:《采暖通风与空气调节设计规范》GB50019-2003及《公共建筑节能设计标准》GB50189-2005指出:a.除空调热水与空调冷水的流量和管网阻力相吻合的情况外,两管制空调水系统应分别设置冷水及热水循环泵;b.除采用模块式等小型机组和采用一次泵变流量的情况外,一次泵系统循环水泵及二次泵系统中一级冷水泵,应与冷水机组的台数和流量相对应。

详见附图(一)、(二)c. 多台一次冷水泵之间通过共用集管连接时,每台冷水机组入口或出口管道上宜设电动阀,电动阀宜与对应运行的冷水机组和冷冻水泵联锁。

详见附图(三)。

三:循环水泵性能曲线的选择:a. 中央空调水系统宜选用低比转数的单级离心泵;选型及定货应明确提出水泵的承压要求。

b.选择中央空调循环水泵时,应使其设计运行工作点处于高效区。

c.中央空调的循环水泵主要是为冷热媒的循环流动提供动力,但随着室外温度变化系统所需要的循环水泵的流量可能会相差很大。

空调系统水泵的使用与选型

空调系统水泵的使用与选型

在冷冻水环路中,驱动水进行循环流动的装置。

我们知道,空调房间内的末端(如风机盘管,空气处理机组等)需要冷水机组提供的冷水,但是冷冻水由于阻力的限制不会自然流动,这就需要水泵驱动冷冻水进行循环以达到换热的目的。

在冷却水环路中驱动水进行循环流动的装置。

我们知道,冷却水在进入冷水机组后带走制冷剂一部分热量,而后流向冷却塔将这部分热量释放掉。

而冷却水泵就是负责驱动冷却水在机组与冷却塔这个闭合环路中进行循环。

外形同冷冻水泵。

空调补水所用装置,负责将处理后的软化水打入系统中。

外形同上水泵。

常用的水泵有卧式离心泵和立式离心泵,它们都可以用在冷冻水系统,冷却水系统和补水系统中。

对于机房面积大的地方可以用卧式离心泵,对于机房面积较小的地方可以考虑使用立式离心泵。

水泵并联运行情况:水泵并联运行时,流量有所衰减;当并联台数超过3台时,衰减尤为厉害。

故建议:1)选用多台水泵时,要考虑流量的衰减,一般附加5%~10%的余量。

2)水泵并联不宜超过3台,即进行制冷主机选择时也不宜超过三台。

3)大中型工程应分别设置冷,热水循环泵。

一般,冷冻水泵和冷却水泵的台数应和制冷主机一一对应,并考虑一台备用。

补水泵一般按照一用一备的原则选取,以保证系统可靠的补水。

1)冷冻水冷却水泵流量计算公式:L(m3/h=Q(Kw)×(1.15~1.2)/(5℃×1.163)式中:Q--制冷主机的制冷量,Kw;L--冷冻冷却水泵的流量,m3/h。

2)补给水泵的流量:正常补给水量为系统循环水量的1%~2%,但是选择补给水泵时,补给水泵的流量除应满足上述水系统的正常补水量外,还应考虑发生事故时所增加的补给水量,因此,补给水泵的流量通常不小于正常补水量的4倍。

补给水箱的有效容积可按1~1.5h 的正常补水量考虑。

1)冷冻水泵扬程的组成:制冷机组蒸发器水阻力:一般为5~7mH2O;末端设备(空气处理机组、风机盘管等)表冷器或蒸发器水阻力:一般为5~7mH2O (具体值可参看产品样本);回水过滤器,二通调节阀等的阻力:一般为3~5mH2O;分水器、集水器水阻力:一般一个为3mH2O;制冷系统水管路沿程阻力和局部阻力损失:一般为7~10mH2O;综上所述,冷冻水泵扬程为26~35mH2O,一般为32~36mH2O。

空调冷冻(却)水泵选型计算

空调冷冻(却)水泵选型计算

冷冻水泵选型及配置冷(热)水泵的流量冷(热)水泵的流量根据冷(热)负荷和供回水温度差确定G=0.86Q/△t式中 G——冷热水流量,kg/hQ——冷热水负荷,W△t——供回水温差,℃。

冷(热)水泵的流量可取系统水流量的1.05~1.1倍。

冷(热)水泵的扬程【估算方法1】:暖通水泵的选择:通常选用比转数ns在130~150的离心式清水泵,水泵的流量应为冷水机组额定流量的1.1~1.2倍(单台取1.1,两台并联取1.2。

按估算可大致取每100米管长的沿程损失为5mH2O,水泵扬程(mH2O):Hmax=△P1+△P2+0.05L (1+K)△P1——为冷水机组蒸发器的水压降;△P2——为该环中并联的各占空调末端装置的水压损失最大的一台的水压降;L——为该最不利环路的管长;K——为最不利环路中局部阻力当量长度总和和与直管总长的比值,当最不利环路较长时K值取0.2~0.3,最不利环路较短时K值取0.4~0.6。

【估算方法2】:冷冻水泵选型最重要的步骤是对其扬程和流量的确定,一般来说,冷冻水泵选型大多是清水离心泵。

下面,世界泵阀网为大家列举冷冻水泵选型时所要参考的参数及具体的计算方法。

冷冻水泵选型过程中最具参考意义的参数是扬程,冷冻水泵扬程实用估算方法常见的由闭式空调冷水系统的阻力组成,因为这种系统是最常用的系统。

这里所谈的是闭式空调冷水系统的阻力组成,因为这种系统是最常用的系统。

在空调系统设计中,包括冷水机组地源热泵机组风冷热泵机组中都会涉及到冷冻水泵扬程计算,而在扩初设计中往往不需要太准确的计算,所以分享下我的估算过程。

(1)冷水机组阻力:由机组制造厂提供,一般为60~100kPa。

(2)管路阻力:包括磨擦阻力、局部阻力,其中单位长度的磨擦阻力即比摩组取决于技术经济比较。

若取值大则管径小,初投资省,但水泵运行能耗大;若取值小则反之。

目前设计中冷水管路的比摩组宜控制在150~200Pa/m范围内,管径较大时,取值可小些。

关于循环水泵的安装位置

关于循环水泵的安装位置

1.关于循环水泵的安装位置:1.对于常压锅炉,循环泵只能安装在锅炉出口。

2.对于承压锅炉,循环泵安装在锅炉进、出口都可以。

但安装在出口时,锅炉内的压力较低,容易产生汽化。

3.对于空调冷却水系统,把冷却水泵放在供水管上或回水管上,都一样。

4.对于冷冻水系统,把冷冻水泵放在供水管上或回水管上,也都一样。

当系统高度很高时,安装在供水管上可以减低冷水机组的压力,以免超压。

5. 对于常压锅炉,说俗了就是一个烧热水的大锅,泵从锅里抽热水送到用户,回水自流进锅炉。

所以泵的扬程不仅包括管路系统的阻力,还要加上系统的高差。

就泵的运行能耗来说,采用常压锅炉比采用有压锅炉的闭式系统高出很多,尤其对楼层高的建筑从节能角度考虑应慎用。

对于有压锅炉,循环水泵一般设在锅炉入口,如果有集水器,则设在集水器和锅炉之间,这是很自然的事情,集水器上有多条支路回水管,水泵不能接到这些支路回水管吧!整个系统的定压点一般设在水泵的回水管上,这是系统压力最低点,稳定了这点的压力,就可以很好地保证系统的压力。

如果把泵设在锅炉的出水口,锅炉处在负压端,如果回水管出现什么问题,如堵塞、关闭而不能及时回水,锅炉压力岂不要降到很低?同样对于空调冷冻水或冷却水,我们一般都是把泵放在机组的回水管上的。

2、你的基本思路有偏差:ydg & xyz 兄:我也是设计院的,但我觉得你们的思路有偏差,你们曲解了无压锅炉,或者说是太小看无压锅炉的能力了,无压锅炉的连接的水箱确实设在低位,水位可以仅比锅炉高点,但这仅仅是无压锅炉的一次水循环系统的定压补水水箱。

现在的无压锅炉里面其实包括两个水系统,通过换热器间接联系,其中水箱一次水系统是开式的,它就是一个烧热水的大锅,实现了锅炉的无压化;而二次水系统是闭式的,它通过一次水循环泵从内置换热器中获得热量,所以无压锅炉是同冷水机组等一样可以承压的,完全可以用于高层建筑!就算是普通的无压锅炉,我们也可以为它配一个外置换热器,犯不着把它直接接入热水循环系统浪费能源。

空调冷冻(却)水泵选型计算

空调冷冻(却)水泵选型计算

冷冻水泵选型及配置冷(热)水泵的流量冷(热)水泵的流量根据冷(热)负荷和供回水温度差确定G=0.86Q/△t式中G——冷热水流量,kg/hQ——冷热水负荷,W△t——供回水温差,℃。

冷(热)水泵的流量可取系统水流量的1.05~1.1倍。

冷(热)水泵的扬程【估算方法1】:暖通水泵的选择:通常选用比转数ns在130~150的离心式清水泵,水泵的流量应为冷水机组额定流量的1.1~1.2倍(单台取1.1,两台并联取1.2。

按估算可大致取每100米管长的沿程损失为5mH2O,水泵扬程(mH2O):Hmax=△P1+△P2+0.05L (1+K)△P1——为冷水机组蒸发器的水压降;△P2——为该环中并联的各占空调末端装置的水压损失最大的一台的水压降;L——为该最不利环路的管长;K——为最不利环路中局部阻力当量长度总和和与直管总长的比值,当最不利环路较长时K值取0.2~0.3,最不利环路较短时K值取0.4~0.6。

【估算方法2】:冷冻水泵选型最重要的步骤是对其扬程和流量的确定,一般来说,冷冻水泵选型大多是清水离心泵。

下面,世界泵阀网为大家列举冷冻水泵选型时所要参考的参数及具体的计算方法。

冷冻水泵选型过程中最具参考意义的参数是扬程,冷冻水泵扬程实用估算方法常见的由闭式空调冷水系统的阻力组成,因为这种系统是最常用的系统。

这里所谈的是闭式空调冷水系统的阻力组成,因为这种系统是最常用的系统。

在空调系统设计中,包括冷水机组地源热泵机组风冷热泵机组中都会涉及到冷冻水泵扬程计算,而在扩初设计中往往不需要太准确的计算,所以分享下我的估算过程。

(1)冷水机组阻力:由机组制造厂提供,一般为60~100kPa。

(2)管路阻力:包括磨擦阻力、局部阻力,其中单位长度的磨擦阻力即比摩组取决于技术经济比较。

若取值大则管径小,初投资省,但水泵运行能耗大;若取值小则反之。

目前设计中冷水管路的比摩组宜控制在150~200Pa/m范围内,管径较大时,取值可小些。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空调循环泵的选择
1、循环水泵容量过大的原因如下:
1.1 设计冷负荷偏大
设计冷负荷是选择设备的主要依据,所以正确地计算建筑冷负荷对整个空调系统的设计十分重要。

目前,教科书及设计手册中提供的空调负荷计算方法不论是计算围护结构的墙壁负荷,还是门窗负荷,其计算结果都是针对某一具体房间而言。

然而,空调系统设备容量是依据整个建筑的冷负荷确定。

由于建筑内各房间的朝向、位置、使用功能及其发热源等因素的不同,往往造成各房间最大冷负荷出现的时间并不相同。

因此,建筑冷负荷的最大值应为每个房间逐时负荷叠加的最大值。

据调查在我国有部分设计人员在计算建筑冷负荷时只是简单地将每个房间的最大冷负荷进行叠加,导致计算结果远大于实际需求负荷。

所以我们必须对此给予足够的重视,使设计负荷的确定更加合理正确。

1.2 系统循环阻力偏大
在计算系统循环阻力时,由于设计人员经验不足,使得一些计算参数取值过于保守,造成循环阻力计算值偏大,更有甚者,在施工图设计阶段采用估算方法确定循环阻力,致使计算循环阻力比实际值大一倍以上。

1.3 系统静压问题
空调系统充满水才能运行,水泵的进、出口承受相同的静水压力。

因此,所选水泵的扬程只克服管道系统阻力即可。

然而,有的设计者却把静水压力也计入该循环阻力之内,这当然会使循环水泵的容量增大很多。

1.4 系统水力平衡问题
由于设计时不认真进行系统的水力平衡计算,工程竣工后又未按要求进行全面调试,往往造成系统水力失调,系统出现冷热不均的现象。

有些技术人员错误地认为造成此现象的原因是循环水泵的容量太小,结果只简单地采用加大水泵的方法解决了之,自然也就使水泵容量增大。

2、水泵特性曲线及最佳工作点
2.1 水泵的流量——扬程特性曲线
水泵的流量——扬程特性曲线一般有三种类型:平坦型、陡降型、驼峰型。

用于空调水循环系统的水泵应具有平坦特性,其零流量与最大流量之间的扬程变化范围不应大于10%-15%;陡降特性的水泵由于其最大流量与最小流量间的扬程变化太大,故不宜选用;驼峰特性的水泵也不可采用,因为在两台水泵并联运行时可能引起负荷和扬程的周期变化,而当这一变化的频率等于系统的自振频率时便产生危险的“振荡现象”,而此现象将对系统的正常运行造成一定影响。

2.2 最佳工作点
在水泵工作点向右偏移时,循环水泵所产生的扬程降低,这对系统的正常运行是极其不利的,尤其是系统中最不利环路,将促使该环路的流量进一步减少,影响正常使用功能。

造成工作点右移的原因主要有两个方面:首先是设计中水力计算采用过大的安全系数及不实际的压降计算方法,其次是设计的系统未进行认真的水力平衡计算,而施工后又未进行严格的系统调试。

因此,为使系统按设计工况运行,除应认真仔细地进行相关计算外,还应在选择水泵时将水泵的工作点选择在最佳工作点左侧适当的位置,以防水泵实际工作点超出一定范围处于不经济的运行状况,影响系统正常运行。

3、循环水泵的技术经济分析
3.1 循环水泵的台数选择
《采暖通风与空气调节设计规范》(GBJ19-87,2001年版)第6.
1.11条规定:冷水泵(一次泵)的台数及流量,应与制冷机的台数及设计工况下的流量相对应。

二次泵的设置,应根据冷水系统的大小、各并联环路压力损失的差异程度、使用条件和调节要求等通过技术经济比较确定。

然而在实际工作中,设计人员往往未对空调系统各种设备的综合配置进行全面的技术经济分析,结果造成工程初投资增加及“大马拉小车”等浪费资源的现象。

为避免发生该现象,广大设计人
员在方案设计阶段应依据使用功能、高低峰负荷时间、系统特征以及其它条件,针对空调系统中的冷水机组、循环泵、冷却塔等设备的综合配置进行全面充分的技术经济分析,以期在满足使用功能的前提下降低工程造价和运行费用。

3.2 工程寿命周期成本
笔者认为在进行循环水泵、冷水机组等设备的技术经济分析时应引入一个概念——工程寿命周期成本。

工程寿命周期成本是工程设计、开发、建造、使用、维修和报废等过程发生的费用,也即该项目在其确定的寿命周期内或在预定的有效期内所需支付的设计费、建安费、运行维修费、报废回收费的总和。

在不同项目和不同项目阶段寿命周期成本也大不相同(如图 3.1 所示)。

通常情况下,运营及维护成本往往大于项目建设的一次性投资。

因此在进行技术经济分析时,应明确寿命周期成本包括的费用项目、各项费用的内容和范围以及它们在费用构成体系中的相互关系,这对我们进行技术经济比较十分重要。

3.3 价值工程
价值工程是以提高产品或作业价值为目的,通过有组织的创造性工作寻求用最低的寿命周期成本可靠地实现使用者所需功能的一种管理技术。

价值工程技术已广泛运用于研发、设计、建造等各行各业,其核心思想是以最低的寿命周期成本使产品具备它所必须具备的功能。

在空调设备选型及技术经济分析时,设计者应充分运用价值工程理念,力争以最低工程投资达到必须的使用功能。

当然就目前情况看,要达到这样的设计水平尚需时日,但广大设计人员应朝这个方向努力,以期取得良好的社会效益和经济效益。

4、结论
①在空调设计中应客观准确地计算冷负荷和系统阻力,避免因此而造成设备选型偏大;
②选择循环水泵时,注意水泵工况点向右偏移现象,以保障水泵扬程变化在系统正常运行的允许范围之内;
③工程寿命周期成本和价值工程都是工程经济评价的良好工具,在做技术经济分析时应充分运用它们。

参考文献
1、实用供热空调设计手册中国建筑工业出版社,1993
2、高温水供热与采暖中国建筑工业出版社
3、采暖通风与空气调节设计规范(GBJ19-87 2001年版)。

相关文档
最新文档