霍普金森杆实验技术简介

合集下载

霍普金森杆实验技术经验简介

霍普金森杆实验技术经验简介

霍普金森杆实验技术简介1.材料动态力学性能实验简史在各类工程技术、军事技术和科学研究等广泛领域的一系列实际问题中,甚至就在日常生活中,人们都会遇到各种各样的爆炸/冲击载荷问题,并且可以观察到,物体在爆炸/冲击载荷下的力学响应往往与静载荷下的有显着不同。

了解材料在冲击加载条件下的力学响应必将大大有助于这些材料的工程应用和工程设计。

此外,数值模拟已在工程设计中发挥着重要作用,而进行数值模拟的ns)量,即比应变率的提高,材料的屈服极限提高,强度极限提高,延伸率降低,以及屈服滞后和断裂滞后等现象变得明显起来等等。

因此,除了上述的介质质点的惯性作用外,物体在爆炸/冲击载荷下力学响应之所以不同于静载荷下的另一个重要原因,是材料本身在高应变率下的动态力学性能与静态力学性能的不同,即由于材料本构关系对应变率的相关性。

从热力学的角度来说,静态下的应力-应变过程接近于等温过程,相应的应力应变曲线可近似视为等温曲线;而高应变率下的动态应力-应变过程则接近于绝热过程,因而是一个伴有温度变化的热-力学耦合过程,相应的应力应变曲线可近似视为绝热曲线。

这样,如果将一个结构物在爆炸/冲击载荷下的动态响应与静态响应相区别的话,则实际上既包含了介质质点的惯性效应,也包含着材料本构关系的应变率效应。

然而从19世纪开始人们才逐步认识到了材料在动载下的力学性能与其在静载下的力学性能不同。

ThomasYoung是分析弹性冲击效应的先驱,他(1807)提出了弹性波的概念,指出杆受轴向冲击力以及梁受横向冲击力时可从能量进行分析而得出定量的结果。

J.Hopkinson1872完成了第一个动态演示实验(如图1所示),铁丝受冲击而被拉断的位置不是冲击端A,而是固定端B;并且冲击拉断的控制因素是落重的高度,即取决于撞击速度,而与落重质量的大小基本无关。

Pochhammer,1876;Chree,1886Rayleigh,Lord1887分别研究了一维杆中的横向惯性运动。

霍普金森杆实验原理

霍普金森杆实验原理

霍普金森杆实验原理
嘿,朋友们!今天咱来唠唠霍普金森杆实验原理。

你说这霍普金森杆实验啊,就像是一场奇妙的力量较量!想象一下,有一根杆子,它可不普通,它能帮我们搞清楚材料在瞬间受力时的表现。

这杆子就像一个超级裁判,能准确地判断出材料的“实力”。

当我们给材料施加一个快速的冲击力时,霍普金森杆就开始它的工作啦。

它会把这个冲击力分成两部分,一部分往前跑,一部分往后跑。

这多有意思啊,就好像是把力量给“分家”了。

然后呢,通过测量这前后跑的力量和其他数据,我们就能知道材料到底有多“强壮”,能不能经得住这样的折腾。

这就好像我们看一个人能不能扛起很重的东西一样,一试便知。

你说这是不是很神奇?而且这个实验原理在很多领域都大有用处呢!比如说在工程上,我们要建大桥、造高楼,就得知道那些建筑材料能不能扛得住各种力的作用。

要是材料不行,那可不得了,大桥可能会塌,高楼可能会倒,那得多危险啊!
还有在材料研发方面,通过霍普金森杆实验,科学家们可以不断改进材料,让它们变得更厉害。

就像我们不断锻炼让自己变得更强壮一样。

再想想,要是没有这个实验原理,我们对材料的了解岂不是少了很多?那我们的生活可能都会受到影响呢!所以说啊,这个霍普金森杆实验原理可真是太重要啦!
它就像是一个默默无闻的英雄,在背后为我们的科技发展和生活保障贡献着力量。

我们得好好珍惜它,好好利用它,让它为我们创造更美好的世界呀!你们说是不是呢?。

霍普金森杆原理

霍普金森杆原理

霍普金森杆原理
霍普金森杆原理,又称霍普金森效应,是指当一个粒子穿过一段不均匀的介质时,由于介质折射率的变化而导致粒子的轨迹发生偏折的现象。

这一原理在光学、粒子物理学等领域有着重要的应用,对于我们理解光的传播和粒子行为具有重要意义。

首先,我们来了解一下霍普金森杆原理的基本原理。

当一束光线或者一束粒子穿过一个介质时,介质的折射率不均匀会导致光线或粒子的轨迹发生偏折。

这是因为在介质中,光线或粒子的速度会发生变化,从而导致它们的传播方向发生改变。

这种偏折现象正是霍普金森杆原理的基本特征。

在实际应用中,霍普金森杆原理被广泛运用于光学仪器和粒子加速器等领域。

例如,在光学仪器中,我们可以利用霍普金森杆原理来设计透镜和棱镜,从而控制光线的传播方向和聚焦效果。

而在粒子加速器中,霍普金森杆原理则可以帮助我们设计出更高效的加速器结构,从而提高粒子加速的效率。

除此之外,霍普金森杆原理还在核物理和凝聚态物理等领域有着重要的应用。

在核物理中,我们可以利用霍普金森杆原理来研究核反应和粒子碰撞的过程,从而揭示物质的微观结构和性质。

而在凝聚态物理中,霍普金森杆原理则可以帮助我们理解材料的光学和电学性质,为新材料的设计和应用提供理论基础。

总的来说,霍普金森杆原理作为一种重要的物理现象,对于我们理解光的传播和粒子行为具有重要意义。

它不仅在光学和粒子物理学领域有着重要的应用,还对核物理和凝聚态物理等领域有着重要的意义。

因此,我们有必要深入研究霍普金森杆原理的基本原理和应用,从而更好地理解和利用这一重要的物理现象。

霍普金森压杆实验在爆破中的应用

霍普金森压杆实验在爆破中的应用

霍普金森压杆实验在爆破中的应用
霍普金森压杆实验是一种利用金属杆的压缩性进行测量的实验,在近年来的矿山爆破领域中被广泛应用。

本文将围绕这个实验展开,详细阐述它在爆破中的应用。

第一步:测量工程爆破预处理
在进行矿山爆破前,需要对爆破前的地质结构和岩石强度进行测量和评估,以此为基础设计爆破方案。

这其中有一个关键步骤就是测量地下岩体的应力状态,其中之一的测量方法便是通过霍普金森压杆实验来评估地质条件和确定安全距离。

第二步:构建压杆实验基础
在进行霍普金森压杆实验之前,需要先构建出实验基础,通常为混凝土块或固定架。

而实验基础的建造需要严格的工程施工规范和技术手段,以保证实验数据的准确性和可靠性。

第三步:插入压杆进行测量
在构建好实验基础后,需要将压杆插入基础中。

在此过程中,需要对压杆进行校准和测试,以确保压力传感器和测量仪器的准确性和可靠性。

压杆通常包括一个测量传感器和一个压力传感器,可以测量岩石的应力和应变状态。

第四步:应力状态测量
在应力状态测量阶段,需要进行岩体应力状态的测量和记录,包括岩石的承载能力和破坏状态。

通过这些数据,可以评估矿山爆破方案的合理性和安全性,并制定相关的爆破方案或调整现有方案。

总结起来,霍普金森压杆实验是一种可靠的测量方法,在矿山爆破预处理阶段和实施过程中都有着重要的应用。

这一方法能够帮助工程师、科学家和矿山工人对地形、地质、地下建筑物和其他关键因素进行测量,并在需要时调整设计方案,以提高爆破的效率和安全性。

霍普金森杆实验技术读书札记

霍普金森杆实验技术读书札记

《霍普金森杆实验技术》读书札记目录一、内容综述 (1)二、霍普金森杆实验技术基本原理 (2)2.1 理解霍普金森杆 (3)2.2 实验设备与材料 (4)2.3 实验原理与方法 (5)三、霍普金森杆实验技术应用 (6)3.1 材料试验 (8)3.2 结构试验 (9)3.3 冲击试验 (10)四、实验设计与实施 (12)4.1 实验设计原则 (13)4.2 实验操作流程 (14)五、实验结果与分析 (15)5.1 数据处理与分析方法 (16)5.2 实验结果讨论 (17)六、结论与展望 (18)一、内容综述《霍普金森杆实验技术》系统地介绍了霍普金森杆实验技术的原理、方法、应用及最新发展。

霍普金森杆实验技术,作为一种独特的材料试验手段,自19世纪末由英国科学家亨利霍普金森提出以来,已历经一个多世纪的发展,成为材料科学、力学领域的重要研究工具。

本书首先概述了霍普金森杆实验技术的历史背景与发展历程,从最初的实验构想,到后来的理论完善与实验方法的不断创新,霍普金森杆实验技术已成为材料科学领域的研究热点。

书中详细介绍了实验的基本原理、实验设备、数据处理方法以及在不同领域(如材料加工、岩石力学、爆炸力学等)的应用。

在实验设备方面,本书详细描述了霍普金森杆实验系统的组成,包括发射系统、加载系统、测量系统和控制系统。

这些设备的设计巧妙,能够模拟材料在高速压缩下的力学行为,为研究者提供了深入了解材料特性的窗口。

在数据处理方法上,本书介绍了多种先进的数值分析方法,如有限元分析、颗粒流模拟等,这些方法能够有效地处理实验数据,揭示材料的内部结构与性能。

通过与实验结果的对比验证,这些数值分析方法为霍普金森杆实验技术的准确性提供了有力支持。

本书还探讨了霍普金森杆实验技术在材料科学领域的重要性,以及它在其他学科领域的潜在应用价值。

随着科技的进步,霍普金森杆实验技术将继续在材料科学领域发挥其独特的作用,推动相关学科的发展。

《霍普金森杆实验技术》一书为我们提供了一个全面了解霍普金森杆实验技术的平台。

霍普金森压杆试验-sillyoranger

霍普金森压杆试验-sillyoranger

简述“霍普金斯”杆测量材料动态应力应变曲线的原理;选用一种大型软件对其进行计算模拟,并对模拟结果进行分析。

答:选用ABAQUS大型有限元软件一、“霍普金斯”压杆理论:Hopkinson压杆技术源于1914年B.Hopkinson测试压力脉冲的试验工作,后来R.M.Davies对它进行了改进。

1949年,H.Kolsky在这些基础上建立了进行材料单轴动态压缩性能试验的试验方法,测试了高应变率下金属材料的力学性能,这个方法称为分离式Hopkinson压杆(或Kolsky杆)技术。

其原理是将试样夹持于两个细长弹性杆(入射杆与透射杆)之间,由圆柱形子弹以一定的速度撞击入射弹性杆的另一端,产生压应力脉冲并沿着入射弹性杆向试样方向传播。

当应力波传到入射杆与试样的界面时,一部分反射回入射杆,另一部分对试样加载并传向透射杆,通过贴在入射杆与透射杆上的应变片可记录入射脉冲,反射脉冲及透射脉冲,由一维应力波理论可以确定试样上的应力、应变率、应变随时间的变化,以及应力、应变曲线。

5O多年来,此技术广泛用在高变形速率下材料力学性能的测试。

研究人员也对Hopkinson压杆试验方法进行了系统深入的研究,使该技术不断地改善和发展。

J.Harding 等在1960年将用于单轴压缩试验的Hopkinson压杆推广到了单轴拉伸试验,在此基础上,1983年又提出至今被广泛使用的Hopkinson拉杆试验方法。

W.E.Backer等、J.D.Campbell 等、J.Dully等又提出了Hopkinson扭杆技术,可对于试样施加高应变速率的纯扭转载荷。

为提高试验精度,前人在应力波的弥散效应、三维效应、应力波分离、试样中的瞬态平衡对试验结果的影响等方面做了大量工作。

分离式Hopkinson压杆实验的示意图如下:图8-1 分离式Hopkinson压杆示意图上图表示了压杆、试件和测试仪器等的位置安排。

压杆由高强度合金钢制成。

压杆与试件的接触面需要加工得很平并且保持平行。

分离式霍普金森压杆推导

分离式霍普金森压杆推导

分离式霍普金森压杆推导一、引言霍普金森压杆实验是材料科学中一个非常重要的实验手段,它被广泛应用于测量材料的弹性模量、屈服强度等重要物理性质。

然而,传统的霍普金森压杆实验存在一些局限性和不足,例如,对于某些特殊材料或者复杂材料的测量精度不高。

因此,本文将探讨一种新型的分离式霍普金森压杆,并对其原理、设计和应用进行详细介绍。

二、霍普金森压杆简介霍普金森压杆实验是一种动态力学实验方法,它通过在试样上施加周期性变化的应力或应变,测量试样的响应,从而得到材料的弹性模量、屈服强度等物理性质。

该实验方法具有简单易操作、测量精度高等优点,被广泛应用于材料科学、物理学等领域。

三、分离式霍普金森压杆的提出传统的霍普金森压杆实验存在一些不足之处,例如,对于某些具有非线性行为的材料,其测量结果可能存在较大的误差。

此外,传统的霍普金森压杆实验对于试样的尺寸和形状有一定的限制,对于某些特殊形状的试样,其适用性较差。

为了解决这些问题,本文提出了一种分离式霍普金森压杆,它可以更加准确地测量材料的性能,并且能够适应更复杂或更特殊的材料。

四、分离式霍普金森压杆的模型建立分离式霍普金森压杆的设计和构建过程如下:首先选择合适的材料和尺寸,然后根据实验要求确定加载条件。

在设计和构建过程中,需要遵循一定的理论基础和实践依据,以确保实验结果的准确性和可靠性。

与传统的霍普金森压杆相比,分离式霍普金森压杆具有更高的测量精度和更广泛的适用性。

五、材料性能的影响材料的性能对分离式霍普金森压杆实验结果有着重要的影响。

例如,材料的弹性模量、屈服强度、韧性等性质都会影响实验结果。

为了获得准确的实验结果,需要对这些因素进行深入分析和研究。

六、边界条件与加载条件在分离式霍普金森压杆实验中,边界条件和加载条件对实验结果也有着重要的影响。

例如,实验温度、应变率、应力状态等都会影响试样的响应和实验结果。

因此,在实验过程中需要严格控制这些因素,以获得准确的实验结果。

霍普金森杆实验介绍

霍普金森杆实验介绍

霍普金森杆实验技术介绍传统的液压伺服系统上准静态实验的应变率通常在1s -1以下,对于更高的应变率,需要采用其他实验手段。

高应变率实验和准静态实验的根本不同点在于,随着应变率的增加,惯性效应即应力波效应明显增强。

分离式霍普金森压杆(Split Hopkinson Pressure Bars ,SHPB )实验技术是研究材料在中高应变率下(102~104S -1)力学性能的主要实验方法。

美国ASM 协会出版的ASM 手册第八卷Material Testing and Evaluation 一书中系统的介绍了分离式霍普金森杆及其相关实验技术,可是并没有建立详细的通用实验标准。

分离式霍普金森杆实验技术主要基于两个基本假定:一维应力波假定;试样中应力应变沿试样长度均匀分布假定(均匀性假定)。

典型的分离式霍普金森杆实验装置由压(拉)杆系统、测量系统、数据采集系统和数据处理系统组成,其中压(拉)杆系统是实验装置的最重要部分。

霍普金森压杆图1 分离式霍普金森压杆实验装置简图图2 试样连接部分简图霍普金森压杆主要由撞击杆、输入杆、吸收杆和试样组成,实验装置简图如图1所示。

其实验原理主要通过使用应变片对入射杆中的入射波、反射杆以及透射杆中的透射脉冲进行测量,然后根据一维应力波理论导出实验的应力-应变关系。

如图2所示,设试样与入射杆相连接端面为面Ⅰ,试样与透射杆相连接端面为面Ⅱ。

在实验过程中面Ⅰ和面Ⅱ上的位移分别为U 1和U 2,则根据线弹性波的线性叠加原理,有()100ti r U c d εετ=-⎰ ()100ti U c d ετ=⎰式中:c 0为压杆中的弹性波速; 、 、 分别为入射波、反射波和透射波独立传播式所对应的杆中的应变。

设试样的长度为L 0,横截面积为A 0。

则试样中的平均应变为:()012000t i r t c U U d L L εεεετ-==--⎰试样的平均平均应变率为: ()00i r t c L εεεε=-- 根据力的平衡性,试样的平均应力为:()02i r t AE A σεεε=++ 其中A 和E 分别为杆的横截面积和弹性模量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

霍普金森杆实验技术简介1.材料动态力学性能实验简史在各类工程技术、军事技术和科学研究等广泛领域的一系列实际问题中,甚至就在日常生活中,人们都会遇到各种各样的爆炸/冲击载荷问题,并且可以观察到,物体在爆炸/冲击载荷下的力学响应往往与静载荷下的有显著不同。

了解材料在冲击加载条件下的力学响应必将大大有助于这些材料的工程应用和工程设计。

此外,数值模拟已在工程设计中发挥着重要作用,而进行数值模拟的前提是必须首先建立一个基于材料在各种应变率下(尤其是在动态应变率下)的精确应力-应变曲线基础上的本构模型。

所以,获得一套材料在高应变率下的应力—应变曲线则成为首要任务。

尽管人们已经研制了多种动态实验技术,但是,与准静态实验相比,进行有效并准确的高应变率下的动态实验依然是一个很大的挑战。

因此,为得到有效并准确的材料的应变率相关的应力—应变曲线,研制高效的、精确的高应变率实验装置是非常重要的。

首先,人们知道,固体力学的静力学理论所研究的是处于静力平衡状态下的固体介质,以忽略介质微元体的惯性作用为前提。

这只是在载荷强度随时间不发生显著变化的时候,才是允许和正确的。

而爆炸/冲击裁荷以载荷作用的短历时为其特征,在以毫秒(ms)、微秒(?s)甚至纳秒(ns)计的短暂时间尺度上发生了运动参量(位移、速度、加速度)的显著变化。

在这样的动载荷条件,介质的微元体处于随时间迅速变化着的动态过程中,这是一个动力学问题。

对此必须计及介质微元体的惯性,从而就导致了对应力波传播的研究。

一切固体材料都具有惯性和可变形性,当受到随时间变化着的外载荷的作用时,它的运动过程总是一个应力波传播、反射和相互作用的过程。

在忽略了介质惯性的可变形固体的静力学问题中,只是允许忽略或没有必要去研究这一在达到静力平衡前的应力波的传播和相互作用的过程,而着眼于研究达到应力平衡后的结果而已。

在忽略了介质可变形性的刚体力学问题中,则相当于应力波传播速度趋于无限大,因而不必再予以考虑。

对于爆炸/冲击载荷条件下的可变形固体,由于在与应力波传过物体特征长度所需时间相比是同量级或更低量级的时间尺度上,载荷已经发生了显著变化,甚至已作用完毕,而这种条件下可变形固体的运动过程常常正是我们关心所在,因此就必须考虑应力波的传播过程。

其次,强冲击载荷所具有的在短暂时间尺度上发生载荷显著变化的特点,必定同时意味着高加载率或高应变率。

一般常规静态试验中的应变率为10-5~10-1 s-1量级.而在必须计及应力波传播的冲击试验中的应变率则为102~104 s-1,甚至可高达107s-1,即比静态试验中的高多个量级。

大量实验表明,在不同应变率下,材料的力学行为往往是不同的。

从材料变形机理来说,除了理想弹性变形可看作瞬态响应外,各种类型的非弹性变形和断裂都是以有限速率发展、进行的非瞬态响应(如位错的运动过程,应力引起的扩散过程,损伤的演化过程,裂纹的扩展和传播过程等等),因而材料的力学性能本质上是与应变率相关的。

通常表现为:随着应变率的提高,材料的屈服极限提高,强度极限提高,延伸率降低,以及屈服滞后和断裂滞后等现象变得明显起来等等。

因此,除了上述的介质质点的惯性作用外,物体在爆炸/冲击载荷下力学响应之所以不同于静载荷下的另一个重要原因,是材料本身在高应变率下的动态力学性能与静态力学性能的不同,即由于材料本构关系对应变率的相关性。

从热力学的角度来说,静态下的应力-应变过程接近于等温过程,相应的应力应变曲线可近似视为等温曲线;而高应变率下的动态应力-应变过程则接近于绝热过程,因而是一个伴有温度变化的热-力学耦合过程,相应的应力应变曲线可近似视为绝热曲线。

这样,如果将一个结构物在爆炸/冲击载荷下的动态响应与静态响应相区别的话,则实际上既包含了介质质点的惯性效应,也包含着材料本构关系的应变率效应。

然而从19世纪开始人们才逐步认识到了材料在动载下的力学性能与其在静载下的力学性能不同。

Thomas Young是分析弹性冲击效应的先驱,他(1807)提出了弹性波的概念,指出杆受轴向冲击力以及梁受横向冲击力时可从能量进行分析而得出定量的结果。

J. Hopkinson 1872完成了第一个动态演示实验(如图1所示),铁丝受冲击而被拉断的位置不是冲击端A,而是固定端B;并且冲击拉断的控制因素是落重的高度,即取决于撞击速度,而与落重质量的大小基本无关。

Pochhammer, 1876; Chree, 1886 Rayleigh,Lord 1887分别研究了一维杆中的横向惯性运动。

1897年Dunn 设计了第一台高应变率试验。

1914年,B.Hopkinson想出了一个巧妙的方法,用以测定和研究炸药爆炸或子弹射击杆端时的压力~时间关系。

所采用的装置被称为Hopkinson压杆(Pressure Bar),有时缩写为HPB。

二战之前,很少有人研究动态压缩加载问题,只是G..I. Taylor 在三十年代末想出了一个方法来测量材料的动态压缩强度。

Taylor 方法主要是假设材料是刚性——理想塑性,运用一维波传播的基本概念,用一个圆柱撞击刚性靶,然后测出其变形,最后得到材料动态压缩屈服应力。

1948年Davies 分析了Hopkinson杆中的应力波传播并发明了用电容方法测量杆中的应力脉冲。

Kolsky(1949)把Hopkinson压杆首先变成分离式并用以研究材料在高应变率下的动态力学行为及其数学模型—材料动态本构关系,成功地发展了分离式Hopkinson压杆(简称SHPB,有时也称Kolsky杆)技术。

50年代,人们用实验检验了St. Venant原理,这样便可以用贴在杆表面的应变片来测量杆中的应变脉冲。

在动态实验设备方面还先后发展了落锤和轻气炮。

落锤装置主要由一个落锤和一个大质量的基础组成。

它可以完成中等应变率的压缩实验。

它的一个突出缺点是在这种实验中既不能实验恒定载荷,也不能实现恒应变率。

利用轻气炮可以进行平板正撞实验和斜板撞击实验,可以研究一维应变状态和高应变率下的材料动态性能,方便研究一维纵波(压力波)和一维横波(剪切波)在试件材料中的传播特性以及材料在这两种应力波作用下的变形和破坏规律。

其缺点是设备复杂,运行成本高。

2.分离式霍普金森杆实验技术的产生2.11872年J. Hopkinson铁丝冲击拉伸试验1872年J. Hopkinson 完成了弹性波研究方面的一个著名实验?——一端固定的铁丝冲击拉伸实验。

图1是其实验装置草图。

铁丝上端固定,下端接一托盘,一空心质量块套在该铁丝上,由上向下运动,当其运动到铁丝的下端,被托盘接住,形成对铁丝的冲击拉伸。

J. Hopkinson 研究了杆(丝)中应力波传播的理论,得到了不同加载条件下铁丝断裂强度的实验结果。

J Hopkinson通过变化落体的质量和速度来研究铁丝究竟加载端(下端)还是在反射端(上端)断裂。

结果表明能冲断下端铁丝的冲击速度的一半就足以冲断上端铁丝,冲击拉断的主要控制因素是落体的高度,即取决于撞击速度,而不是落体的质量。

这项研究从理论和实验两方面增强了人们对波在杆中传播规律及其在界面透、反射规律的理解。

2.21914年B. Hopkinson在霍普金森压杆方面的杰出工作1905年B. Hopkinson继续他父亲J. Hopkinson的研究工作。

他加长了铁丝的长度,给出了波在其中传播的分析表达式。

进而他设计了一个实验,用一接触块和弹道计(摆)来测量铁丝的瞬间伸长,通过多次试验就可以准确确定铁丝的伸长量。

这个试验为后来的霍普金森压杆的研制奠定了基础。

1914年,B. Hopkinson完成了霍普金森压杆的实验设计,并用以测定和研究了炸药爆炸或子弹射击杆端时的压力~时间关系。

Hopkinson 观察到“如果用来复枪(rifle)发射一子弹撞击一圆柱形钢杆的端部,则在撞击期间,有一确定的压力作用在杆的端部,形成一个压力脉冲。

这个撞击引起的压力脉冲沿着杆传播,在自由端发生反射产生一个拉伸脉冲。

”他还指出如何用一与压杆(主杆)材料相同,直径相同的短杆捕捉入射波的动量,而飞离主杆。

如图2所示,飞片(短杆)的动量由弹道摆测得,而留在杆内的动量则可由杆的摆动振幅来确定。

显然,当飞片长(厚度)度等于或大于压力脉冲长度的一半时,压力脉冲的动量将全部陷入飞片中,从而当飞片飞离时,杆将保持静止。

因此,变化飞片的长度,求得其飞离时而杆能保持静止的最小长度l0,就可求得压力脉冲的长度?=2l0,或压力脉冲的持续时间?=?/C0=2l0/C0。

这种测量压力脉冲的方式迅速在一战中得到了广泛的应用。

2.31948年Davies在霍普金森压杆压力波形检测与分析方面的杰出工作在霍普金森压杆发明后三十多年中,这项实验技术并没有得到更多的关注。

直到1948年Davies首次用平行板电容器和圆柱形电容器测量压杆的轴向位移和径向位移(图3所示),这项实验技术才又取得了关键性进展。

除了测量压杆的轴向和径向位移之外,Davies还首次详尽讨论了霍普金森压杆的一些局限性,如弥散问题。

另外原始的霍普金森压杆还存在两个主要缺陷:(1)压杆与飞片之间的粘附力的存在限制了对最小压力值的精确测量;(2)无法得到压力时间曲线(历史)。

Davies指出杆端的质点速度和位移之间的关系,通过测量位移时间关系,可发计算出杆中的压力时间关系。

Davies强调了几个重要的问题:(1)杆材料是均匀的,杆中所受应力均不超过材料的比例极限;(2)杆的直径是均匀的;(3)撞击端可以被一短的硬的砧垫保护;(4)少许油脂粘住砧垫;(5)所用杆长范围为2至22英尺;(6)通常情况下杆直径为0.5~1.5英寸。

(7)杆中纵波速度由振动技术测得。

由圆柱形电容器测得的向位移,由平行板电容器测得杆端的轴向位移,由它们分别计算出杆中的轴向和径向压力时间曲线。

2.41949年Kolsky在分离式霍普金森压杆方面的奠基性工作1949年,即在Davies发表关于霍普金森压杆的重要文章后一年,Kolsky发表了他关于分离式霍普金森压杆的奠基性文章。

他将霍普金森压杆实验中的飞片加厚(加长),并称之为扩展杆(extension bar)(现称为透射杆或输出杆)。

并用它首次研究了几种材料(聚乙烯、橡胶、有机玻璃、铜、铅)的动态力学性能。

他将被试材料制成圆形薄片试件,置于压杆与扩展杆之间,压力脉冲在试件界面上发生透、反射,他也采用Davies测量杆轴向、径向位移的方法,用平行板电容器和圆柱形电容器测量杆的轴向和径向位移。

图4是分离式霍普金森压杆草图。

它的主要部分与Davies的霍普金森压杆相类似只是多了一根扩展杆,其长度分别为4英寸,6英寸,8英寸。

试件置于压杆与扩展杆之间,用一黄铜轴套帮助将压杆、试件和扩展杆联接在一起。

相关文档
最新文档