三角函数经典例题
三角函数公式典型例题大全

高中三角函数公式大全以及典型例题2009年07月12日星期日 19:27三角函数公式两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinBtan(A+B) =tan(A-B) =cot(A+B) =cot(A-B) =倍角公式tan2A =Sin2A=2SinA?CosACos2A = Cos2A-Sin2A=2Cos2A-1=1-2sin2A三倍角公式sin3A = 3sinA-4(sinA)3cos3A = 4(cosA)3-3cosAtan3a = tana·tan(+a)·tan(-a)半角公式sin()=cos()=tan()=cot()=tan()==和差化积sina+sinb=2sincossina-sinb=2cossincosa+cosb = 2coscoscosa-cosb = -2sinsintana+tanb=积化和差sinasinb = -[cos(a+b)-cos(a-b)] cosacosb =[cos(a+b)+cos(a-b)]sinacosb =[sin(a+b)+sin(a-b)] cosasinb =[sin(a+b)-sin(a-b)]诱导公式sin(-a) = -sina cos(-a) = cosa.sin(-a) = cosa cos(-a) = sinasin(+a) = cosa cos(+a) = -sinasin(π-a) = sina cos(π-a) = -cosasin(π+a) = -sina cos(π+a) = -cosatgA=tanA =万能公式sina=cosa=tana=其它公式a?sina+b?cosa=×sin(a+c) [其中tanc=]a?sin(a)-b?cos(a) =×cos(a-c) [其中tan(c)=]1+sin(a) =(sin+cos)2 1-sin(a) = (sin-cos)2其他非重点三角函数csc(a) =sec(a) =公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)= sinα cos(2kπ+α)= cosαtan(2kπ+α)= tanα cot(2kπ+α)= cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinα cos(π+α)= -cosαtan(π+α)= tanα cot(π+α)= cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)= -sinα cos(-α)= cosαtan(-α)= -tanα cot(-α)= -cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinα cos(π-α)= -cosαtan(π-α)= -tanα cot(π-α)= -cotα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinα cos(2π-α)= cosαtan(2π-α)= -tanα cot(2π-α)= -cotα公式六:±α及±α与α的三角函数值之间的关系:sin(+α)= cosα cos(+α)= -sinα tan(+α)= -cotα cot(+α)= -tanαsin(-α)= cosα cos(-α)= sinα tan(-α)= cotα cot(-α)= tanαsin(+α)= -cosα cos(+α)= sinα tan(+α)= -cotαcot(+α)= -tanα sin(-α)= -cosα cos(-α)= -sinαtan(-α)= cotα cot(-α)= tanα(以上k∈Z)正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角正切定理:[(a+b)/(a-b)]={[Tan(a+b)/2]/[Tan(a-b)/2]}三角函数积化和差和差化积公式记不住就自己推,用两角和差的正余弦:3.三角形中的一些结论:(不要求记忆)(1)tanA+tanB+tanC=tanA·tanB·tanC(2)sinA+sinB+sinC=4cos(A/2)cos(B/2)cos(C/2)(3)cosA+cosB+cosC=4sin(A/2)·sin(B/2)·sin(C/2)+1(4)sin2A+sin2B+sin2C=4sinA·sinB·sinC(5)cos2A+cos2B+cos2C=-4cosAcosBcosC-1 ...........................已知sinα=m sin(α+2β), |m|<1,求证tan(α+β)=(1+m)/(1-m)tanβ解:sinα=m sin(α+2β)sin(a+β-β)=msin(a+β+β)sin(a+β)cosβ-cos(a+β)sinβ=msin(a+β)cosβ+mcos(a+β)sinβsin(a+β)cosβ(1-m)=cos(a+β)sinβ(m+1)tan(α+β)=(1+m)/(1-m)tanβ三角函数典型例题1 .设锐角的内角的对边分别为,.(Ⅰ)求的大小;(Ⅱ)求的取值范围.【解析】:(Ⅰ)由,根据正弦定理得,所以,由为锐角三角形得.(Ⅱ).2 .在中,角A. B.C的对边分别为a、b、c,且满足(2a-c)cosB=bcos C.(Ⅰ)求角B的大小;20070316(Ⅱ)设且的最大值是5,求k的值.【解析】:(I)∵(2a-c)cosB=bcosC,∴(2sinA-sinC)cosB=sinBcos C.即2sinAcosB=sinBcosC+sinCcosB=sin(B+C)∵A+B+C=π,∴2sinAcosB=sinA.∵0<A<π,∴sinA≠0.∴cosB=.∵0<B<π,∴B=.(II)=4ksinA+cos2A.=-2sin2A+4ksinA+1,A∈(0,)设sinA=t,则t∈.则=-2t2+4kt+1=-2(t-k)2+1+2k2,t∈.∵k>1,∴t=1时,取最大值.依题意得,-2+4k+1=5,∴k=.3 .在中,角所对的边分别为,.I.试判断△的形状;II.若△的周长为16,求面积的最大值.【解析】:I.,所以此三角形为直角三角形.II.,当且仅当时取等号,此时面积的最大值为.4 .在中,a、b、c分别是角A. B.C的对边,C=2A,,(1)求的值;(2)若,求边AC的长?【解析】:(1)(2)①又②由①②解得a=4,c=6,即AC边的长为5.5 .已知在中,,且与是方程的两个根.(Ⅰ)求的值;(Ⅱ)若AB,求BC的长.【解析】:(Ⅰ)由所给条件,方程的两根.∴(Ⅱ)∵,∴.由(Ⅰ)知,,∵为三角形的内角,∴∵,为三角形的内角,∴,由正弦定理得:∴.6 .在中,已知内角A. B.C所对的边分别为a、b、c,向量,,且?(I)求锐角B的大小;(II)如果,求的面积的最大值?【解析】:(1)2sinB(2cos2-1)=-cos2B2sinBcosB=-cos2B tan2B=-∵0<2B<π,∴2B=,∴锐角B=(2)由tan2B=-B=或①当B=时,已知b=2,由余弦定理,得:4=a2+c2-ac≥2ac-ac=ac(当且仅当a=c=2时等号成立) ∵△ABC的面积S△ABC=acsinB=ac≤∴△ABC的面积最大值为②当B=时,已知b=2,由余弦定理,得:4=a2+c2+ac≥2ac+ac=(2+)ac(当且仅当a=c=-时等号成立)∴ac≤4(2-)∵△ABC的面积S△ABC=acsinB=ac≤ 2-∴△ABC的面积最大值为2-7 .在中,角A. B.C所对的边分别是a,b,c,且(1)求的值;(2)若b=2,求△ABC面积的最大值.【解析】:(1) 由余弦定理:cosB=+cos2B=(2)由∵b=2,+=ac+4≥2ac,得ac≤, S△ABC=acsinB≤(a=c时取等号)故S△ABC的最大值为8 .已知,求的值?【解析】;。
高中三角函数经典例题精选全文完整版

可编辑修改精选全文完整版一、选择题1.如果角θ的终边经过点(3,-4),那么θsin 的值是( ) A53 B 53- C 54 D 54- 2.)314sin(π-的值等于( ) A21 B 21- C 23 D 23-3.若0835-=α,则角α的终边在( )A 第一象限B 第二象限C 第三象限D 第四象限4.已知21sin -=θ,则)sin(θπ+等于A21 B 21- C 23 D 23-5.已知θ是第一象限角,那么2θ是( ) A 第一或第三象限角 B 第二或第三象限角 C 第三或第四象限角 D 第一或第四象限角 6.已知θ是三角形的一个内角,且22sin =θ,则角θ等于( ) A4π B 43π C 4π,43π D 3π7.已知0tan sin <⋅θθ,那么角θ是( )A 第一或第三象限角B 第二或第三象限角C 第三或第四象限角D 第一或第四象限角8.)421sin(2π+=x y 的周期、振幅、初相分别是( )A4,2,4ππB 4,2,4ππ-- C 4,2,4ππ D 4,2,2ππ9. sin2cos3tan4的值( )A .小于0B .大于0C .等于0D .不存在10.(08·全国Ⅰ文)y =(sin x -cos x )2-1是( )A .最小正周期为2π的偶函数B .最小正周期为2π的奇函数C .最小正周期为π的偶函数D .最小正周期为π的奇函数11. 函数y =sin ⎝ ⎛⎭⎪⎫2x -π3在区间⎣⎢⎡⎦⎥⎤-π2,π的简图是( )12.为了得到函数y =cos ⎝ ⎛⎭⎪⎫2x +π3的图象,只需将函数y =sin2x 的图象( ) A .向左平移5π12个长度单位 B .向右平移5π12个长度单位 C .向左平移5π6个长度单位 D .向右平移5π6个长度单位13.函数y =|sin x |的一个单调增区间是( ) A.⎝ ⎛⎭⎪⎫-π4,π4 B.⎝ ⎛⎭⎪⎫π4,3π4 C.⎝ ⎛⎭⎪⎫π,3π2D.⎝ ⎛⎭⎪⎫3π2,2π 14.下列函数中,图象的一部分符合下图的是( )A .y =sin(x +π6)B .y =sin(2x -π6) C .y =cos(4x -π3) D .y =cos(2x -π6)二、填空题15.与34π终边相同的角的集合 16.已知45cos sin -=-θθ,则=⋅θθcos sin17.已知θ是第四象限角,125tan -=θ,则=θcos 18.已知=-=+-θθθθθtan ,35cos 2sin 3cos sin 2则19.函数y =16-x 2+sin x 的定义域为________.20..若a =sin(sin2009°),b =sin(cos2009°),c =cos(sin2009°),d =cos(cos2009°),则a 、b 、c 、d 从小到大的顺序是________.三、解答题21.)660cos()330sin(750cos 420sin 0000-•-+•:计算22.求使)42sin(3π+=x y 取到最大值、最小值的自变量的集合,并分别写出最大值、最小值,及这个函数在[]π2,0的单调递增区间。
第五章 三角函数典型易错题集(解析版)

第五章 三角函数典型易错题集易错点1.忽略顺时针旋转为负角,逆时针旋转为正角。
【典型例题1】(2022·全国·高一专题练习)将手表的分针拨快10分钟,则分针在旋转过程中形成的角的弧度数是( ) A .6πB .3π C .6π-D .3π-【错解】B将手表的分针拨快10分钟,则分针在旋转过程中形成的角的弧度数是102603ππ⨯=. 点评:学生对角的理解还是局限在0360之间,把角都当成正数,容易忽视角的定义,顺时针旋转为负,逆时针旋转为正。
【正解】D 【详解】将手表的分针拨快10分钟,则分针在旋转过程中形成的角的弧度数是102603ππ-⨯=-. 故选:D.易错点2.在三角函数定义中,忽略点坐标值的正负。
【典型例题2】(2022·湖北襄阳·高一期中)设α是第三象限角,(),4P x -为其终边上的一点,且1cos 5x α=,则tan α=( ) A .43-或43B .34C .43D .34-【错解】A解:(,4)P x -为其终边上的一点,且1cos 5x α=, ∴15x,解得:3x =±,所以(3,4)P ∴--或者(3,4)P ∴-,所以44tan 33α-∴==-或者44tan 33α-∴==-点评:学生在解此类问题时往往忽略了角α15x=方程时容易造成两种错误:①293a a =⇒=,这类错误往往学生只能看到正根,没有负根。
②第二类错误,本题也解出了3x =±,但是忽视了本题α是第三象限角,此时x 是负数,要舍去其中的正根。
【答案】C 【详解】解:(,4)P x -为其终边上的一点,且1cos 5x α=, ∴15x,解得:0x =或3x =±, 又α是第三象限角,0x ∴<,3x ∴=-,(3,4)P ∴--, 44tan 33α-∴==-. 故选:C .易错点3.分数的分子分母同乘或者同除一个数,分数的值不变(分数基本性质)【典型例题3】(2022·安徽省五河第一中学高二月考)已知tan 2θ=则22sin sin cos 2cos θθθθ+-的值为________. 【错解】4222222sin sin cos 2cos (sin sin cos 2cos )cos tan tan 24θθθθθθθθθθθ+-=+-÷=+-=点评:学生在此类问题时多数出现分式问题,习惯了分子分母同除以cos θ(或者2cos θ),但本题是一个整式,要先化成分式,才能进一步同时除以cos θ(或者2cos θ)。
三角函数经典例题

第1讲 任意角、弧度制及任意角的三角函数【例1】►已知角α的终边在直线3x +4y =0上,求sin α,cos α,tan α的值. 答:sin α=-35,cos α=45,tan α=-34或sin α=35,cos α=-45,tan α=-34. 【训练1】 已知角θ的终边经过点P (-3,m )(m ≠0)且sin θ=24 m ,试判断角θ所在的象限,并求cos θ和tan θ的值.答:cos θ=-64,tan θ=-153或cos θ=-64,tan θ=153. 【例2】►(1)已知cos θ·sin θ<0,那么角θ是( ). A .第一或第二象限角 B .第二或第三象限角 C .第二或第四象限角 D .第一或第四象限角(2)已知点P (sin θcos θ,2cos θ)位于第三象限,则角θ是第________象限. 答案 (1)C (2)二【训练2】 已知sin 2θ<0,且|cos θ|=-cos θ,问点P (tan θ,cos θ)在第几象限?答:P (tan θ,cos θ)在第三象限.【例3】►已知扇形的圆心角是α(α>0),半径为R . (1)若α=60°,R =10 cm ,求扇形的弧长l .(2)若扇形的周长为20 cm ,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?答:(1)l =|α|R =π3×10=103π(cm).(2)当R =5 cm ,即α=105=2(rad)时,这个扇形的面积最大. 【训练3】 已知扇形的圆心角是α=120°,弦长AB =12 cm ,求弧长l . 答:l =|α|·R =2π3×43=833π(cm).【真题探究】► (2012·山东)如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,OP→的坐标为________.[答案] (2-sin 2,1-cos 2)【试一试】 (2012·北京东城模拟)已知OP →=(1,0),点P 从(1,0)出发,沿单位圆x 2+y 2=1逆时针方向运动2π3弧长到达Q 点,则OQ →=( ). A.⎝ ⎛⎭⎪⎫-12,32 B.⎝ ⎛⎭⎪⎫-32,-12C.⎝ ⎛⎭⎪⎫-12,-32D.⎝ ⎛⎭⎪⎫-32,12答案 A 习题1.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论用角度制还是用弧度制度量一个角,它们与扇形所对半径的大小无关; ④若sin α=sin β,则α与β的终边相同; ⑤若cos θ<0,则θ是第二或第三象限的角. 其中正确命题的个数是( ).A .1B .2C .3D .42.(2012·南阳模拟)已知锐角α的终边上一点P (sin 40°,1+cos 40°),则锐角α=( ).A .80°B .70°C .20°D .10°3.函数y =2cos x -1的定义域为________.4.设角α是第三象限角,且⎪⎪⎪⎪⎪⎪sin α2=-sin α2,则角α2是第________象限角. 5.(13分)如图所示,A ,B 是单位圆O 上的点,且B 在第二象限,C 是圆与x 轴正半轴的交点,A 点的坐标为⎝ ⎛⎭⎪⎫35,45,△AOB为正三角形.(1)求sin ∠COA ;(2)求cos ∠COB .答案:1.A 2.B 3. ⎣⎢⎡⎦⎥⎤2k π-π3,2k π+π3(k ∈Z ) 4. 四5. (1) sin ∠COA =45.(2)cos ∠COB =cos(∠COA +60°)=3-4310.第2讲 同角三角函数的基本关系与诱导公式【例1】►已知α是三角形的内角,且sin α+cos α=15. (1)求tan α的值; (2)把1cos 2α-sin 2α用tan α表示出来,并求其值.解 (1) tan α=-43. (2)1cos 2α-sin 2α=-257. 【训练1】 已知-π2<x <0,sin x +cos x =15. (1)求sin x -cos x 的值; (2)求sin 2x +2sin 2x 1-tan x 的值.解 (1)sin x -cos x =-75. (2) sin 2x +2sin 2x 1-tan x=-24175.【例2】►(1)已知sin ⎝ ⎛⎭⎪⎫π3-α=12,则cos ⎝ ⎛⎭⎪⎫π6+α=________;(2)已知tan ⎝ ⎛⎭⎪⎫π6-α=33,则tan ⎝ ⎛⎭⎪⎫56π+α=________.答案 (1)12 (2)-33【训练2】 (1)已知sin ⎝ ⎛⎭⎪⎫7π12+α=23,则cos ⎝ ⎛⎭⎪⎫α-11π12=________;(2)若tan(π+α)=-12,则tan(3π-α)=________.答案 (1)-23 (2)12【例3】►设f (α)=2sin (π+α)cos (π-α)-cos (π+α)1+sin 2α+cos ⎝ ⎛⎭⎪⎫3π2+α-sin 2⎝ ⎛⎭⎪⎫π2+α(1+2sin α≠0),则f ⎝ ⎛⎭⎪⎫-23π6=________. 答案3【训练3】 (1)化简:tan (π+α)cos (2π+α)sin ⎝ ⎛⎭⎪⎫α-3π2cos (-α-3π)sin (-3π-α)=________.(2)已知f (x )=sin (π-x )cos (2π-x )tan (-x +π)cos ⎝ ⎛⎭⎪⎫-π2+x ,则f ⎝ ⎛⎭⎪⎫-31π3=________. 答案 (1)-1 (2)32【真题探究】► (2012·辽宁)已知sin α-cos α=2,α∈(0,π),则tan α=( ). A .-1 B .-22 C.22 D .1 [答案] A【试一试】 (2012·江西)若tan θ+1tan θ=4,则sin 2θ的值为( ). A.15 B.14 C.13 D.12 答案 D习题1.已知tan θ=2,则sin 2θ+sin θcos θ-2cos 2θ=( ).A .-43B.54C .-34D.452.若sin α是5x 2-7x -6=0的根,则 sin ⎝ ⎛⎭⎪⎫-α-3π2sin ⎝ ⎛⎭⎪⎫3π2-αtan 2(2π-α)cos ⎝ ⎛⎭⎪⎫π2-αcos ⎝ ⎛⎭⎪⎫π2+αsin (π+α)=( ).A.35B.53 C.45 D.543.(2012·上海)若S n =sin π7+sin 2π7+…+sin n π7(n ∈N *),则在S 1,S 2,…,S 100中,正数的个数是( ).A .16B .72C .86D .1004.(2012·揭阳模拟)已知sin αcos α=18,且π4<α<π2,则cos α-sin α的值是________.5.(2011·重庆)已知sin α=12+cos α,且α∈⎝ ⎛⎭⎪⎫0,π2,则cos 2αsin ⎝ ⎛⎭⎪⎫α-π4的值为________.6.(2013·青岛模拟)f (x )=a sin(πx +α)+b cos(πx +β)+4(a ,b ,α,β均为非零实数),若f (2 012)=6,则f (2 013)=________.7.(12分)是否存在α∈⎝ ⎛⎭⎪⎫-π2,π2,β∈(0,π),使等式sin(3π-α)=2cos ⎝ ⎛⎭⎪⎫π2-β,3cos(-α)=-2cos(π+β)同时成立?若存在,求出α,β的值;若不存在,请说明理由.8.(13分)(2011·天津)已知函数f (x )=tan ⎝ ⎛⎭⎪⎫2x +π4.(1)求f (x )的定义域与最小正周期;(2)设α∈⎝ ⎛⎭⎪⎫0,π4,若f ⎝ ⎛⎭⎪⎫α2=2cos 2α,求α的大小.答案:1.D 2.B 3.C 4. -325. -1426. 27. 存在α=π4,β=π6满足条件 8.(1) f (x )的定义域为⎩⎨⎧⎭⎬⎫x ∈R |x ≠π8+k π2,k ∈Z ,f (x )的最小正周期为π2. (2)α=π12.。
高二常考的三角函数的试题整理

高二常考的三角函数的试题整理经典数学题【例一】1.(2009·江苏常州一模)已知角α是第三象限角,则角-α的终边在第________象限. 2.(2010·连云港模拟)与610°角终边相同的角表示为______________.1sin 2θ3.(2010·浙江潮州月考)已知2<1,则θ所在象限为第________象限.π3π4.(2010·南通模拟)已知角θ的终边经过点P(-4cos α,3cos α)(<α<,则sin θ+cos θ=________.22ππ-且sin θ+cos θ=a,其中a∈(0,1),则关于tan θ的值,以下四个答案中,可能正5.(2010·福州调研)已知θ∈22111确的是________(填序号).①-3 ②3或③- ④-3或-3336.(2009·江西九江模拟)若角α的终边与直线y=3x重合且sin α<0,又P(m,n)是角α终边上一点,且|OP|10,则m-n=________.|sin α||cos α|7.(2010·山东济南月考)已知角α的终边落在直线y=-3x (x<0)上,则=________.sin αcos α8.(2010·南京模拟)某时钟的秒针端点A到中心点O的距离为5 cm,秒针均匀地绕点O旋转,当时间t=0时,点A与钟面上标12的点B重合.将A、B两点间的距离d(cm)表示成t(s)的函数,则d=________,其中t∈[0,60].π49.(2010·泰州模拟)若0”,“<”或“=”填空).2π210.(2010·镇江模拟)已知角θ的终边上一点P(3,m),且sin θm,求cos θ与tan θ的值.411.(2010·江苏南京模拟)在单位圆中画出适合下列条件的角α的终边的范围,并由此写出角α的集合:31(1)sin α;(2)cos α.2212.(2010·佳木斯模拟)角α终边上的点P与A(a,2a)关于x轴对称(a≠0),角β终边上的点Q与A关于直线y=x对称,求sin α·cos α+sinβ·cosβ+tan α·tan β的值.同角三角函数的基本关系及诱导公式1.(2010·南通模拟)cos(-174-sin(-174π)的值为___________________________.2.(2010·江苏镇江一模)设tan(5π+α)=m,则sin(α-3π)+cos(π-α)sin(-α)-cos(π+α)的值为__________.3.(2009·辽宁沈阳四校联考)已知sin α+cos αsin α-cos α=2,则sin αcos α=________.4.(2008·浙江理,8)若cos α+2sin α=-,则tan α=__________.5.(2008·四川理,5)设0≤α<2π,若sin α3cos α,则α的取值范围是____________.6.(2010·吉林长春调研)若sin α+cos α=tan α0<α<π2,则α的取值范围是__________. 7.(2009·苏州二模)sin21°+sin22°+sin23°+…+sin289°=________.8.(2010·浙江嘉兴月考)已知f(x)= 1-xπ1+xα∈(2,π),则f(cos α)+f(-cos α)=________.9.(2009·北京)若sin θ=-45tan θ>0,则cos θ=____________________________________.10.(2010·泰州模拟)化简:(1)1-cos4α-sin4α1-cosα-sinα2sin(π4x)+6cos(π; 4-x).11.(2010·盐城模拟)已知sin22α+sin 2αcos α-cos 2α=1,α∈(0,π2),求sin α、tan α的值.12.(2009·福建宁德模拟)已知0<α<π52sin αcos α-cos α+12cos α-sin α=-5,试求1-tan α和差倍角的三角函数1.(2010·山东青岛模拟)cos 43°cos 77°+sin 43°·cos 167°的值为________. 2.(2010·南京模拟)已知α、β均为锐角,且cos(α+β)=sin(α-β),则tan α=________.3.(2009·湖北四校联考)在△ABC中,3sin A+4cos B=6,4sin B+3cos A=1,则∠C的大小为________.4.(2009·湖南长沙调研)在锐角△ABC中,设x=sin A·sin B,y=cos A·cos B,则x,y的大小关系是________.5.(2009·广东韶关模拟)已知tan α=2,则sin 2α-cos 2α1+cosα________.6.(2010·无锡模拟)1+tan x1-tan x2 010,则1cos 2x+tan 2x的值为________.7.(2010·苏州调研)若锐角α、β满足(1+3tan α)·(13tan β)=4,则α+β=________. 8.(2009·江苏南通二模)已知sin αcos β=12,则cos αsin β的取值范围是____________.9.(2010·苏、锡、常、镇四市调研)若tan(α+β)=2π1π5,tan(β-4)=4,则tan(α+4=________.10.(2008·广东)已知函数f(x)=Asin(x+φ) (A>0,0<φ<π) (x∈R)的最大值是1,其图象经过点Mπ13,2. (1)求f(x)的解析式;(2)已知α、β∈0,π2,且f(α)=3125,f(β)=13,求f(α-β)的值.11.(2010·宿迁模拟)已知向量a=(cos α,sin α),b=(cos β,sin β),|a-b|=41313(1)求cos(α-β)的值;(2)若0<α<π2,-π42β<0,且sin β=-5,求sin α的值.三角函数的图象与性质1.(2009·大连一模)y=sin(2x+π6)的最小正周期是_____________________________.2.(2010·扬州模拟)y=2-cos__________,此时x=________.3π3.(2010·盐城模拟)函数y=tan(x)的定义域是________________.4.(2009·牡丹江调研)已知函数y=2cos x(0≤x≤1 000π)的图象和直线y=2围成一个封闭的平面图形,则这个封闭图形的面积是________5.(2010·江苏盐城月考)已知函数y=tan ωx在(-,内是减函数,则ω的取值范围是________________.7.(2009·浙江宁波检测)定义在R上的函数f(x)既是偶函数又是周期函数,若f(x)的最小正周8.(2010·连云港模拟)sin 2,cos 1,tan 2的大小顺序是________________.9.(2008·全国Ⅱ理)若动直线x=a与函数f(x)=sin x和g(x)=cos x的图象分别交于M、N两点,则|MN|的最大值为_______.11.(2008·陕西)已知函数f(x)=2sincos+3cos.12.(2010·山东济宁第一次月考)设a=sin2b. ,cos x+sin x,b=(4sin x,cos x-sin x),f(x)=a·4(1)求函数f(x)的解析式(3)设集合A=x6x≤3,B={x||f(x)-m|<2},若A⊆B,求实数m的取值范围.三角函数的`最值及应用1.(2010·连云港模拟)函数y3sin(2x)-cos 2x的最小值为________.2.(2010·泰州模拟)若函数y=2cos ωx在区间[0,上递减,且有最小值1,则ω的值可以是________.3.(2010·湖北黄石调研)设函数f(x)=2sin(+.若对任意x∈R,都有f(x1)≤f(x)≤f(x2)成立,则|x1-x2|的最小值为____.4.(09·湖南株州模拟)函数y=sin 2x按向量a平移后,所得函数的解析式是y=cos 2x+1,则模最小的一个向量a=__.5.(2009·广东惠州二模)函数y=Asin(ωx+φ)(ω>0,|φ|<在同一单调区间内的x=x29291小值-________________________.2a+b,ab≤0,6.(2010·广西南宁检测)定义运算a*b=a则函数f(x)=(sin x)*(cos x)的最小值为________., ab>0,b7.(2010·苏州调研)一半径为10的水轮,水轮的圆心距水面7,已知水轮每分钟旋转4圈,水轮上点P到水面距离y与时间x(s)满足函数关系y=Asin(ω+φ)+7(A>0,ω>0),则A=________,ω=________. 8.(2009·徐州二模)函数y=(sin x-a)2+1,当sin x=a时有最小值,当sin x=1时有最大值,则a的取值范围是_______. 9.(2009·江苏)函数y=Asin(ωx+φ)(A、ω、φ为常数,A>0,ω>0)在闭区间[-π,0]上的图象如图所示,则ω=10.(2010·镇江模拟)已知函数f(x)=cos(2ωx+2φ) (A>0,ω>0,0<φ<),且y=f(x)的最大值为2,其图象上相邻两对称轴间的距离为2,并过点(1,2).(1)求φ;(2)计算f(1)+f(2)+…+f(2 008).11.( 10·辽宁瓦房店月考)如图所示,某地一天从6时到14时的温度变化曲线近似满足函数y=Asin(ωx+φ)+b. (1)求这段时间的最大温差; (2)写出这段曲线的函数解析式.12.(2010·吉林延吉模拟)如图,在一个奥运场馆建设现场,现准备把一个半径为3 m的球形工件吊起平放到6 m高的平台上,工地上有一个吊臂长DF=12 m的吊车,吊车底座FG高1.5 m.当物件与吊臂接触后,钢索CD的长可通过顶点D处的滑轮自动调节并保持物件始终与吊臂接触.求物件能被吊车吊起的最大高度,并判断能否将该球形工件吊到平台上?解三角形1.(2010·江苏靖江调研)在△ABC中,若(a+b+c)(b+c-a)=3bc,则A=________.2.(2010·宿迁模拟)在△ABC中,已知acos A=bcos B,则△ABC的形状为____________. 3.(2010·江苏淮阴模拟)如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为____________. 4.(2010·浙江绍兴模拟)△ABC中,a,b,c分别为∠A,∠B,∠C的对边,如果a,b,c成等差数列,∠B=30°,△ABC的面积为,那么b=__________.25b,A=2B,则cos B=________. 26.(2010·南通模拟)一船以每小时15 km的速度向东航行,船在A处看到一个灯塔M在北偏东60°方向,行驶4 h后,船到达B处,看到这个灯塔在北偏东15°方向,这时船与灯塔的距离为________km.7.(2009·福建泉州二模)如图所示,我炮兵阵地位于地面A处,两观察所分别位于地面C处和D处,已知CD=6 000 m,∠ACD=45°,∠ADC=75°,目标出现于地面B处时测得∠BCD=30°,∠BDC=15°,则炮兵阵地到目标的距离是________________(结果保留根号).8.(2009·江西宜泰模拟)线段AB外有一点C,∠ABC=60°,AB=200 km,汽车以80 km/h的速度由A向B行驶,同时摩托车以50 km/h的速度由B向C行驶,则运动开始____ h后,两车的距离最小. 9.(2009·广东改编)已知△ABC中,∠A、∠B、∠C的对边分别是a、b、c,若a=c=6+2,且∠A=75°,则b=________.10.(2009·安徽)在△ABC中,C-A=sin B=23(1)求sin A的值;(2)设AC=6,求△ABC的面积.11.(2009·山东泰安第二次月考)在海岸A处,发现北偏东45°方向,距A处3-1)海里的B处有一艘走私船,在A处北偏西75°方向,距A处2海里的C处的缉私船奉命以103海里/小时的速度追截走私船,此时走私船正以10海里/小时的速度从B处向北偏东30°的方向逃窜,问缉私船沿什么方向能最快追上走私船,并求出所需要的时间.5.(2008·四川,7)△ABC的三内角A、B、C的对边边长分别为a、b、c.若a=三角函数的综合应用1.(2009·济宁期末)已知a=(cos 2α,sin α),b=(1,2sin α-1),α∈π),若a·b=,则25πtan(α+的值为________.2.(2008·江苏)若AB=2,AC2BC,则S△ABC的最大值是________.3.(2009·肇庆期末)定义运算a*b=a2-ab-b2,则sin=________.4.(2009·广州第二次联考)已知a,b,x,y∈R,a2+b2=4,ax+by=6,则x2+y2的最小值为________.5.(2010·宿州模拟)若函数f(x)=sin(x+α)-2cos(x-α)是偶函数,则cos2α=________.6.(2010·泰州调研)函数f(x)=(sin2x+(cos2x+)的最小值是________. 2 009sinx2 009cosx7.(2009·福建文)已知锐角△ABC的面积为33,BC=4,CA=3,则角C的大小为________.8.(2010·苏南四市模拟)俗话说“一石激起千层浪”,小时候在水上打“水漂”的游戏一定不会忘记吧.现在一个圆形2π波浪实验水池的中心已有两个振动源,在t秒内,它们引发的水面波动可分别由函数y1=sin t和y2=sin(t+来描3述,当这两个振动源同时开始工作时,要使原本平静的水面保持平静,则需再增加一个振动源(假设不计其他因素,则水面波动由几个函数的和表达),请你写出这个新增振动源的函数解析式______________. 9.(2010·南通模拟)2002年在北京召开的国际数学家大会,会标是以我国古代数学家赵爽的弦图为基础设计的.弦图是由四个全等直角三角形与一个小正方形拼成的一个大正方形(如图).如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为θ,那么cos 2θ的值等于____________.经典数学题【例二】知识考点:本节知识的考查一般以填空题和选择题的形式出现,主要考查锐角三角函数的意义,即运用sina、cosa、tana、cota准确表示出直角三角形中两边的比(a为锐角),考查锐角三角函数的增减性,特殊角的三角函数值以及互为余角、同角三角函数间的关系。
高中三角函数总结例题

高中三角函数总结例题三角函数是高中数学中的重要知识点,它是用来描述角度和边长之间的关系的数学工具。
在高中数学的学习中,三角函数有着广泛的应用,涉及到平面几何、解析几何、数学分析等方面。
下面是一些经典的三角函数例题,我们通过这些例题的总结来理解和掌握三角函数的相关知识。
例题1:已知∠ABC是锐角,AB=3,BC=4,求三角形ABC的角A的正弦、余弦和正割。
解:首先,我们可以利用勾股定理求得三角形ABC的第三条边AC的长度。
由勾股定理可知,AC^2=AB^2+BC^2=3^2+4^2=9+16=25,故AC=√25=5。
然后,我们可以利用正弦定理求得角A的正弦。
正弦定理:sinA=a/2R,其中a为∠A的对边长度,R为三角形ABC的外接圆半径。
根据正弦定理可得 sinA=BC/AC=4/5。
再然后,我们可以利用余弦定理求得角A的余弦。
余弦定理:cosA=(b^2+c^2-a^2)/2bc,其中a、b、c分别为∠A的对边、临边、对边长度。
根据余弦定理可得 cosA=[(3^2+5^2-4^2)/2×3×5]=14/30=7/15。
最后,我们可以求出角A的正割。
正割定义:secA=1/cosA。
根据定义可得 secA=1/(7/15)=15/7。
综上所述,角A的正弦为4/5,余弦为7/15,正割为15/7。
例题2:已知tanA=2,且A为锐角,求sinA、cosA和cotA的值。
解:首先,我们可以利用正切的定义求得角A的正弦和余弦。
正切的定义:tanA=sinA/cosA。
根据定义可得 sinA/cosA=2,即sinA=2cosA。
然后,我们可以利用三角恒等式sin^2A+cos^2A=1,将sinA的表达式带入其中。
得到(2cosA)^2+cos^2A=1,即4cos^2A+cos^2A=1,即5cos^2A=1,解得cosA=±√(1/5)。
注意到A为锐角,sinA和cosA均为正数,故cosA=√(1/5)。
高中三角函数经典例题

高中数学三角函数经典例题(解析在后面)一、单选题(共20题;共40分)1.已知函数f(x)=cosx ,下列结论不正确的是( ) A. 函数y=f(x)的最小正周期为2π B. 函数y=f(x)在区间(0,π)内单调递减 C. 函数y=f(x)的图象关于y 轴对称D. 把函数y=f(x)的图象向左平移 π2 个单位长度可得到y=sinx 的图象2.如图,A 、B 两点为山脚下两处水平地面上的观测点,在A 、B 两处观察点观察山顶点P 的仰角分别为 α ,β。
若tanα = 13 ,β=45°,且观察点A 、B 之间的距离比山的高度多100米。
则山的高度为( )A. 100米B. 110米C. 120米D. 130米 3.已知 sinα=√55,则 cos2α= ( )A. −35B. 35 C. −3√55 D. 3√554.将函数 f(x)=sin2x 的图象向右平移 π6 个单位长度得到 g(x) 图象,则函数的解析式是( )A. g(x)=sin (2x +π3) B. g(x)=sin (2x +π6) C. g(x)=sin (2x −π3) D. g(x)=sin (2x −π6)5.若 α,β 均为第二象限角,满足 sinα=35 , cosβ=−513,则 cos(α+β)= ( )A. −3365B. −1665C. 6365D. 33656.已知 tanα=1 ,则1+2cos 2αsin2α= ( )A. 2B. -2C. 3D. -3 7.要得到 y =sin x2 的图象,只要将函数 y =sin(12x +π4) 的图象( )A. 向左平移 π4 单位B. 向右平移 π4 单位 C. 向左平移 π2 单位 D. 向右平移 π2 单位8.要得到函数 y =2sin(2x +π6) 的图像,只需将函数 y =2sin2x 的图像( ) A. 向左平移 π6 个单位 B. 向右平移 π6 个单位 C. 向左平移 π12 个单位 D. 向右平移 π12 个单位9.函数 f(x)=Asin(ωx+φ) (ω>0,|φ|<π2) 的部分图象如图所示,则 f(π)= ( )A. 4B. 2√3C. 2D. √3 10.已知角 α 的顶点与坐标原点重合,始边与 x 轴的非法半轴重合,终边经过点 P(1,−2) ,则 sin 2α= ( )A. −2√55B. −4√55C. 45 D. −4511.数 f(x)=sin(4x +ϕ)(0<ϕ<π2) ,若将 f(x) 的图象向左平移 π12 个单位后所得函数的图象关于 y 轴对称,则 φ= ( )A. π12 B. π6 C. π4 D. π3 12.sin140°cos10°+cos40°sin350°= ( ) A. 12 B. −12 C. √32D. −√3213.已知 α,β∈(0,π2) , cosα=17 , cos(α+β)=−1114 ,则 β= ( ) A. π6 B. 5π12C. π4 D. π314.要得到函数 y =2√3cos 2x +sin2x −√3 的图象,只需将函数 y =2sin2x 的图象( )A. 向左平移 π3 个单位 B. 向右平移 π3 个单位 C. 向左平移 π6 个单位 D. 向右平移 π6 个单位 15.若 sin(π6−α)=13,则 cos(2π3+2α)= ( )A. 13B. −13C. 79D. −7916.函数 y =sin(2x +φ)(0<φ<π2) 图象的一条对称轴在 (π6,π3) 内,则满足此条件的一个 φ 值为( )A. π12 B. π6 C. π3 D. 5π617.关于 x 的三角方程 sinx =13 在 [0,2π) 的解集为( ) A. {arcsin 13} B. {π−arcsin 13}C. {arcsin 13,π−arcsin 13} D. {arcsin 13,−arcsin 13}18.已知 α 满足 tan(α+π4)=13 ,则 tanα= ( ) A. −12B. 12C. 2D. −219.已知 α、β 均为锐角,满足 sinα=√55 , cosβ=3√1010,则 α+β= ( )A. π6B. π4C. π3D. 3π420.计算 sin95°cos50°−cos95°sin50° 的结果为( ) A. −√22B. 12C. √22D. √32二、填空题(共20题;共21分)21.函数f(x)=Asin( ωx+ φ)的部分图象如图,其中A>0,ω>0,0< φ< π2.则ω=________ ; tan φ= ________ .22.若角α满足sinα+2cosα=0,则tan2α=________;23.计算sin47°cos17°−cos47°sin17°的结果为________.24.角α的终边经过点P(−3,4),则cos(π2−α)=________.25.函数y=sin(x+φ),φ∈[0,π]为偶函数,则φ=________.26.若扇形圆心角为120∘,扇形面积为43π,则扇形半径为________.27.已知f(x)=2sin(ωx−π6)(ω>0)和g(x)=2cos(2x+φ)+1的图象的对称轴完全相同,则x∈[0,π]时,方程f(x)=1的解是________.28.已知sin(π−α)=35,α∈(π2,π),则sin2α=________.29.已知函数y=sinx的定义域是[a,b],值域是[−1,12],则b−a的最大值是________30.如果tanα=2,则tan(α+π4)=________31.若函数f(x)=sin(x+φ),φ∈(0,π)是偶函数,则φ等于________32.函数f(x)=2−sinxcosx的值域是________33.函数y=arccos(x−1)的定义域是________34.求f(x)=sinx−cos2x+2,x∈[−π6,2π3]的值域________.35.已知函数y=2sin(2x+φ)(0<φ<π2)的一条对称轴为x=π6,则φ的值为________.36.在ΔABC中,tanA+tanB+√3=√3tanA⋅tanB,则C等于________.37.方程cosx=sinπ6的解为x=________.38.弧长等于直径的圆弧所对的圆心角的大小为________弧度.(只写正值)39.若sinα−cosα=12,则sin2α=________.40.若tanθ=−3,则cos2θ=________.三、解答题(共10题;共85分)41.如图,在平面直角坐标系xOy中,点A为单位圆与x轴正半轴的交点,点P为单位圆上的一点,且∠AOP= π4,点P沿单位圆按逆时针方向旋转角θ后到点Q(a,b)(1)当θ= π6时,求ab的值(2)设θ∈[ π4,π2],求b-a的取值范围42.在ΔABC中,内角A,B,C所对的边分别为a,b,c,且b2=a2+c2−ac. (1)求角B的大小;(2)求sinA+sinC的取值范围.43.已知函数f(x)=√3sin2x+cos2x.(1)求y=f(x)的单调递增区间;(2)当x∈[−π6,π3]时,求f(x)的最大值和最小值.44.已知f(x)=acos2x+√3asin2x+2a−5(a∈R,a>0).]上的最大值为3时,求a的值;(1)当函数f(x)在[0,π2(2)在(1)的条件下,若对任意的t∈R,函数y=f(x),x∈(t,t+b]的图像与直线y=−1有且仅有两个不同的交点,试确定b的值.并求函数y=f(x)在(0,b]上的单调递减区间.) ,b⃗⃗=(√3 sinx , cos2x) ,x∈R,设函数f(x)=a⃗⋅b⃗⃗.45.向量a⃗=(cosx ,−12(Ⅰ)求f(x)的表达式并化简;(Ⅱ)写出f(x)的最小正周期并在右边直角坐标中画出函数f(x)在区间[0,π]内的草图;(Ⅲ)若方程f(x)−m=0在[0,π]上有两个根α、β,求m的取值范围及α+β的值.46.已知在ΔABC中,内角A,B,C的对边分别为a,b,c,A为锐角,且满足3b=5asinB.的值;(1)求sin2A+cos2B+C2,求b,c.(2)若a=√2, ΔABC的面积为3247.如图所示,在平面直角坐标系中,角α与β( 0<β<α<π)的顶点与坐标原点重合,始边与x轴的非负半轴重合,终边分别与单位圆交于P、Q两点,点P的横坐标为−4.5(I )求sin2α+cos2α1+cos 2α;(Ⅱ)若 OP ⃗⃗⃗⃗⃗⃗⋅OQ⃗⃗⃗⃗⃗⃗⃗=√33,求 sinβ . 48.已知函数 f(x)=Asin(ωx +φ)+B(A >0,ω>0,|φ|<π2) 的部分图象如图所示:(I )求 f(x) 的解析式及对称中心坐标;(Ⅱ)将 f(x) 的图象向右平移 π6 个单位,再将横坐标伸长到原来的2倍,纵坐标不变,最后将图象向上平移1个单位,得到函数 g(x) 的图象,求函数 y =g(x) 在 x ∈[0,7π6]上的单调区间及最值. 49.(1)请直接运用任意角的三角比定义证明: cos(α−π)=−cosα ; (2)求证: 2cos 2(π4−α)=1+sin2α . 50.设函数 f(x)=1sinx .(1)请指出函数 y =f(x) 的定义域、周期性和奇偶性;(不必证明)(2)请以正弦函数 y =sinx 的性质为依据,并运用函数的单调性定义证明: y =f(x))上单调递减.在区间(0,π2答案解析部分一、单选题 1.【答案】 D【解析】【解答】解:∵函数f (x )=cosx 其最小正周期为2π,故选项A 正确;函数f (x )=cosx 在(0,π)上为减函数,故选项B 正确;函数f (x )=cosx 为偶函数,关于y 轴对称,故选项C 正确;把函数f (x )=cosx 的图象向左平移 π2个单位长度可得cos (x +π2)=−sinx , 故选项D 不正确。
(完整版)高考三角函数经典解答题及答案

(完整版)高考三角函数经典解答题及答案1. 在△ABC 中,角 A、B、C 所对的边分别是 a、b、c,且 a²+c²-b²=(1) 求 sin²(2A+C)+cos²B 的值;(2) 若 b=2,求△ABC 面积的最大值。
解:(1) 由余弦定理:cosB=(a²+ c²- b²)/(2ac)=4/√115,得sinB=√(1-cos²B)=3√(23)/23。
由正弦定理sin²(2A+C)+cos²B=4sin²B+cos²B=13/23。
2. 在△ABC 中,角 A、B、C 的对边分别为 a、b、c,且bcosC=3acosB-ccosB。
(I) 求 cosB 的值;(II) 若 BA·BC=2,且b=√2,求 a 和 c·b 的值。
解:(I) 由正弦定理得 a=2RsinA,b=2RsinB,c=2RsinC,则 2RsinBcosC=6RsinAcosB-2RsinCcosB,故sinBcosC=3sinAcosB-sinCcosB,可得sinBcosC+sinCcosB=3sinAcosB,即 sin(B+C)=3sinAcosB,可得 sinA=3sinAcosB/sinB。
又sinA≠0,因此 cosB=1/3。
3. 已知向量 m=(sinB,1-cosB),向量 n=(2,k),且 m 与 n 所成角为π/3,其中 A、B、C 是△ABC 的内角。
(1) 求角 B 的大小;(2) 求 sinA+sinC 的取值范围。
解:(1) ∠m与∠n所成角为π/3,且 m·n=2sinB+ k(1-cosB)=2√3/2cosB+k√(1-cos²B),又 m·n=2cosB+k(1-cosB),解得 k=4/3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
经典例题透析类型一:锐角三角函数本专题主要包括锐角三角函数的意义、锐角三角函数关系及锐角三角函数的增减性和特殊角三角函数值,都是中考中的热点.明确直角三角形中正弦、余弦、正切的意义,熟记30°、45°、60°角的三角函数值是基础,通过计算器计算知道正弦、正切随角度增大而增大,余弦随角度增大而减小.1.在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,已知,BC=2,那么( )A.B.C.D.思路点拨:由于∠ABC在Rt△ABC和Rt△BCD中,又已知AC和BC,故只要求出AB或CD即可.解析:解法1:利用三角形面积公式,先用勾股定理求出,∴.∴.解法2:直接利用勾股定理求出,在Rt△ABC中,.答案:A总结升华:求直角三角形中某一锐角三角函数值,利用定义,求出对应两边的比即可.2.计算:(1)________;(2)锐角A满足,则∠A=________.答案:(1);(2)75°.解析:(1)把角转化为值.(2)把值转化为角即可.(1).(2)由,得,∴.∴A=75°.总结升华:已知角的三角函数,应先求出其值,把角的关系转化为数的关系,再按要求进行运算.已知一个三角函数值求角,先看看哪一个角的三角函数值为此值,在锐角范围内一个角只对应着一个函数值,从而求出此角.3.已知为锐角,,求.思路点拨:作一直角三角形,使为其一锐角,把角的关系转化为边的关系,借助勾股定理,表示出第三边,再利用三角函数定义便可求出,或利用求出,再利用,使可求出.解析:解法1:如图所示,Rt△ABC中,∠C=90°,∠B=,由,可设,.则,∴.解法2:由,得,∴.总结升华:知道一锐角三角函数值,构造满足条件的直角三角形,根据比的性质用一不为0的数表示其两边,再根据勾股定理求出第三边,然后用定义求出要求的三角函数值.或利用,来求.类型二:解直角三角形解直角三角形是中考的重要内容之一,直角三角形的边角关系的知识是解直角三角形的基础.解直角三角形时,注意三角函数的选择使用,避免计算麻烦,化非直角三角形为直角三角形问题是中考的热点.4.已知:如图所示,在△ABC中,∠C=90°,点D在BC上,BD=4,AD=BC,.求:(1)DC的长;(2)sinB的值.思路点拨:题中给出了两个直角三角形,DC和sin B可分别在Rt△ACD和Rt△ABC 中求得,由AD=BC,图中CD=BC-BD,因此可列方程求出CD.解析:(1)设,在Rt△ACD中,,∴,∴.∵AD=BC,∴.又,∴,解得.∴.(2)BC=BD+CD=4+6=10=AD.在Rt△ACD中,.在Rt△ABC中,.∴.总结升华:借助三角函数值,设出其中两边,根据已知条件,列出方程,求出解,再求出其要求的问题.举一反三【变式1】如图所示,在梯形ABCD中,AD∥BC,CA平分∠BCD,DE∥AC,交BC 的延长线于点E,.(1)求证:AB=DC;(2)若,,求边BC的长.思路点拨:要证AB=DC,只需证明ABC=BCD.由AC∥DE,AD∥BC,可得四边形ADEC为平行四边形,所以∠E=∠DAC.由CA平分∠BCD,可得∠BCD=2∠BCA=2∠E,所以∠B=∠BCD,问题得证,由(1)可知AD=CD=,过点A作AF⊥BC,在Rt△ABF,可求得BF=1,所以.解析:(1)证明:∵DE∥AC,∴∠BCA=∠E.∵CA平分∠BCD,∴∠BCD=2∠BCA,∴∠BCD=2∠E.又∵∠B=2∠E,∴∠B=∠BCD.∴梯形ABCD是等腰梯形,即AB=DC.(2)解:如图所示,作AF⊥BC,DG⊥BC,垂足分别为F、G,则AF∥DG.在Rt△AFB中,∵tan B=2,∴AF=2BF.又∵,且,∴,得BF=1.同理可知,在Rt△DGC中,CG=1.∵AD∥BC,∴∠DAC=∠ACB.又∵∠ACB=∠ACD,∴∠DAC=∠ACD.∴AD=DC.∵,∴.∵AD∥BC,AF∥DG,∴四边形AFGD是平行四边形.∴,∴BC=BF+FG+GC=.【变式2】已知:如图所示,P是正方形ABCD内一点,在正方形ABCD外有一点E,满足∠ABE=∠CBP,BE=BP.(1)求证:△CPB≌△AEB;(2)求证:PB⊥BE;(3)PA:PB=1:2,∠APB=135°,求cos∠PAE的值.思路点拨:(1)在△CPB和△AEB中,∠PBC=∠ABE,BP=BE,要证△CPBC≌△AEB,只要BC=AB即可,而四边形ABCD恰好是正方形,所以得证.(2)只要证∠PBE=90°,而∠ABC=90°,即证出.(3)要求cos∠PAE的值,需判断∠PAE所在的三角形是否是直角三角形,因此需连结PE,借助(1)(2),求出∠PBE=,而∠APB=135°,因此∠APE=90°.解析:(1)证明:∵四边形ABCD是正方形,∴BC=AB.∵∠CBP=∠ABE,BP=BE,∴△CPB≌△AEB.(2)证明:∵∠CBP=∠ABE,∴∠PBE=∠ABE+∠ABP=∠CBP+∠ABP=90°,∴BP⊥BE.(3)解:连结PE,∵BE=BP,∠PBE=90°,∴∠BPE=45°.设AP=k,则BP=BE=2k,∴,∴.∵∠BPA=135°,∠BPE=45°,∴∠APE=90°,.在Rt△APE中,.类型三:利用三角函数解决实际问题直角三角形应用非常广泛,是中考的重要内容之一.近年来,各地中考试题为体现新课标理念,设计了许多面目新颖、创意丰富的新型考题.运用解直角三角形的知识解决与生活、生产相关的应用题是近几年中考的热点.虽然解直角三角的应用题题型千变万化,但设法寻找或构造出可解的直角三角形是解题的关键.5.如图所示,在一个坡角为15°的斜坡上有一棵树,高为AB,当太阳光与水平线成50°角时,测得该树在斜坡的树影BC的长为7 m,求树高.(精确到0.1m)思路点拨:树所在直线垂直于地面,因此需延长AB交水平线于一点D,则AD⊥CD,在Rt△BCD中,BC=7m,∠BCD=15°,所以求出CD、BD.而在Rt△ACD中,∠ACD=50°,利用求出AD,所以AB=AD-BD即可求出.解析:如图,过点C作水平线与AB延长线交于点D,则AD⊥CD.∵∠BCD=15°,∠ACD=50°,在Rt△CDB中,CD=7cos15°,BD=7sin15°.在Rt△CDA中,.∴.答:树高约为6.2m.总结升华:解这类问题一般构造直角三角形,借助角与边的关系,求得未知边,再解另一个直角三角形得到问题答案.举一反三【变式1】高为12.6米的教学楼ED前有一棵大树AB(如图所示).(1)某一时刻测得大树AB、教学楼ED在阳光下的投影长分别是BC=2.4米,DF=7.2米,求大树AB的高度.(2)用皮尺、高为h米的测角仪,请你设计另一种测量大树AB高度的方案,要求:①在下图中,画出你设计的测量方案示意图,并将应测数据标在图上(长度用字母m、n表示,角度用希腊字母…表示);②根据你所画的示意图和标注的数据,计算大树AB的高度(用字母表示).思路点拨:本题主要考查解直角三角形的有关知识,并且让学生根据所提供的信息设计测量方案.解析:连结AC、EF(图略).(1)∵太阳光线是平行线,∴AC∥EF,∴∠ACB=∠EFD.∵∠ABC=∠EDF=90°,∴△ABC∽△EDF.∴.∴.∴AB=4.2.答:大树AB的高是4.2米.(2)如图所示,MG=BN=m,,∴米.总结升华:本题将解直角三角形的相关知识与测量方案设计结合在一起,联系生活实际,让学生自己设计测量方案,得出结果,培养动手实践操作能力.同时,引导学生结合生活实际建立数学模型,促使大家进一步认识数学就在身边,会用数学知识解决现实生活中的问题.【变式2】2008年6月以来某省普降大雨,时有山体滑坡灾害发生.北峰小学教学楼后面紧邻着一个土坡,坡上面是一块平地,如图所示,AF∥BC,斜坡AB长30米,坡角∠ABC=65°.为了防止滑坡,保障安全,学校决定对该土坡进行改造,经过地质人员勘测,当坡角不超过45°时,可以确保山体不滑坡.(1)求坡顶与地面的距离AD等于多少米?(精确到0.1米)(2)为确保安全,学校计划改造时保持坡脚B不动,坡顶A沿AF削进到E点处,求AE 至少是多少米?(精确到0.1米)解析:(1)在Rt△ADB中,AB=30m,∠ABD=65°,.所以AD=AB·sin∠ABD=30×sin65°≈27.2(米).答:AD等于27.2米.(2)在Rt△ADB中,,所以DB=AB·cos∠ABD=30×cos65°≈12.7(米).连结BE,过E作EN⊥BC于N,因为AE∥BC,所以四边形AEND为矩形,则NE=AD≈27.2.在Rt△ENB中,由已知∠EBN≤45°,当∠EBN=45°时,BN=EN=27.2.所以AE=ND=BN-BD=14.5(米).答:AE至少是14.5米.类型四:锐角三角形函数与斜三角形6.数学活动课上,小敏、小颖分别画出了△ABC和△DEF,数据如图所示,如果把小敏画的三角形面积记作,小颖画的三角形面积记作,那么( )A.B.C.D.不能确定解析:此两图一个是锐角三角形,另一个是钝角三角形,因此解决此问题,关键作高构造直角三角形,如图所示,作AG⊥BC于G,DH⊥EF于H,在Rt△ABG中,由得,∴.在Rt△DHE中,∠DEH=180°-130°=50°,∴得,从而也求得,∴.答案:C总结升华:解斜三角形时往往作高把斜三角形转化为直角三角形,利用直角三角形边边、边角、角角关系求出问题答案.举一反三【变式1】已知如图所示,(1)当△ABC为锐角三角形时,AB为最长边,三边分别为a、b、c,①试判断与的大小关系.②用a、b、c,表示出cosB.(2)当△ABC为钝角三角形时,∠C为钝角,①判断与的大小关系?②用a、b、c表示cosB.思路点拨:解此类问题需作高线构造直角三角形,通过观察发现构造的两直角三角形有一条公共边,借助它列方程,设CD=x,则在图(1)中,图(2)中,则图(1)方程为.图(2)方程为,先求出,再进一步求.解析:(1)①如图(1),过点A作AD⊥BC于点D,设,则,在Rt△ACD和Rt△ABD中,有,.∴,解得.而,∴,∴.②在Rt△ABD中,.(2)①如图(2),同样过A点作AD⊥BC,垂足为D,设,则.在Rt△ACD和Rt△ABD中,,∴,解得.而,∴,∴.②此时在Rt△ABD中,。