求锐角三角函数值的经典题型+方法归纳(超级经典好用)

合集下载

锐角三角函数的解题技巧

锐角三角函数的解题技巧
解:
在矩形中AB=DC=4,
∠2+∠α=90°
又DE⊥AC,
∠1+∠2=90°
∴∠1=∠α
点评:注意把条件集中到一起.
例9.如图,点A是一个半径为300米的圆形森林公园的中心,在森林公园附近有B、C两个村庄,现要在B、C两村庄之间修一条长为1000米的笔直公路将两村连通,经测得∠ABC=45o,∠ACB=30o,问此公路是否会穿过该森林公园?请通过计算进行说明。
解:如图,设BC=3m,则AB=5m,
(2)如图所示,已知AB是⊙O的直径,CD是弦,且CD⊥AB,BC=6,AC=8,则sin∠ABD的值是( )
分析:
因为AB是⊙O的直径,所以∠ACB=90°.因为BC=6,AC=8,所以AB=10.因为∠ABD=∠ACD=∠ABC,所以在Rt△ACB中, 故正确答案为D.
(二)同角的三角函数之间的关系
(1)平方关系:sin2α+cos2α=1
(2)商数关系:
(三)两角的关系
任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值,任意锐角的正切值与它的余角的正切值的积等于1.即若A+B=90°,则sinA=cosB,cosA=sinB,tanA·tanB=1.
图4
参考数据:
分析:(1)由图可知 是直角三角形,于是由勾股定理可求。
(2)利用三角函数的概念即求。
解:设需要t小时才能追上。

(1)在 中, ,
则 (负值舍去)故需要1小时才能追上。
(2)在 中
即巡逻艇沿北偏东 方向追赶。
例20.如图5,山上有一座铁塔,山脚下有一矩形建筑物ABCD,且建筑物周围没有平整地带,该建筑物顶端宽度AD和高度DC都可直接测得,从A、D、C三点可看到塔顶端H,可供使用的测量工具有皮尺,测倾器。

初中数学复习:锐角三角函数值的求解策略

初中数学复习:锐角三角函数值的求解策略

锐角三角函数值的求解策略知识解读:求锐角三角函数值的方法较多,常用的方法有:定义法、参数法、等角代换法、等比代换法、构造法。

培优学案典例示范:1.定义法:当已知直角三角形的两边时,可以直接应用锐角三角函数的定义求锐角三角函数的值。

例1 如图,在中,,AB=13,BC=5,则sinA的值为。

【跟踪训练1】在中,,BC=3,AC=4,则cosA的值为。

二、参数法锐角三角函数值实质上是直角三角形两边的比值,所以解题中有时需要将三角函数转化为线段比,通过设定一个参数,并用含该参数的代数式表示直角三角形各边的长,然后结合相关条件解决问题。

例2 在Rt△ABC中,∠C=90,tanA=,则sinB的值为___.【跟踪训练2】1.已知在Rt△ABC中,∠C=90,,则tanB的值为( )2. 在Rt△ABC中,已知∠A为锐角,tanA=2,求的值3.求tan15的值三、等角代换法当一个锐角的三角函数不能直接求解或者锐角不在直角三角形中时,可将该角通过等角转换到能够求出三角函数值的直角三角形中,利用“若两锐角相等,则此两角的三角函数值也相等”来求解。

例3如图,已知Rt△ABC中,∠ACB=90,CD是斜边AB上的中线,过点A作AE⊥CD,AE分别与CD、CB相交于点H、E,AH=2CH,则sinB的值为。

【跟踪训练3】如图,在△ABC中,AB=AC=5,BC=8.若∠BPC=∠BAC,则tan∠BPC=四、等比代换法当一个锐角的三角函数不能直接求解或者锐角不在直角三角形中,可以通过相似三角形的对应边成比例,将直角三角形中的两边的比转换到两条已知线段的比来求解。

例4 如图,AB的直径,延长AB至P,使BP=OB,BD垂直于弦BC,垂足为点B,点D在PC上,设【跟踪训练4】如图,AB的直径,弦AC,BD外一点P,若AB=2CD,求的度数。

五、构造法直角三角形是求解或应用三角函数的前提条件,故当题目中已知条件并非直角三角形时,需通过添加辅助线构造直角三角形,然后求解。

锐角三角函数的题型及解题技巧

锐角三角函数的题型及解题技巧

锐角三角函数的题型及解题技巧锐角三角函数是三角函数的基础,它应用广泛,解题技巧性强,下面归纳出锐角三角函数的常见题型,并结合例题介绍一些解题技巧。

一、 化简或求值例1 (1)已知tan 2cot 1a a -=,且a 是锐角,求22tan cot 2a a +-的值。

(2)化简()()22sin cos cos sin a b a b a a a a ++-。

分析分析 (1)由已知可以求出tan a 的值,化简22tan cot 2a a +-可用1tan cot a a =×;(2)先把平方展开,再利用22sin cos 1a a +=化简。

化简。

解 (1)由tan 2cot 1a a -=得2tan 2tan a a -=,解关于tan a 的方程得tan 2a =或tan 1a =-。

又a 是锐角,∴tan 2a =。

∴22tan cot 2a a +-=22tan 2tan cot cot a a a a -×+=2(tan cot )a a -=tan cot a a -。

由tan 2a =,得1cot 2a =,∴22tan cot 2a a +-=tan cot a a -=13222-=。

(2)()()22sin cos cos sin a b a b a a a a ++-=2222sin 2sin cos cos a ab b a a a a +××++2222cos 2cos sin sin a ab b a a a a -××+=()()222222sin cos sin cos a b a a a a +++=22a b +。

说明说明 在化简或求值问题中,经常用到“1”的代换,即22sin cos 1a a +=,tan cot 1a a ×=等。

等。

二、已知三角函数值,求角例2 在△ABC 中,若223cos sin 022A B æö-+-=ç÷ç÷èø(),A B ÐÐ均为锐角,求C Ð的度数。

中考数学锐角三角函数考点总结,典型例题讲解!

中考数学锐角三角函数考点总结,典型例题讲解!

中考数学锐角三角函数考点总结,典型例题讲解!
中考数学《锐角三角函数》考点分类剖析
锐角三角函数是初中数学的重要内容,在学习中要理解锐角三角函数的意义,熟记特殊角的三角函数值,会运用转化思想把斜三角形转化为直角三角形来处理,会运用解直角三角形的数学模型来解决生活中的实际问题.在中考中,有关锐角三角函数主要有六个考点.
考点1 锐角三角函数的概念
说明锐角三角函数的概念是在直角三角形中给出的,因此有关求三角函数值的问题可以通过构造直角三角形来解决.如果未知三角形是直角三角形,则必须先判断该三角形是直角三角形或通过作垂线构造出直角三角形,这样才能应用锐角三角函数的有关知识来解决问题.
考点2 特殊三角函数值的应用
说明:本题是利用特殊角的三角函数值的应用来设计的阅读理解型问题,解题的关键是根据题目中所给的阅读材料,理解关于三角函数的新公式,再结合特殊角的三角函数值来求解.在第(2)题中,要注念到最后再按照要求取近似值,以避免因误差太大而影响答案的正确性.。

专题08锐角三角函数(11个考点)【知识梳理+解题方法+专题过关】-2022-2023学年九年级数学

专题08锐角三角函数(11个考点)【知识梳理+解题方法+专题过关】-2022-2023学年九年级数学

专题08锐角三角函数(11个考点)【知识梳理+解题方法】一.锐角三角函数的定义在Rt△ABC中,∠C=90°.(1)正弦:我们把锐角A的对边a与斜边c的比叫做∠A的正弦,记作sin A.即sin A=∠A的对边除以斜边=.(2)余弦:锐角A的邻边b与斜边c的比叫做∠A的余弦,记作cos A.即cos A=∠A的邻边除以斜边=.(3)正切:锐角A的对边a与邻边b的比叫做∠A的正切,记作tan A.即tan A=∠A的对边除以∠A的邻边=.(4)三角函数:锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数.二.锐角三角函数的增减性(1)锐角三角函数值都是正值.(2)当角度在0°~90°间变化时,①正弦值随着角度的增大(或减小)而增大(或减小);②余弦值随着角度的增大(或减小)而减小(或增大);③正切值随着角度的增大(或减小)而增大(或减小).(3)当角度在0°≤∠A≤90°间变化时,0≤sin A≤1,1≥cos A≥0.当角度在0°<∠A<90°间变化时,tan A>0.三.同角三角函数的关系(1)平方关系:sin2A+cos2A=1;(2)正余弦与正切之间的关系(积的关系):一个角的正切值等于这个角的正弦与余弦的比,即tan A=或sin A=tan A•cos A.四.互余两角三角函数的关系在直角三角形中,∠A+∠B=90°时,正余弦之间的关系为:①一个角的正弦值等于这个角的余角的余弦值,即sin A=cos(90°﹣∠A);②一个角的余弦值等于这个角的余角的正弦值,即cos A=sin(90°﹣∠A);也可以理解成若∠A+∠B=90°,那么sin A=cos B或sin B=cos A.五.特殊角的三角函数值(1)特指30°、45°、60°角的各种三角函数值.sin30°=;cos30°=;tan30°=;sin45°=;cos45°=;tan45°=1;sin60°=;cos60°=;tan60°=;(2)应用中要熟记特殊角的三角函数值,一是按值的变化规律去记,正弦逐渐增大,余弦逐渐减小,正切逐渐增大;二是按特殊直角三角形中各边特殊值规律去记.(3)特殊角的三角函数值应用广泛,一是它可以当作数进行运算,二是具有三角函数的特点,在解直角三角形中应用较多.六.计算器—三角函数(1)用计算器可以求出任意锐角的三角函数值,也可以根据三角函数值求出锐角的度数.(2)求锐角三角函数值的方法:如求tan46°35′的值时,先按键“tan”,再输入角的度数46°35′,按键“=”即可得到结果.注意:不同型号的计算器使用方法不同.(3)已知锐角三角函数值求锐角的方法是:如已知sinα=0.5678,一般先按键“2ndF”,再按键“sin”,输入“0.5678”,再按键“=”即可得到结果.注意:一般情况下,三角函数值直接可以求出,已知三角函数值求角需要用第二功能键.七.解直角三角形(1)解直角三角形的定义在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.(2)解直角三角形要用到的关系①锐角、直角之间的关系:∠A+∠B=90°;②三边之间的关系:a2+b2=c2;③边角之间的关系:sin A==,cos A==,tan A==.(a,b,c分别是∠A、∠B、∠C的对边)八.解直角三角形的应用(1)通过解直角三角形能解决实际问题中的很多有关测量问.如:测不易直接测量的物体的高度、测河宽等,关键在于构造出直角三角形,通过测量角的度数和测量边的长度,计算出所要求的物体的高度或长度.(2)解直角三角形的一般过程是:①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.九.解直角三角形的应用-坡度坡角问题(1)坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.(2)把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i=h/l=tanα.(3)在解决坡度的有关问题中,一般通过作高构成直角三角形,坡角即是一锐角,坡度实际就是一锐角的正切值,水平宽度或铅直高度都是直角边,实质也是解直角三角形问题.应用领域:①测量领域;②航空领域③航海领域:④工程领域等.十.解直角三角形的应用-仰角俯角问题(1)概念:仰角是向上看的视线与水平线的夹角;俯角是向下看的视线与水平线的夹角.(2)解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,另当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.十一.解直角三角形的应用-方向角问题(1)在辨别方向角问题中:一般是以第一个方向为始边向另一个方向旋转相应度数.(2)在解决有关方向角的问题中,一般要根据题意理清图形中各角的关系,有时所给的方向角并不一定在直角三角形中,需要用到两直线平行内错角相等或一个角的余角等知识转化为所需要的角.【专题过关】一.锐角三角函数的定义(共5小题)1.(2021秋•遵化市期末)如图,在△ABC中,∠C=90°,AC=3,AB=5,sin A的值为()A.B.C.D.2.(2021秋•南宫市期末)在Rt△ABC中,∠C=90°,AC=2,AB=6,则下列结论正确的是()A.B.C.D.3.(2022•沈阳模拟)如图,已知AB为⊙O的直径,∠ADC=30°,则tan∠CAB的值为()A.B.1C.D.4.(2022•莲湖区二模)如图,在平面直角坐标系中,菱形ABCD的顶点A,B,C在坐标轴上,若点A的坐标为(0,3),tan∠ABO=,则菱形ABCD的周长为()A.6B.6C.12D.85.(2022•荆州)如图,在平面直角坐标系中,点A,B分别在x轴负半轴和y轴正半轴上,点C在OB上,OC:BC=1:2,连接AC,过点O作OP∥AB交AC的延长线于P.若P(1,1),则tan∠OAP的值是()A.B.C.D.3二.锐角三角函数的增减性(共3小题)6.(2022•五通桥区模拟)若锐角α满足cosα<且tanα<,则α的范围是()7.(2022春•连山区月考)若∠A为锐角,且cos A=,则∠A的取值范围是.8.(2021秋•泗县期末)如图,半径为13的⊙O内有一点A,OA=5,点P在⊙O上,当∠OP A最大时,S等于()△OP AA.40B.45C.30D.65三.同角三角函数的关系(共3小题)9.(2021秋•海淀区校级期末)在△ABC中,∠C=90°,tan A=2,则sin A的值是()A.B.C.D.10.(2022•海曙区校级开学)已知∠A是锐角tan A=,则sin A=.11.(2022•娄星区一模)规定:sin(﹣x)=﹣sin x,cos(﹣x)=cos x,sin(x+y)=sin x•cos y+cos x•sin y.据此判断下列等式成立的是(写出所有正确的序号)③cos(﹣60°)=﹣;②sin75°=;③sin2x=2sin x•cos x;④sin(x﹣y)=sin x﹣sin y.四.互余两角三角函数的关系(共2小题)12.(2022•鹿城区校级模拟)已知<cos A<sin80°,则锐角A的取值范围是()13.(2022•西湖区校级二模)已知△ABC中,∠A=90°,tan B=,则sin C=.五.特殊角的三角函数值(共3小题)14.(2021秋•八步区期末)计算:.15.(2022•石家庄模拟)下列说法中正确的是()A.在Rt△ABC中,若,则a=4,b=3B.在Rt△ABC中,∠C=90°,若a=3,b=4,则C.tan30°+tan60°=1D.tan75°=tan(45°+30°)=tan45°+tan30°=1+16.(2021秋•南宫市期末)已知α是锐角,,则α=;cosα=.六.计算器—三角函数(共2小题)17.(2022•文登区一模)利用科学计算器计算,下列按键顺序正确的是()A.B.C.D.18.(2021秋•梧州期末)在Rt△ABC中,∠C=90°,BC=6,tan B=0.75,求AC的长.七.解直角三角形(共4小题)19.(2021秋•德保县期末)在Rt△ABC中,∠C=90°,若将各边长度都扩大为原来的3倍,则∠A的正弦值()A.扩大3倍B.缩小3倍C.扩大6倍D.不变20.(2022•湖里区二模)如图,在4×4正方形网格中,点A,B,C为网格交点,AD⊥BC,垂足为D,则sin∠BAD的值为()A.B.C.D.21.(2022•固原校级一模)阅读以下材料,并解决相应问题:在学习了直角三角形的边角关系后,我们可以继续探究任意锐角三角形的边角关系,在锐角△ABC中,∠A、∠B、∠C的对边分别是a、b、c.如图1,过点A作AD⊥BC于点D,则根据定义得sin B=,sin C=,于是AD=c sin B,AD=b sin C,也就是c sin B=b sin C,即.同理有,,即最终得到.即在一个三角形中,各边和它所对角的正弦的比相等.在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论就可以求出其余三个未知元素.(1)在锐角△ABC中,若∠B=30°,∠C=45°,AC=2,求AB.(2)仿照证明过程,借助图2或图3,证明和中的其中一个.22.(2021秋•定安县期末)如图,在4×4的正方形网格中,每格小正方形的边长C都是1,则tan∠ACB 的值为()A.B.C.2D.3八.解直角三角形的应用(共7小题)23.(2022春•历城区校级月考)图1是一款平板电脑支架,由托板、支撑板和底座构成.工作时,可将平板电脑吸附在托板上,底座放置在桌面上.图2是其侧面结构示意图,已知托板AB长200mm,支撑板CB长80mm,当∠ABC=130°,∠BCD=70°时,则托板顶点A到底座CD所在平面的距离为()(结果精确到1mm).(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,≈1.41,≈1.73)A.246 mm B.247mm C.248mm D.249mm24.(2022•长春模拟)如图,数学探究活动中要测量河的宽度,小明在河一侧岸边选定点P和点B,在河对岸选定一点A,使PB⊥P A,测得PB=40米,∠PBA=36°,根据测量数据可计算小河宽度P A为()A.40tan36°米B.40cos36°米C.40sin36°米D.米25.(2021秋•义乌市期末)图1是某型号挖掘机,该挖掘机是由基座、主臂和伸展臂构成.图2是其侧面结构示意图(MN是基座的高,MP是主臂,PQ是伸展臂).已知基座高度MN为0.5米,主臂MP长为3米,主臂伸展角α的范围是:0°<α≤60°,伸展臂伸展角β的范围是:45°≤β≤135°.当α=45°时(如图3),伸展臂PQ恰好垂直并接触地面.(1)伸展臂PQ长为米;(2)挖掘机能挖的最远处距点N的距离为米.26.(2021秋•殷都区期末)某校数学社团利用自制测角仪和皮尺测量河宽(把河两岸看作平行线).如图,他们在河岸MN一侧的A处,观察到对岸P点处有一棵树,测得∠P AN=31°,向前走45m到达B处,测得∠PBN=45°.(sin31°≈0.52,cos31°≈0.86,tan31°≈0.60,)(1)求河的宽度(精确到1m);(2)据河道建造碑文记载,该河实际宽70m.请计算本次测量结果的误差,并提出一条减小误差的合理化建议.27.(2022•普兰店区二模)如图1,图2分别是网上某种型号拉杆箱的实物图与示意图,根据商品介绍,获得了如下信息:滑杆DE、箱长BC、拉杆AB的长度都相等,即DE=BC=AB,点B、F在线段AC上,点C在DE上,支杆DF=40cm,CE:CD=1:4,∠DCF=45°,∠CDF=37°.请根据以上信息,解决下列问题:(1)求滑竿DE的长度;(2)求拉杆端点A到水平滑杆ED的距离(结果精确到0.1).参考数据:sin37°≈,cos37°≈,tan37°≈,≈1.414.28.(2022•夏邑县模拟)如图(1)是一种迷你型可收缩式乐谱支架,图(2)是其侧面示意图,其中AB=BC=CD=24cm,DB⊥BA,Q是CD的中点,P是眼睛所在的位置,PM⊥BA于点M,AM=12cm,当PQ⊥CD时,P为最佳视力点.(1)若∠ABC=α,则∠DCB=;(2)当∠ABC=37°且PM=53cm时,请通过计算说明点P是不是最佳视力点.(参考数据:sin37°=cos53°≈,cos37°=sin53°≈,tan37°≈,tan53°≈)29.(2022春•沙坪坝区校级月考)点C处有一灯塔,CD与直线L垂直,一轮船从点B出发驶到点A,(A、B、D三点都在直线L上),测量得到CD为30千米,∠CAD=30°,∠CBD=45°.(1)求AB的长(结果保留根号);(2)轮船从B点出发时,另一快艇同时从C点出发给轮船提供物资,一个小时后刚好在M点与轮船相遇,已知快艇行驶了50千米,问轮船相遇后能否在1.3小时之内到达点A.(参考数据:≈1.73,≈1.41)九.解直角三角形的应用-坡度坡角问题(共3小题)30.(2022•汇川区模拟)如图,某购物广场要修建一个地下停车场,停车场的入口设计示意图如图所示,其中斜坡AD与地平线的夹角为20°,地下停车场层高CD=3米,如果在停车场的入口处设置一块限高牌,则限高牌上的限高数值比较恰当的是(参考数据:sin20°≈0.34,cos20°≈0.94)()A.3.2米B.3米C.2.75米D.2.6米31.(2022•南岗区校级开学)如图,某河堤迎水坡AB的坡比i=1:2,河堤高BC=5m,则坡面AB的长为()A.5m B.10m C.15m D.20m32.(2021秋•德保县期末)如图,一个小球由坡底沿着坡度为1:2的坡面前进了10米,此时小球在竖直方向上上升了()A.4米B.米C.5米D.米一十.解直角三角形的应用-仰角俯角问题(共3小题)33.(2022•五华区校级模拟)近日,有很多人收到防疫部门的电话或短信提示是“时空伴随者”,那什么是时空伴随者呢?时空交集与时空伴随是相同概念,是公安和电信部门的专业术语.如图(1)是指本人的电话号码和确诊患者号码在同一时空网格内(范围是800×800)共同停留超过10分钟,且最近14天任一方号码累计停留时长超过30小时以上,查出的号码为“时空伴随号码”,本人的绿色健康码就会变为带有警告性质的黄色码并被系统标记为“时空伴随者”.如图(2),某工人在点B处,用测倾仪测得移动电话基站顶端(点D)的仰角为α,测得移动电话基站的高度CD为50米,测倾仪高BE为1米,若此时在A处一位确诊患者出现在某移动电话基站800×800的范围内,患者、移动电话基站、工人正好共线,患者与工人分别位于该移动电话基站两侧,且与这个工人共同停留超过10分钟,则这个工人()收到“时空伴随者”电话或短信提示.(参考数据:sinα=,cosα=,tanα=)A.会B.不会C.可能会D.无法确定34.(2021秋•崇左期末)如图,为了测量某建筑物AB的高度,小颖采用了如下的方法:先从建筑物底端B 点出发,沿斜坡BC行走26米至坡顶C处,在C点测得该建筑物顶端A的仰角为60°,斜坡BC的坡度i=1:2.4.根据小颖的测量数据,求建筑物AB的高度(参考数据:≈1.732,结果精确到0.1).35.(2021秋•全州县期末)如图,楼房AB后有一假山CD,CD的坡度为i=1:2,测得B与C的距离为24米,山坡坡面上E点处有一休息亭,与山脚C的距离CE=8米,小丽从楼房房顶A处测得E的俯角为45°.(1)求点E到水平地面的距离;(2)求楼房AB的高.一十一.解直角三角形的应用-方向角问题(共3小题)36.(2022•深圳模拟)如图,点A到点C的距离为200米,要测量河对岸B点到河岸AD的距离.小明在A点测得B在北偏东60°的方向上,在C点测得B在北偏东30°的方向上,则B点到河岸AD的距离为()A.100米B.200米C.米D.100米37.(2021秋•碧江区期末)一艘渔船以每小时40km的速度向正东航行,在A处测得灯塔C在北偏东60°方向;继续航行1h到达B处,测得灯塔C在北偏东30°方向.已知灯塔C的四周30km内有暗礁,问这艘船继续向东航行是否安全?38.(2022•锦州二模)某海港南北方向上有两个海岸观测站A,B,距离为10海里.从港口出发的一艘轮船正沿北偏东30°方向匀速航行,某一时刻在观测站A,B两处分别测得此轮船正好航行到南偏东30°和北偏东75°方向上的C处.经过0.5时轮船航行到D处,此时在观测站A处测得轮船在北偏东75°方向上,求轮船航行的速度(结果精确到0.1海里/时,参考数据:≈1.414,=1.732)。

锐角三角函数的解题技巧

锐角三角函数的解题技巧
(二)同角的三角函数之间的关系
(1)平方关系:sin2α+cos2α=1
(2)商数关系:
(三)两角的关系
任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值,任意锐角的正切值与它的余角的正切值的积等于1.即若A+B=90°,则sinA=cosB,cosA=sinB,tanA·tanB=1.
答案:D
分析:
(1)要求sinα与cosα的关系的值,而已知tanα的值,故可通过 来求值.
(2)已知tanα的值,也可通过 ,把要求的式子的分子,分母同时除以cos2α转化成关于tanα的关系,这样便可求出结论.
点评:在进行三角函数有关计算时,常利用有关公式进行变换.
2、化简计算
例3、计算
分析:
这是一组有关特殊角三角函数值的计算题,计算中最关键是将它们先化成具体的数值,同时还要应用其它一些知识帮助求值,如(1)注意分母有理化,(2)应掌握整数指数幂的意义.
(5)0<sinA<1,0<cosA<1
2、同名三角函数值的变化规律
当角α在0°~90°间变化时,它的正切和正弦三角函数值随着角度的增大而增大;余弦三角函数值随着角度的增大而减少.
三、解题方法技巧点拨
1、求锐角三角函数的值
例1、(1)在Rt△ABC中,∠C=90°,若 ,求cosB,tanB的值.
分析:本题主要考查锐角三角函数的定义,结合图形求解可化繁为简,迅速得解.
5、求线段长与面积
例6、如图,在△ABC中,∠A=30°,∠B=45°,AC=4,求BC的长.
分析:
题中有30°,45°特殊角,想把它们放到直角三角形中,利用三角函数来解题.
点评:
(1)在作高线构造直角三角形时,一般不过特殊角的顶点作垂线,这样便于利用特殊角解题.

初三锐角三角函数题型及解题方法

初三锐角三角函数题型及解题方法

初三锐角三角函数题型及解题方法初三数学中,锐角三角函数是一个非常重要的内容。

学习锐角三角函数,不仅需要掌握其概念和公式,还需要掌握一些常见的题型及解题方法。

本文将介绍一些常见的锐角三角函数题型及解题方法,帮助初三学生更好地掌握这一内容。

一、求三角函数值求三角函数值是锐角三角函数中最基本的题型。

一般来说,题目都会给出三角函数的角度,要求求出其对应的正弦、余弦、正切等函数值。

解题方法:对于这类题目,我们需要掌握三角函数的定义和公式。

例如,正弦函数的定义是:在直角三角形中,对于一个锐角角度A,其对边长度与斜边长度的比值称为正弦值sinA。

因此,我们只需要根据这个定义和公式进行计算即可。

举个例子,题目给出角度A=30度,要求求出其正弦值sinA。

根据正弦函数的定义和公式,我们得到:sinA=对边长度/斜边长度=sqrt(3)/2因此,sinA=√3/2。

二、三角函数的基本关系式三角函数的基本关系式指的是三角函数之间的基本等式。

例如,正切函数的基本关系式是tanA=sinA/cosA。

这类题目一般要求将一个三角函数用另外一个三角函数表示出来,或者将两个三角函数相互表示。

解题方法:对于这类题目,我们需要掌握三角函数之间的基本关系式。

例如,正切函数的基本关系式是:tanA=sinA/cosA因此,如果题目给出sinA的值,要求求出tanA的值,我们只需要将sinA/cosA代入上式,即可得到:tanA=sinA/cosA=√3/3三、三角函数值的范围三角函数值的范围是指,每个三角函数的取值范围。

例如,正弦函数的取值范围是[-1,1],余弦函数的取值范围也是[-1,1]。

解题方法:对于这类题目,我们需要掌握每个三角函数的取值范围。

例如,正弦函数的取值范围是[-1,1],因此,如果题目给出sinA=-0.5,我们就可以知道sinA的值在[-1,1]范围之内。

四、三角函数的性质三角函数的性质指的是,它们在不同象限中的正负性和大小关系。

中考数学复习指导:求锐角三角函数值的常用方法

中考数学复习指导:求锐角三角函数值的常用方法

求锐角三角函数值的常用方法一、利用定义,求三角函数值例1 如图1,在△ABC中,∠C=90°,AB=13,BC=5,则sin A的值是( )(A)(B)(C) (D)分析本题可以利用锐角三角函数的定义求解,sin A为∠A的对边比上斜边,求出即可.解在△ABC中,故选A.二、巧设参数,求三角函数值例2 已知a,b,c是△ABC的三边,且满足等式(2b)2=4(c+a)(c-a)及5a-3c=0,则sin A+sin B=________.分析先对等式化简,得到a,b,c的关系后,再求解锐角三角函数的值.三、构造直角三角形,求三角函数值例3 如图2,在梯形ABCD中,AD∥BC,∠C=∠D=90°,AB=1,∠ABC是锐角,点E在CD上,且AE上EB,设∠ABE=x,∠EBC=y.求sin(x+y)的值.(用x、y的三角函数表示)分析构造直角三角形,使x+y这个角放在某一个直角三角形中,再利用三角函数的定义求解,过点A作AH⊥BC交BC于点H,则可求出sin(x+y)=DC,由已知条件再依次表示出sin x,c os x,sin y,c os y.因为∠AEB=90°,∠C=∠D=90°,所以可判定△ADE∽△ECB,于是,从而可得问题答案.四、坐标系中求三角函数值例4 在平面直角坐标系中,已知点A(2,1)和点B(3,0),则sin∠AOB的值等于( )(A)(B)(C)(D)分析过点A作AC⊥x轴于点C,利用A点坐标为(2,1)可得到OC=2,AC=1,利用勾股定理可计算出OA,然后根据正弦的定义即可得到sin∠AOB的值.五、网格中求三角函数值例5 如图5所示,则t a n∠BDC值等于_______.分析根据同弧所对的圆周角相等,可以把求三角函数的问题,转化为直角三角形的边的比的问题.解根据圆周角的性质,得故答案为.六、利用折叠中的不变量,求三角函数值例6 如图5,在矩形ABCD中,AB=10,BC=8,E为AD边上一点,沿CE将△CDE 对折,使点D正好落在AB边上,求t a n∠AFE.分析结合折叠的性质,易得∠AFE=∠BCF,在Rt△BFC中,BC=8,CF=10,由勾股定理易得BF的长,根据三角函数的定义,易得t a n∠BCF的值,借助∠AFE=∠BCF,可得t a n∠AFE的值.解由题意,得∠AFE+∠EFC+∠BFC=180°.根据折叠的性质,∠EFC=∠EDC=90°,即有∠AFE+∠BFC=90°,在Rt△BCF中,七、利用增减性,求解三角函数例7 三角函数sin 50°,c os 50°,t a n 50°的大小关系是( )(A)sin50°>c os50°>t a n50°(B)t a n50°>c os50°>sin50°(C)t a n50°>sin50°>c os50°(D)c os50°>t a n50°>sin50°分析首先,根据锐角三角函数的定义可知sin 50°<1,c os 50°<1,再由锐角三角函数的增减性可知,t a n 50°> t a n 45°=1,从而得出t a n 50°的值最大;然后,由互余两角的三角函数的关系,得出c os 50°=sin 40°,又sin 50°>sin 40°,从而得出结果.八、利用二次方程的判别式以及根与系数的关系,求三角函数值例8 设α为锐角,x1.x2是关于x的方程8x2-4x-2c os α+1=0的两个实数根,且,求c osα的值.分析根据一元二次方程根的判别式,得到c osα的范围,然后利用根与系数的关系求出c osα的值.九、利用几何图形的性质求三角函数值例9 如图6,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径为,AC=2,则sin B的值是( )(A)(B)(C)(D)分析求角的三角函数值,可以转化为求直角三角形边的比,连结DC.根据同弧所对的圆周角相等,就可以转化为求直角三角形的锐角的三角函数值的问题.解连结DC,如图7.根据直径所对的圆周角是直角,得∠ACD=90°.根据同弧所对的圆周角相等,得∠B=∠D.∴sin B=sin D=.故选A.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

求锐角三角函数值的经典题型+方法归纳(超级经典好用)
求锐角三角函数值的几种常用方法
一、定义法
当已知直角三角形的两条边,可直接运用锐角三角函数的定义求锐角三角函数的值.
例1 如图1,在△ABC 中,∠C =90°,AB =13,BC =5,则sin A 的值是( )
(A )513 (B )1213 (C )512 (D )13
5
对应训练:
1.在Rt △ABC 中,∠ C =90°,若BC =1,AB 5,则tan A 的值为
( )
A .
5 B 25 C .1
2
D .2
二、参数(方程思想)法
锐角三角函数值实质是直角三角形两边的比值,所以解题中有时需将三角函数转化为线
段比,通过设定一个参数,并用含该参数的代数式表示出直角三角形各边的长,然后结合相关条件解决问题.
例2 在△ABC 中,∠C =90°,如果tan A =5
12,那么sin B
的值是 .
对应训练:
1.在△ABC 中,∠C =90°,sin A=5
3,那么tan A 的值等于( ).
A .35
B . 45
C . 34
D .
43
2.已知△
ABC
中,
ο
90=∠C ,3cosB=2, AC=5
2 ,则
AB= .
3.已知Rt △ABC 中,,12,4
3
tan ,90==︒=∠BC A C 求AC 、AB 和cos B .
4.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,⋅=∠4
3sin AOC
求:AB 及OC 的长.
三、等角代换法
当一个锐角的三角函数不能直接求解或锐角不在直角三角形中时,可将此角通过等
角转换到能够求出三角函数值的直角三角形中,利用“两锐角相等,则三角函数值也相等” 来解决.
例3 在Rt △ABC 中,∠BCA =90°,CD 是AB 边上的中线,BC =5,CD =4,则cos ∠ACD 的值为 . 对应训练
1.如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径,
若O ⊙的半径为32,2AC =,则sin B 的值是( )A .2
3
D C B A O
y
x
第8题图
A D E
C
B
F
B .32
C .34
D .4
3
2. 如图4,沿AE 折叠矩形纸片ABCD ,使点D 落在BC 边的点F 处.已知8AB =,10BC =,AB=8,则tan EFC ∠的值为 ( )A.3
4
B.43
C.35
D.45
3. 如图6,在等腰直角三角形ABC ∆中,90C ∠=︒,6AC =,D 为AC 上一点,若1tan 5
DBA ∠= ,则AD 的长为( ) A .2 B .2 C .1 D .22
4. 如图,直径为10的⊙A 经过点(05)C ,和点(00)O ,,与
x 轴的正半轴交于点D ,B 是y 轴右侧圆弧上一点,
则cos ∠OBC 的值为( )A .12
B .3
2
C .3
5
D .45
5.如图,角α的顶点为O ,它的一边在x 轴的正半轴上,另一边OA 上有一点P (3,4),则
sin α=

6.(庆阳中考)如图,菱形ABCD 的边长为10cm ,DE ⊥AB ,3
sin 5
A =,则这个菱形的面积= cm 2.
7. 如图6,在Rt △ABC 中,∠C =90°,AC =8,∠A 的平分线
AD =
3
3
16求 ∠B 的度数及边BC 、AB 的长.
D
A
B
C
四、构造(直接三角形)法
直角三角形是求解或运用三角函数的前提条件,故当题目中已知条件并非直角三角
形时,需通过添加辅助线构造直角三角形,然后求解,即化斜三角形为直角三角形.
(1)化斜三角形为直角三角形
例4 在△ABC中,∠A=120°,AB=4,AC=2,则sinB的值是( )
(A)57 (B)3 (C)21 (D)21
对应训练:
1.已知:如图,△ABC中,AB=9,BC=6,△ABC的面积等于9,求sin B.
C
B
A
2.(重庆)如图,在Rt △ABC 中,∠BAC=90°,点D 在BC 边上,且△ABD 是等边三角形.若AB=2,求△ABC 的周长.(结果保留根号)
(2)利用网格构造直角三角形 例5 如图所示,△ABC 的顶点是正方形网格的格
点,则sinA 的值为( ) A .1
2
B .55
C .
1010
D .255
1.如图,△ABC 的顶点都在方格纸的格点上,则sin A =_______.
2.如图,A 、B 、C 三点在正方形网络线的交点处,若将ABC ∆绕着点A 逆时针旋转得到''B AC ∆,则'tan B 的值为( ) A.
41 B. 31 C.2
1
D. 1
3.正方形网格中,AOB ∠如图放置,则tan AOB ∠的值是( )
A.5 B.25
C.12
D.2
4. 如图,在边长为1的小正方形组成的网格中,ABC △的三个顶点在格点上, 请按要求完成下列各题:
A
B
O
(1)用签字笔
...画AD∥BC(D为格点),连接CD;(2)线段CD的长为;
(3)请你在ACD
△的三个内角中任选一个锐角
..,若你所选的锐角是,则它所对应的正弦函数值是.(4)若E为BC中点,则tan∠CAE的值是 .
三角函数与四边形:
1.如图,四边形ABCD中,∠BAD=135°,∠BCD=90°,AB=BC=2,
tan∠BDC=
6
3.(1) 求BD的长;(2) 求AD的长.
2.如图,在平行四边形ABCD中,过点A分别作AE⊥BC于点E,AF⊥CD于点F.
(1)求证:∠BAE=∠DAF;(2)若AE=4,AF=24
5

3
sin
5
BAE
∠=,求CF的长.
三角函数与圆:
3.如图,DE是⊙O的直径,CE与⊙O相切,E为切点.连接CD 交⊙O于点B,在EC上取一个点F,使EF=BF.
(1)求证:BF 是⊙O 的切线;
(2)若54
C cos , DE =9,求BF 的长.。

相关文档
最新文档