初中数学32 立方根
初中数学立方根教案

初中数学立方根教案一、教学内容本节课选自人教版初中数学教材八年级上册第十七章《立方根与立方》,主要内容包括:立方根的定义与性质,以及立方根的计算方法。
具体章节为17.1节,内容涉及立方根的概念、计算和应用。
二、教学目标1. 理解立方根的定义,掌握立方根的计算方法。
2. 能够运用立方根解决实际问题,提高解决问题的能力。
3. 培养学生的逻辑思维能力和空间想象力。
三、教学难点与重点1. 教学难点:立方根的性质和计算方法。
2. 教学重点:立方根的定义及其应用。
四、教具与学具准备1. 教具:多媒体教学设备、立方体模型。
2. 学具:立方根计算器、练习本、笔。
五、教学过程1. 实践情景引入:展示立方体模型,引导学生观察并思考其体积与棱长的关系。
2. 立方根定义:通过实践情景,引导学生发现立方体的体积与棱长的立方关系,从而引出立方根的定义。
3. 例题讲解:讲解立方根的计算方法,通过例题演示计算过程,强调注意事项。
4. 随堂练习:布置相关练习题,让学生独立完成,并及时给予反馈。
5. 知识拓展:介绍立方根在实际生活中的应用,如体积计算、密度计算等。
六、板书设计1. 立方根的定义:若一个数的立方等于另一个数,那么这个数叫做另一个数的立方根。
2. 立方根的计算方法:通过立方体的体积与棱长关系,推导立方根的计算方法。
3. 例题:展示计算立方根的步骤和答案。
七、作业设计1. 作业题目:(2)一个立方体的体积是64立方厘米,求其棱长。
2. 答案:(1)27的立方根是3,64的立方根是4,125的立方根是5。
(2)立方体的棱长是4厘米。
八、课后反思及拓展延伸1. 课后反思:通过本节课的学习,学生是否掌握了立方根的定义和计算方法,能否运用立方根解决实际问题。
2. 拓展延伸:引导学生思考立方根在其他领域的应用,如科学、工程等领域,提高学生的创新思维能力。
重点和难点解析1. 立方根的定义及其理解。
2. 立方根的计算方法及其应用。
3. 教学过程中的实践情景引入和例题讲解。
推荐初中数学第二章实数-2-3立方根2-4估算doc

第二章实数§2.3立方根教学目标1.使学生了解一个数的立方根概念,并会用根号表示一个数的立方根;2.理解开立方的概念;3.明确立方根个数的性质,分清一个数的立方根与平方根的区别.教学重点和难点重点:立方根的概念及求法.难点:立方根与平方根的区别.教学过程设计一、复习:请同学回答下列问题:(1)什么叫一个数a的平方根?如何用符号表示数a(≥0)的平方根?(2)正数有几个平方根?它们之间的关系是什么?负数有没有平方根?0平方根是什么?(3)当a≥0时,式子a,-a,±a,的意义各是什么?答:(1)如果一个数x的平方等于a,即x2=a,那么x叫做a的平方根,表示为x=±a.(2)正数有两个平方根,它们互为相反数,负数没有平方根,0的平方根是0.(3)a≥0,a表示a的算术平方根,-a表示a的负平方根,±a表示a的平方根.二、引入新课1.计算下列各题:(1);(2);(3).答:(1)=0.001;(2)=-827;(3)=0.指出:上面各题是已知底数和乘方指数求三次幂的运算,也叫乘方运算.怎样求下列括号内的数?各题中已知什么?求什么?(1)( )3=18; (2)( )3=-27 125; (3)( )3=0.答:已知乘方指数和3次幂,求底数,也就是“已知某数的立方,求某数”.设某数为x,则(1)式为 =18,求x;(2)式为=-27125,求x;(3)式为x3=0求x。
2.立方根的概念.一般地,如果一个数的立方等于a,这个数就叫做a的立方根(也叫做三次方根).用式子表示,就是,如果=a,那么x叫做a的立方根.数a的立方根用符号“”表示,读作“三次根号a,其中a是被开方数,3是根指数.(注意:根指数3不能省略).3.开立方.求一个数的立方根的运算,叫做开立方.开立方与立方也是互为逆运算,因此求一个数的立方根可以通过立方运算来求.三、讲解例题:例1 求下列各数的立方根:(1)8;(2)-8;(3)0.125;(4)-27125;(5)0.分析:求一个数的立方根,我们可以通过立方运算来求.解 (1)因为=8,所以8的立方根是2,即=2.问:除2以外,还有什么数的立方等于8?也就是说,正数8还有别的立方根吗?答:除2以外,没有其它的数的立方等于8,也就是说,正数8的立方根只有一个.(2)因为=8,所以-8的立方根是-2即=-2问:除-2以外,还有什么数的立方等于8?,也就是说,负数-8还有别的立方根吗?答:除-2以外,没有其他的数的立方等于-8,也就是说,-8的立方根只有1个. (3)因为=0.125,所以0.125的立方根是0.5,即=0.5.(4)因为(-)3=-,所以-27 125的立方根是-35,即=-.(5)因为=0,所以0的立方根是0,即=0.问:一个正数有几个立方根?一个负数有几个立方根?零的立方根是什么?答:正数有一个正的立方根;负数有一个负的立方根;零的立方根仍旧是零.指出:立方根的个数的性质可以概括为立方根的唯一性,即一个数的立方根是唯一的.例2 求下列各式的值:(1);(2);(3) .解 (1)327=3;(2)=-4; (3)=-四、随堂练习1.判断题:(1)4的平方根是2;( ) (2)8的立方根是2;( )(3)-0.064的立方根是-0.4;( ) (4)127的立方根是±13( )(5)-的平方根是±4;( ); (6)-12是144的平方根.( )2.选择题:(1)数0.000125的立方根是( ).A.0.5B.±0.5C.0.05D.0.005(2)下列判断中错误的是( )A.一个数的立方根与这个数的乘积为非负数B.一个数的两个平方根之积负数C.一个数的立方根未必小于这个数D.零的平方根等于零的立方根3.求下列各数的立方根:(1)27;(2)-38;(3)1;(4)0.4.求下列各式的值:(1)100; (2);(3);(4);(5);五、小结请思考下面的问题:1.什么叫一个数的立方根?怎样用符号表示数a的立方根?a的取值范围是什么?2.数的立方根与数的平方根有什么区别?答:1.如果一个数的立方等于a,这个数就叫做a的立方根,用符号3a表示,a为任意数.2.正数只有一个正的立方根,但有两个互为相反数的平方根;负数有一个负的立方根,但没有平方根.3.求一个数的立方根,可以通过立方运算来求.六、作业:见作业本。
立方根口诀表初中

立方根口诀表初中立方根,初中数学中的一个重要概念,是数学中的一个基础知识点。
立方根口诀表可以帮助初中生更好地记忆立方根的计算规则。
下面就来总结一下立方根口诀表。
1. 1-10的立方根口诀为了方便记忆,我们可以使用1至10的立方根口诀表,如下所示:•\(1^3\)等于1•\(2^3\)等于8•\(3^3\)等于27•\(4^3\)等于64•\(5^3\)等于125•\(6^3\)等于216•\(7^3\)等于343•\(8^3\)等于512•\(9^3\)等于729•\(10^3\)等于10002. 特殊的立方根口诀除了1至10的立方根口诀外,还有一些特殊的立方根口诀需要记忆,如下所示:•\(11^3\)等于1331•\(12^3\)等于1728•\(13^3\)等于21973. 简单计算立方根的小窍门在计算立方根时,有一个小窍门可以帮助我们快速计算,即将给定的数进行分解,如下所示:•对于一个二位数,我们可以将它分解为十位数和个位数,再进行计算。
•对于一个三位数,我们可以将它分解为百位数、十位数和个位数,再进行计算。
4. 立方根的性质在进一步学习立方根的过程中,我们还需要了解一些立方根的性质,如下所示:•对于正数a和b,\( \sqrt[3]{a} \times \sqrt[3]{b} = \sqrt[3]{a \times b} \)•对于任意的正整数n,都存在一个整数m,使得\(m^3 \leq n < (m+1)^3\)。
通过以上的立方根口诀表和小窍门,相信初中生们可以更好地掌握立方根的计算方法,提高数学能力。
希望这些内容对你有所帮助!。
初中数学知识点精讲精析 立方根

2.3 立方根学习目标1.了解一个数的立方根概念,并会用根号表示一个数的立方根;2.理解开立方的概念;3.明确立方根个数的性质,分清一个数的立方根与平方根的区别。
知识详解1.立方根的概念及表示方法(1)立方根的概念:如果一个数x的立方等于a,即3x=a,那么这个数x就叫做a的立方根(也叫做三次方根).如32=8,那么2就叫做8的立方根,由于332⎛⎫-⎪⎝⎭=-278,所以32-叫做-278的立方根.(2)立方根的表示方法:a读作“三次根号a”,其中“3”是根指数,“a”是被开方数.要注意,这里的根指数“3”不能省略.例如:2的立方根可判断一个数x是不是某数a的立方根,就看x3是不是等于a.求一个数的立方根,应先找到一个立方等于所求数的数,再求立方根.化简立方根:完全立方数的立方根是可以化简的;非完全立方数的立方根是不可以化简的,只需表示出来即可。
2.立方根的性质(1)立方根的性质:一个正数有一个正的立方根;一个负数有一个负的立方根;0的立方根是0.(2)开立方求一个数的立方根的运算,叫做开立方.如同开平方与平方互为逆运算一样,开立方与立方也互为逆运算.3.立方根的应用立方根在日常生活中应用很广泛,如求物体的体积等.4.立方根的化简公式a;3=a.如果3x=a,那么x就是a的立方根,即x3x=3=a.同样,根据定义,3a是a的三次方,所以3a的立方根就是a a.设3x=a,则3()x-=-3x=-a.根据立方根的定义可知,x=3a,-x=3a-.3a-=-3a.5.灵活利用立方根与平方根解题平方根与立方根是两个很相近的概念,如果不正确地认识和理解它们的异同,在解题中很容易引起混淆而造成解题错误.(1)区别:①定义不同.平方根:如果2x=a,那么x叫做a的平方根.立方根:如果3x=a,那么x叫做a的立方根.②表示方法不同.正数a的平方根记为±a,数a的立方根记为3a.表示平方根时,根指数2一般省略不写,但是用根号表示立方根时,根指数3绝对不能省略,否则就与二次根式混淆了.③读法不同.正数a的平方根±a,读作“正、负根号a”.数a的立方根3a读作“三次根号a或a的立方根”.④被开方数的取值范围不同.在平方根±a中,被开方数a是非负数,即a≥0.但在3a中,a可以是任意的数.⑤根的个数不同.一个正数的平方根有两个,它们互为相反数,0的平方根是0,负数没有平方根.任何数都存在立方根,一个正数有一个正的立方根,一个负数有一个负的立方根,0的立方根是0.(2)联系:求平方根与立方根的运算都是开方运算,开平方与平方互为逆运算,开立方与立方互为逆运算,都是乘方的逆运算.非负数的性质:几个非负数的和为0,则每个非负数都为0.【典型例题】例1. 有下列命题:①负数没有立方根;②一个数的立方根不是正数就是负数;③一个正数或负数的立方根和这个数同号,0的立方根是0;④如果一个数的立方根是这个数本身,那么这个数必是1和0.其中错误的是( ).A.①②③B.①②④C.②③④D.①③④【答案】B【解析】一个正数的立方根是一个正数,一个负数的立方根是一个负数,0的立方根是0.立方根等于本身的数有0,1和-1.所以①②④都是错的,只有③正确.例2. 8的立方根是()A.2B.-2C.±2D.【答案】A【解析】∵2的立方等于8,∴8的立方根等于2.例3. 64的立方根是()A.4B.±4C.8D.±8【答案】A【解析】∵4的立方等于64,∴64的立方根等于4.【误区警示】易错点1:区别算术平方根、立方根、平方根1.已知(x-1)的算术平方根是3,(x-2y+1)的立方根是3,求22x y-的平方根.【答案】±6【解析】∵(x-1)的算术平方根是3,(x-2y+1)的立方根是3,∴x-1=9,x-2y+1=27,解得:x=10,y=-8,∴22x y-=100-64=36,∴22x y-的平方根是±6.易错点2:立方根应用2.某金属冶炼厂,将27个大小相同的立方体钢锭在炉中熔化后浇铸成一个长方体钢锭,量得这个长方体钢锭的长、宽、高分别为160 cm、80 cm和40 cm,求原来立方体钢锭的边长为多少?【答案】设立方体的边长为x cm,则27 3x=160×80×40.解得x=80 3【解析】原来立方体钢锭体积=在炉中熔化后浇铸成的长方体钢锭的体积.【综合提升】针对训练1. 27的立方根是()A.3B.-3C.9D.-92. 下列说法正确的是()A.-1的倒数是1B.-1的相反数是-1C.1的算术平方根是1D.1的立方根是±13. 一个立方体的体积为64,则这个立方体的棱长的算术平方根为()A.±4B.4C.±2D.21.【答案】A【解析】∵3的立方等于27,∴27的立方根等于3.2.【答案】C【解析】A、-1的倒数是-1,故选项A错;B、-1的相反数是1,故选项B错;C、1的算术平方根是1,故选项C正确;D、1的立方根为1,故选项D错3.【答案】D【解析】棱长,4的算术平方根为2.课外拓展数学传统最悠久的国家中国数学一开始便注重实际应用,在实践中逐步完善和发展,形成了一套完全是自己独创的方式和方法。
人教版七年级下册数学立方根课件 (2)

5:如果3b-6没有平方根,则b <2;如果3b-6的平方根 是0,则b =2 ;如果3b-6的一个平方根是-3,那么 b= 5 .
6:一个数的 平方等于289,那么这个数的算术
平方根是 17 。 7:一个正方形的面积是256,则它的边长为 16。
8:-11是 121的算术平方根的相反数;- 11 是 11 的一个平方根。
D
C
H
G
8平方厘米
A
B
8 厘米
D
?
E
F
C
8立方厘米
A
B
问题2 要制作一种容积为27m3的正方形的 包装箱,这种包装箱的边长应该是多少?
设这种包装箱的边长为xm,则
这就是要求一个数,使它的的立方等于27.
因为 33=27
所以
x=3,
即这种包装箱的边长应为3m.
上面两个例子表明,在实际问题中我们 常常遇到,要找一个数,使它的立方等于 给定的数.由此我们抽象出下述的概念:
正 有两个平方根, 性 数 互为相反数
有一个立方根,也是正数
0
有一个平方根,是0
有一个立方根,是0
质负 数
没有平方根
有一个立方根,也是负数
开 求一个数的平方根的运算叫 求一个数的立方根的运算
方 开平方;开平方与平方是互 叫开立方;开立方与立方
逆运算。
是互逆运算。
表 示
a,其中a 是被开方数, 2是根指数(省略)
人教版 初中数学
PPT课件
立
方 根
平方根和立方根的习题课
复习
1.平方根的定义? 2.我们把求平方根的运算称之为 开平方
开平方运算与乘方运算是 互逆运算
1)正数a的平方根是: a
2022年初中数学《立方根》精品教案(公开课)

6.2 立方根教学目标【知识与技能】1.了解立方根的概念,初步学会用根号表示一个数的立方根.2.了解立方与开立方互为逆运算,会用立方运算或计算器求某数的立方根.3.能用类比平方根的方法学习立方根及开立方运算.【过程与方法】用类比的方法探寻出立方根的运算及表示方法,并能总结出平方根与立方根的异同. 【情感态度】开展学生的求同存异思维,使他们能在复杂的环境中明辨是非,并能作出正确的处理. 教学重难点【教学重点】立方根的概念及求法.【教学难点】立方根与平方根的区别.课前准备无教学过程一、情境导入,初步认识问题填写,并探求交流立方值与平方值的不同.鼓励学生踊跃发言表述各自总结的结论.【教学说明】求立方运算时,当底数互为相反数,其立方值也互为相反数,这与平方运算不同,平方运算的底数为相反数时,平方值相等.故一个正数的平方根有两个值,但一个正数的立方根只有一个值.引出立方根定义:假设x3=a,那么x为a的立方根,记为3a.根据上述定义,请学生口述以下问题的结果,并推广到一般规律.【教学总结】由教师汇总得出以下结论:1.正数的立方根是正数,负数的立方根是负数,0的立方根是0.2.33a a -=-.二、思考探究,获取新知例1 求以下各数的立方根.分析:依据立方根的定义,先写出这四个数分别是由哪个数的立方得到的,从而求出立方根.【教学说明】被开方数是带分数时,先将其化成假分数. 例2 求以下各式的值.分析:先要分清符号的实际意义,如3512表示求-512的立方根,而-3512表示求512的立方根的相反数.解:(1)-8;(2)29;(3)-0.2;(4)6. 【教学说明】以上两例中可总结得到:(1)任何数的立方根只有一个,而且被开方数的符号与立方根的符号相同;(2)被开方数是算式,可先算出结果.例3 求以下各式中的x.分析:可根据立方根的定义求得x 的大小.(2)(3)(4)中分别把(x+2),(x-1),(2x+3)看作一个整体.【教学说明】此题实质是解关于x的三次方程,两边同时开立方是解题的根本思路.3,小华又将铁块从水中提起,量得水杯中的水位下降了0.62cm,请问烧杯内部的底面半径和铁块的棱长各是多少?(用计算器求结果,结果精确到0.1cm).3的水的体积,是铁块的体积,也是高为0.62cm烧杯的体积.【答案】烧杯内部的底面半径约是4.6cm,铁块的棱长约是3.4cm.【教学说明】引导学生完成上述问题后,指导学生用计算器求立方根,并用实际训练形成应用能力.三、运用新知,深化理解2.某金属冶炼厂将27个大小相同的立方体钢铁在炉火中熔化后浇铸成一个长方体钢铁,此长方体的长,宽,高分别为160cm,80cm和40cm,求原来立方体钢铁的边长.3.有一边长为6cm的正方体的容器中盛满水,将这些水倒入另一正方体容器时,还需再加水127cm3才满,求另一正方体容器的棱长.4.假设3x+16的立方根是4,求2x+4的平方根.【教学说明】通过上述几道题目的练习,可进一步稳固对本节知识的理解和领悟. 四、师生互动,课堂小结按以下问题顺序让学生表达,并补充完善.1.立方和开立方的意义.2.正数、0、负数的立方根的特征.3.立方根与平方根的异同.课后作业1.布置作业:从教材“〞中选取.2.完成练习册中本课时的练习.教学反思本课时教学要突出表达“创设情境——提出问题——建立模型——解决问题〞的思路,提倡学生自主学习,利用平方根的知识类比学习立方根的知识.1.4二次函数与一元二次方程的联系1.通过探索,理解二次函数与一元二次方程之间的联系,会用二次函数图象求一元二次方程的近似解;(重点)2.通过研究二次函数与一元二次方程的联系体会数形结合思想的应用.(难点)一、情境导入小唐画y=x2-6x+c的图象时,发现其顶点在x轴上,请你帮小唐确定字母c的值是多少?二、合作探究探究点一:二次函数与一元二次方程的联系【类型一】二次函数图象与x轴交点情况的判断以下函数的图象与x轴只有一个交点的是()A.y=x2+2x-3 B.y=x2+2x+3C.y=x2-2x+3 D.y=x2-2x+1解析:选项A中b2-4ac=22-4×1×(-3)=16>0,选项B中b2-4ac=22-4×1×3=-8<0,选项C中b2-4ac=(-2)2-4×1×3=-8<0,选项D中b2-4ac=(-2)2-4×1×1=0,所以选项D的函数图象与x轴只有一个交点.应选D.变式训练:见《》本课时练习“课后稳固提升〞第1题【类型二】利用函数图象与x轴交点情况确定字母的取值范围(2021·武汉模拟)二次函数y=kx2-6x+3的图象与x轴有交点,那么k的取值范围是()A.k<3 B.k<3且k≠0C.k≤3 D.k≤3且k≠0解析:∵二次函数y=kx2-6x+3的图象与x轴有交点,∴方程kx2-6x+3=0(k≠0)有实数根,即Δ=36-12k≥0,k≤3.由于是二次函数,故k≠0,那么k的取值范围是k≤3且k≠D.方法总结:二次函数y=ax2+bx+c,当b2-4ac>0时,图象与x轴有两个交点;当b2-4ac=0时,图象与x轴有一个交点;当b2-4ac<0时,图象与x轴没有交点.变式训练:见《》本课时练习“课堂达标训练〞第4题【类型三】利用抛物线与x轴交点坐标确定一元二次方程的解(2021·苏州中考)假设二次函数y=x2+bx的图象的对称轴是经过点(2,0)且平行于y轴的直线,那么关于x 的方程x 2+bx =5的解为( )A.⎩⎪⎨⎪⎧x 1=0,x 2=4B.⎩⎪⎨⎪⎧x 1=1,x 2=5C.⎩⎪⎨⎪⎧x 1=1,x 2=-5D.⎩⎪⎨⎪⎧x 1=-1,x 2=5 解析:∵对称轴是经过点(2,0)且平行于y 轴的直线,∴-b2=2,解得bx 2-4x =5,解得x 1=-1,x 2D.方法总结:此题容易出错的地方是不知道二次函数的图象与一元二次方程的解的关系导致无法求解.变式训练:见《 》本课时练习“课堂达标训练〞第1题 探究点二:用二次函数的图象求一元二次方程的近似解利用二次函数的图象求一元二次方程-x 2+2x -3=-8的实数根(精确到0.1). 解析:对于y =-x 2+2x -3,当函数值为-8时,对应点的横坐标即为一元二次方程-x 2+2x -3=-8的实数根,故可通过作出函数图象来求方程的实数根.解:在平面直角坐标系内作出函数y =-x 2+2x -3的图象,如图.由图象可知方程-x 2+2x -3=-8的根是抛物线y =-x 2+2x -3与直线y =-8的交点的横坐标,左边的交点横坐标在-1与-2之间,另一个交点的横坐标在3与4之间.(1)先求在-2和-1之间的根,利用计算器进行探索:x y因此x ≈-1.4是方程的一个实数根. (2)另一个根可以类似地求出:x yx ≈3.4是方程的另一个实数根.方法总结:用二次函数的图象求一元二次方程满足精确度的实数根的方法:(1)作出函数的图象,并由图象确定方程解的个数;(2)由图象与y =h 的交点的位置确定交点横坐标的取值范围;(3)利用计算器求方程的实数根.变式训练:见《 》本课时练习“课堂达标训练〞第8题 探究点三:二次函数与一元二次方程在运动轨迹中的应用某学校初三年级的一场篮球比赛中,如图,队员甲正在投篮,球出手时距地面209米,与篮框中心的水平距离为7米,当球出手后水平距离为4米时到达最大高度4米,设篮球运行轨迹为抛物线,篮框距地面3米.(1)建立如下列图的平面直角坐标系,问此球能否准确投中? (2)此时,假设对方队员乙在甲面前1米处跳起盖帽拦截,,那么他能否获得成功?解析:这是一个有趣的、贴近学生日常生活的应用题,由条件可得到出手点、最高点(顶点)和篮框的坐标,再由出手点、顶点的坐标可求出函数表达式;判断此球能否准确投中的关键就是判断代表篮框的点是否在抛物线上;判断盖帽拦截能否获得成功,就是比较当x =1时函数y 的值与最大摸高3.1米的大小.解:(1)由条件可得到出手点、最高点和篮框的坐标分别为A (0,209),B (4,4),C (7,3),其中B 是抛物线的顶点.设二次函数关系式为y =a (x -h )2+k ,将点A 、B 的坐标代入,可得y =-19(x -4)2+4.将点C 的坐标代入上式,得左边=3,右边=-19(7-4)2+4=3,左边=右边,即点C在抛物线上.所以此球一定能投中;(2)将x =1代入函数关系式,得y =3.因为3.1>3,所以盖帽能获得成功. 变式训练:见《 》本课时练习“课后稳固提升〞第7题 三、板书设计教学过程中,强调学生自主探索和合作交流,通过观察二次函数与x 轴的交点个数,讨论一元二次方程的根的情况,体会知识间的相互转化和相互联系.。
初中数学 立方根有哪些性质

初中数学立方根有哪些性质立方根是一个重要的数学概念,具有许多有趣的性质。
在这里,我将介绍一些常见的立方根性质:1. 唯一性:每个正实数都有一个唯一的正实数立方根。
例如,对于任何正实数x,存在唯一的正实数a,满足a³ = x。
这意味着每个正实数有一个确定的立方根。
2. 负数的立方根:对于负实数,它们也有立方根。
例如,对于任何负实数x,存在一个负实数a,满足a³ = x。
这意味着负实数也可以有一个确定的立方根。
3. 复数的立方根:除了实数立方根外,每个复数也有三个复数立方根。
例如,对于任何复数x,存在三个复数a₁、a₂和a₃,满足a₁³ = a₂³ = a₃³ = x。
这意味着复数的立方根是多值的。
4. 幂运算:立方根的概念可以与幂运算相互转化。
例如,对于任何正实数x,x的立方根可以表示为x的1/3次幂,即∛x = x^(1/3)。
同样地,对于复数,它们的立方根也可以通过幂运算表示。
5. 近似值:有些情况下,我们可能无法精确地计算一个数的立方根。
这时,我们可以使用近似值来表示。
例如,∛(8)的近似值约为2.828。
近似值可以通过数值逼近法或计算器来获得。
6. 运算性质:立方根具有一些运算性质,类似于平方根。
例如,对于两个正实数a和b,我们有以下运算性质:- ∛(a * b) = ∛a * ∛b- ∛(a / b) = ∛a / ∛b- (∛a)² = a^(2/3)- (∛a)³ = a^(3/3) = a7. 立方根的图像:我们可以绘制立方根函数的图像,以可视化立方根的性质。
立方根函数的图像是一个增长的曲线,起点是原点(0, 0),并且随着输入值的增加而增加。
8. 几何应用:立方根在几何中有广泛的应用。
例如,在计算立方体的边长、体积和表面积时,我们可以使用立方根。
立方根还可以用于计算球体的半径和体积等。
总之,立方根是一个重要的数学概念,具有许多有趣的性质。
初中数学湘教版八上习题与解析3-2立方根

3.2立方根同步检测一、选择题1.下列语句正确的是()A. 一个数的立方根不是正数就是负数B. 负数没有立方根C. 如果一个数的立方根是这个数本身,那么这个数一定是零D. 一个数的立方根与这个数同号,零的立方根是零2.将一个大的正方体木块锯成n个同样大小的小正方体木块,其中n的取值不可能的是()A. 216B. 343C. 25D. 643.下列说法正确的是()A. ﹣0.064的立方根是0.4B. ﹣9的平方根是±3C. 16的立方根是D. 0.01的立方根是0.0000014.计算的结果是()A. ±3B. 3C. ±3 D. 35.的立方根是()A. 2B. ±2C. 4D. ±46.﹣27的立方根是()A. -3B. +3C. ±3 D. ±97.若﹣2x m﹣n y2与3x4y2m+n是同类项,则m﹣3n的立方根是()A. 2B. ±2C. -2D. 28.下列说法中正确的有()①±2都是8的立方根,②,③的立方根是3,④=2.A. 1个B. 2个C. 3个 D. 4个9.下列说法中,正确的是()A. 一个数的立方根有两个,它们互为相反数B. 负数没有立方根C. 如果一个数有立方根,那么它一定有平方根D. 一个数的立方根的符号与被开方数的符号相同10.下列说法中,正确的是()A. 等于±4B. ﹣42的平方根是±4C. 8的立方根是±2D. ﹣是5的平方根二、填空题11.16的平方根是________ ,9的立方根是________ .12.的算术平方根是________ ,﹣2的相反数是________ ,的绝对值是________ .13.的算术平方根是________ ,﹣8的立方根是________14.﹣4是________ 的立方根.15.的值为________.16.若a2=64,则=________ .17.的立方根是________ .18.4的算术平方根是________ ;9的平方根是________;64的立方根是________三、解答题19.已知2a的平方根是±2,3是3a+b的立方根,求a﹣2b的值.20.已知,求的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9.设第二个纸盒的棱长为x,则可得 ,可得 =7。
【解析】根据两正方体体积之间的关系把问题转化成方程的问题来求解.
9.已知第一个正方体纸盒的棱长为6 cm,第二个正方体纸盒的体积比第一个纸盒的体积大127 cm3,求第二个纸盒的棱长.
参考答案
1.D【解析】由题意知x2=5,故x2-13=-8,-8的立方根是-2.
2.D【解析】借助计算器计算知 , , , 四个数都在 与 之间.
3.C【解析】正方体体积的立方根就是正方体的棱长.
4.已知 , ,则 的值等于( )
A.485.8 B.15360 C.0.01536 D.0.04858
5.若 + 有意义,则 的值是( )
A.0 B. C. D.
6.- 的立方根是,125的立方根是.
7. 的立方根是.
能力提升
8.求下列各式中的x.
(1)125x3=8
(2)(-2+x)3=-216
3.2-13的立方根是()
A. -13 B.- -13 C.2 D.-2
2.在无理数 , , , 中,其中在 与 之间的有()
A.1个B.2个C.3个D.4个
3.一个正方体的体积为28360立方厘米,正方体的棱长估计为()
A.22厘米B.27厘米C.30.5厘米D.40厘米
4.D【解析】开平方时,被开方数的小数点移动两位,结果的小数点向相同的方向移动一位,故本题答案是D.
5.B【解析】由题意可得 =0和 =0,得x= ,故 = .
6.- ,5【解析】本题直接根据立方根的概念求解.
7.2【解析】 意为8的立方根,即2.
8.(1)125x3=8 , ,即x= ;
(2)-2+x=-6,所以x=-4.