概率论与数理统计复习参考题

合集下载

概率论与数理统计(经管类) 复习题及答案

概率论与数理统计(经管类) 复习题及答案
A.p2(1-p)3 B.4p(1-p)3 C.5p2(1-p)3 D.4p2(1-p)3 答案:D 7.设A, B 是任意两个的互不相容事件, 则必有( )。 A.P(AB)=P(A)P(B) B.P(A-B)=P(A) C. 与 互不相容 D. 与 相容 答案:B 8.设某人向一个目标射击, 每次击中目标的概率为 0.8 , 现独立射击 3 次, 则 3 次中恰 好有 2 次击中目标的概率是( )。 A.0.384 B.0.64 C.0.32 D.0.128 答案:A 9.对掷一枚硬币的试验, “出现正面”称为( )。 A.样本空间 B.必然事件 C.不可能事件 D.随机事件 答案:D
D.n = 24,p = 0.1
答案:B
45.设随机变量X 的分布密度 A.-2;
,则D(2-X)=( )。
B.2 ; C.-4; D.4; 答案:B 46.设 X 为服从正态分布 N(-1, 2)的随机变量, 则 E(2X-1)= (
)。
A.9
B.6
C.4
D.-3
答案:D 47.设随机向量(X , Y)满足 E(XY) = EX·EY,则 ( )。
答案:
3、某市有 50%住户订日报,有 65%住户订晚报,有 85%住户至少订这两种报纸中的一种, 求 同时订这两种报纸的住户的概率。 答案:解:假设:A={订日报},B={订晚报},C=A+B 由 已知 P(A)=0.5,P(B)=0.65 ,P(C)=0.85 所以 P(AB)=P(A)+ P(B)-P(A+B)=0.5+0.65-0.85=0.3 即 同时订这两种报纸的住户的概率为 0.3。
)。
3.从装有2 只红球,2 只白球的袋中任取两球,记:A=“取到2 只白球”则 =( )。

概率论与数理统计复习题1-知识归纳整理

概率论与数理统计复习题1-知识归纳整理

概率论与数理统计复习题(一)A. 古典概型挑选题1. 在所有两位数(10-99)中任取一两位数,则此数能被2或3整除的概率为 ( ) A. 6/5 B . 2/3 C. 83/100 D.均不对2. 对事件A,B.下列正确的命题是 ( ) A .如A,B 互斥,则A ,B 也互斥B. 如A,B 相容,则A ,B 也相容C. 如A,B 互斥,且P(A)>0,P(B)>0,则A.B 独立 D . 如A,B 独立,则A ,B 也独立3. 掷二枚骰子,事件A 为闪现的点数之和等于3的概率为 ( ) A.1/11 B . 1/18 C. 1/6 D. 都不对5. 甲,乙两队比赛,五战三胜制,设甲队胜率为0.6,则甲队取胜概率为( ) A. 0.6B. C 35*0.63*0.42C. C 350.63*0.42+C 45*0.64*0.4D .C 35*0.63*0.42+C 45*0.64*0.4+0.656. 某果园生产红富士苹果,一级品率为0.6,随机取10个,恰有6个一级品之概率( ) A. 1B. 0.66C . C 466104.06.0D.(0.6)460.4)(7. 一大楼有3层,1层到2层有两部自动扶梯,2层到3层有一部自动扶梯,各扶梯正常工作的概率为 P ,互不影响,则因自动扶梯不正常不能用它们从一楼到三楼的概率为( ) A.(1-P )3 B. 1-P 3C . 1-P 2(2-P )D.(1-P )(1-2P )8. 甲,乙,丙三人共用一打印机,其使用率分别p, q, r ,三人打印独立,则打印机空暇率为( ) A. 1-pqr B . (1-p )(1-q )(1-r ) C. 1-p-q-r D. 3-p-q-r 9. 事件A,B 相互独立, P(A)=0.6, P( A B )=0.3, 则 P(AB)=( ) A . 0.15 B. 0.2 C. 0.25 D. 0.110. 甲,乙各自射击一目标,命中率分别为0.6和0.5,已知目标被击中一枪,则此枪为甲命中之概率 ( ) A . 0.6 B. 0.3 C. 0.5 D. 0.55 11. 下列命题中,真命题为 ( )A. 若 P (A )=0 ,则 A 为不可能事件知识归纳整理B .若A,B 互不相容,则1BA P )=( C.若 P(A)=1,则A 何必然事件D.若A,B 互不相容,则 P(A)=1-P(B)12. A,B 满足P(A)+P(B)>1,则A,B 一定( )A. 不独立B. 独立C. 不相容 D . 相容13. 若 ( ),则〕〕〔=〔)P(B)-1P(A)-1B A P( A. A,B 互斥 B. A>B C. 互斥,B A D . A,B 独立14. 6本中文书,4本外文书放在书架上。

中国石油大学090107概率论与数理统计期末复习题及参考答案

中国石油大学090107概率论与数理统计期末复习题及参考答案

《概率论与数理统计》课程综合复习资料一、单选题1.设某人进行射击,每次击中的概率为1/3,今独立重复射击10次,则恰好击中3次的概率为()。

a∙ Φ3Φ7B. ⅛φ3×(∣)7C∙ c ioψ7×(∣)3d∙ ⅛3答案:B2.设X∣, X2, . X〃为来自总体X的一个样本,区为样本均值,EX未知,则总体方差OX的无偏估计量为()。

A.--∑(X∕-X)2“Ti=I1n _ o8. 1 X(X z-X)2 n i=∖1 «0C∙ -∑(X,•一EX)1 〃oD∙ --∑(X i-EX)2〃-答案:A3.设X” X2,…,X〃为来自总体N(〃,/)的一个样本,区为样本均值,已知,记S12=-∑(X z-X)2, 5^=1 X(X z-X)2,则服从自由度为〃-1的f分布统计量是()。

〃一IT n i=∖MT=Sl/3S2 / 4nS) ∕√n答案:D4.设总体X〜/HO),O为未知参数,X1, X2,. -, X“为*的一个样本,0(X1, X2,--,.X n), 0(X1, X2,∙∙∙, X ZJ)为两个统计量,包力为。

的置信度为的置信区间, 则应有()。

A.P{Θ <Θ} = aB.P{Θ<Θ} = ∖-aC.P[Θ<Θ<Θ] = aD.P[Θ<Θ<Θ} = ∖-a答案:D5.某人射击中靶的概率为3/5,如果射击直到中靶为止,则射击次数为3的概率()。

A. ⅛36,设X和Y均服从正态分布X〜N(μ工),Y ~ N(μ32),记P] = P{X <μ-2], p2=P{Y≥μ + 3}f则OoA.对任何实数〃都有p∣ >〃2B.对任何实数〃都有p∣ <〃2C.仅对〃的个别值有Pl =p2D.对任何实数〃都有p∣二〃2答案:D7.设A和B为任意两个事件,且Au3, P(B)>0,则必有()。

A.P(A)<P(A∖B)B.P(A)NP(AIB)C.P(A)>P(A∖B)D.P(A)≤P(A∖B)答案:D8.已知事件48相互独立,P(B) >0,则下列说法不正确的是()。

概率论与数理统计习题(含解答,答案)

概率论与数理统计习题(含解答,答案)

概率论与数理统计习题(含解答,答案)概率论与数理统计复习题(1)⼀.填空.1.3.0)(,4.0)(==B P A P 。

若A 与B 独⽴,则=-)(B A P ;若已知B A ,中⾄少有⼀个事件发⽣的概率为6.0,则=-)(B A P 。

2.)()(B A p AB p =且2.0)(=A P ,则=)(B P 。

3.设),(~2σµN X ,且3.0}42{ },2{}2{=<<≥==>}0{X P 。

4.1)()(==X D X E 。

若X 服从泊松分布,则=≠}0{X P ;若X 服从均匀分布,则=≠}0{X P 。

5.设44.1)(,4.2)(),,(~==X D X E p n b X ,则==}{n X P6.,1)(,2)()(,0)()(=====XY E Y D X D Y E X E 则=+-)12(Y X D 。

7.)16,1(~),9,0(~N Y N X ,且X 与Y 独⽴,则=-<-<-}12{Y X P (⽤Φ表⽰),=XY ρ。

8.已知X 的期望为5,⽽均⽅差为2,估计≥<<}82{X P 。

9.设1?θ和2?θ均是未知参数θ的⽆偏估计量,且)?()?(2221θθE E >,则其中的统计量更有效。

10.在实际问题中求某参数的置信区间时,总是希望置信⽔平愈愈好,⽽置信区间的长度愈愈好。

但当增⼤置信⽔平时,则相应的置信区间长度总是。

⼆.假设某地区位于甲、⼄两河流的汇合处,当任⼀河流泛滥时,该地区即遭受⽔灾。

设某时期内甲河流泛滥的概率为0.1;⼄河流泛滥的概率为0.2;当甲河流泛滥时,⼄河流泛滥的概率为0.3,试求:(1)该时期内这个地区遭受⽔灾的概率;(2)当⼄河流泛滥时,甲河流泛滥的概率。

三.⾼射炮向敌机发射三发炮弹(每弹击中与否相互独⽴),每发炮弹击中敌机的概率均为0.3,⼜知若敌机中⼀弹,其坠毁的概率是0.2,若敌机中两弹,其坠毁的概率是0.6,若敌机中三弹则必坠毁。

《概率论与数理统计》复习题(含答案)

《概率论与数理统计》复习题(含答案)

概率论与数理统计复习题一、选择题(1)设0)(,0)(>>B P A P ,且A 与B 为对立事件,则不成立的是 。

(a)A 与B 互不相容;(b)A 与B 相互独立; (c)A 与B 互不独立;(d)A 与B 互不相容(2)10个球中有3个红球,7个白球,随机地分给10个人,每人一球,则最后三个分到球的人中恰有一个得到红球的概率为 。

(a))103(13C ;(b)2)107)(103(;(c)213)107)(103(C ;(d)3102713C C C (3)设X ~)1,1(N ,概率密度为)(x f ,则有 。

(a)5.0)0()0(=≥=≤X P X p ;(b)),(),()(∞-∞∈-=x x f x f ; (c)5.0)1()1(=≥=≤X P X P ;(d)),(),(1)(∞-∞∈--=x x F x F (4)若随机变量X ,Y 的)(),(Y D X D 均存在,且0)(,0)(≠≠Y D X D ,)()()(Y E X E XY E =,则有 。

(a)X ,Y 一定独立;(b)X ,Y 一定不相关;(c))()()(Y D X D XY D =;(d))()()(Y D X D Y X D -=-(5)样本4321,,,X X X X 取自正态分布总体X ,已知μ=)(X E ,但)(X D 未知,则下列随机变量中不能作为统计量的是 。

(a)∑==4141i i X X ;(b)μ241-+X X ;(c)∑=-=4122)(1i i X X K σ;(d)∑=-=4122)(31i i X X S(6)假设随机变量X 的密度函数为)(x f 即X ~)(x f ,且)(X E ,)(X D 均存在。

另设n X X ,,1 取自X 的一个样本以及X 是样本均值,则有 。

(a)X ~)(x f ;(b)X ni ≤≤1min ~)(x f ;(c)X ni ≤≤1max ~)(x f ;(d)(n X X ,,1 )~∏=ni x f 1)((7)每次试验成功率为)10(<<p p ,进行重复独立试验,直到第10次试验才取得4次成功的概率为 。

概率论与数理统计期末复习参考试题

概率论与数理统计期末复习参考试题

<概率论与数理统计>期末复习参考试题一、填空题1.设 A 、B 、C 是三个随机事件。

试用 A 、B 、C 分别表示事件 1〕A 、B 、C 至少有一个发生 2〕A 、B 、C 中恰有一个发生 3〕A 、B 、C 不多于一个发生2.设 A 、B 为随机事件, P (A)=0.5,P(B)=0.6,P(B A)=0.8。

那么P(B )A =3.假设事件A 和事件B 互相独立, P()=,A αP(B)=0.3,P(AB)=0.7,那么α=4. 将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE 的概率为6.设离散型随机变量X 分布律为{}5(1/2)(1,2,)kP X k A k ===⋅⋅⋅那么A=______________7. 随机变量X 的密度为()f x =⎩⎨⎧<<+其它,010,x b ax ,且{1/2}5/8P x >=,那么a =________b =________8. 设X ~2(2,)N σ,且{24}0.3P x <<=,那么{0}P x <= _________ 9. 一射手对同一目的独立地进展四次射击,假设至少命中一次的概率为8081,那么该射手的命中率为_________10.假设随机变量ξ在〔1,6〕上服从均匀分布,那么方程x 2+ξx+1=0有实根的概率是11.设3{0,0}7P X Y ≥≥=,4{0}{0}7P X P Y ≥=≥=,那么{max{,}0}P X Y ≥= 12.用〔,X Y 〕的结合分布函数F 〔x,y 〕表示P{a b,c}X Y ≤≤<= 13.用〔,X Y 〕的结合分布函数F 〔x,y 〕表示P{X a,b}Y <<=14.设平面区域D 由y = x , y = 0 和 x = 2 所围成,二维随机变量(x,y)在区域D 上服从均匀分布,那么〔x,y 〕关于X 的边缘概率密度在x = 1 处的值为 15.)4.0,2(~2-N X ,那么2(3)E X += 16.设)2,1(~),6.0,10(~N Y N X ,且X 与Y 互相独立,那么(3)D X Y -=17.设X的概率密度为2()x f x -=,那么()D X =18.设随机变量X 1,X 2,X 3互相独立,其中X 1在[0,6]上服从均匀分布,X 2服从正态分布N 〔0,22〕,X 3服从参数为λ=3的泊松分布,记Y=X 1-2X 2+3X 3,那么D 〔Y 〕=19.设()()25,36,0.4xy D X D Y ρ===,那么()D X Y +=20.设12,,,,n X X X ⋅⋅⋅⋅⋅⋅是独立同分布的随机变量序列,且均值为μ,方差为2σ,那么当n 充分大时,近似有X ~ 或~ 。

《概率论与数理统计》复习题及答案

《概率论与数理统计》复习题及答案

《概率论与数理统计》复习题及答案《概率论与数理统计》复习题一、填空题1.未知p(ab)?p(a),则a与b的关系就是单一制。

2.未知a,b互相矛盾,则a与b的关系就是互相矛盾。

3.a,b为随机事件,则p(ab)?0.3。

p(a)?0.4,p(b)?0.3,p(a?b)?0.6,4.已知p(a)?0.4,p(b)?0.4,p(a?b)?0.5,则p(a?b)?0.7。

25.a,b为随机事件,p(a)?0.3,p(b)?0.4,p(ab)?0.5,则p(ba)?____。

36.已知p(ba)?0.3,p(a?b)?0.2,则p(a)?2/7。

7.将一枚硬币重复投掷3次,则正、反面都至少发生一次的概率为0.75。

8.设立某教研室共计教师11人,其中男教师7人,贝内旺拉拜教研室中要自由选择3名叫优秀教师,则3名优秀教师中至少存有1名女教师的概率为___26____。

339.设一批产品中有10件正品和2件次品,任意抽取2次,每次抽1件,抽出1___。

611110.3人单一制截获一密码,他们能够单独所译的概率为,,,则此密码被所译的5343概率为______。

5后不送回,则第2次取出的就是次品的概率为___11.每次试验成功的概率为p,进行重复独立试验,则第8次试验才取得第3235cp(1?p)7次顺利的概率为______。

12.已知3次独立重复试验中事件a至少成功一次的概率为1事件a顺利的概率p?______。

319,则一次试验中27c35813.随机变量x能取?1,0,1,取这些值的概率为,c,c,则常数c?__。

24815k14.随机变量x原产律为p(x?k)?,k?1,2,3,4,5,则p(x?3x?5)?_0.4_。

15x??2,?0?x?15.f(x)??0.4?2?x?0,是x的分布函数,则x分布律为__??pi?1x?0?0??__。

0.40.6??2?0,x?0??16.随机变量x的分布函数为f(x)??sinx,0?x??,则2?1,x2?p(x??3)?__3__。

(完整版)概率论与数理统计复习题带答案讲解

(完整版)概率论与数理统计复习题带答案讲解

;第一章 一、填空题1. 若事件A ⊃B 且P (A )=0.5, P(B) =0.2 , 则 P(A -B)=( 0.3 )。

2. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.7,乙击中敌机的概率为0.8.求敌机被击中的概率为( 0.94 )。

3. 设A、B、C为三个事件,则事件A,B,C中不少于二个发生可表示为(AB AC BC ++ )。

4. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.9,0.8,0.7,则这三台机器中至少有一台发生故障的概率为( 0.496 )。

5. 某人进行射击,每次命中的概率为0.6 独立射击4次,则击中二次的概率为( 0.3456 )。

6. 设A、B、C为三个事件,则事件A,B与C都不发生可表示为( ABC )。

7. 设A、B、C为三个事件,则事件A,B,C中不多于一个发生可表示为( ABAC BC I I ); 8. 若事件A 与事件B 相互独立,且P (A )=0.5, P(B) =0.2 , 则 P(A|B)=( 0.5 ); 9. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.6,乙击中敌机的概率为0.5.求敌机被击中的概率为( 0.8 ); 10. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A -)=( 0.5 ) 11. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.8,0.8,0.7,则这三台机器中最多有一台发生故障的概率为( 0.864 )。

12. 若事件A ⊃B 且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.3 ); 13. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.5 ) 14. A、B为两互斥事件,则A B =U ( S )15. A、B、C表示三个事件,则A、B、C恰有一个发生可表示为( ABC ABC ABC ++ )16. 若()0.4P A =,()0.2P B =,()P AB =0.1则(|)P AB A B =U ( 0.2 ) 17. A、B为两互斥事件,则AB =( S )18. 保险箱的号码锁定若由四位数字组成,则一次就能打开保险箱的概率为(110000)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率论与数理统计复习参考题随机事件与概率1.已知事件、A B 满足)()(B A P AB P I =且p A P =)(,求= 1)(B P −p 。

2.一批产品共有10个正品2个次品,从中任取两次,每次取一个(不放回)。

则第二次取出的是次品的概率为 1/6 。

3.设10件产品中有4件是不合格品,从中任取两件,已知所取两件中有一件是不合格品,则另一件也是不合格品的概率为 1/5 。

4.从数1,2,3,4中任取一数,记为X ,再从1X ~中任取一数,记为Y ,则==}2{Y P 13/48 。

5.设一批产品中一、二、三等品各占60%、30%、10%,从中任取一件,结果不是三等品,则取到的是一等品的概率为 2/3 。

6.设两两相互独立的三个事件满足条件:C B A ,,2/1)()()(<==C P B P A P ,φ=ABC ,且已知,则16/9)(=C B A P U U =)(A P 1/4 。

7.设两个相互独立的事件都不发生的概率为1/9,A 发生B A 和B 不发生的概率与B 发生不发生的概率相等,则A =)(A P 2/3 。

8.设是两个事件, B A ,4.0)(=A P ,5.0)(=B P , )|()|(B A P B A P =,则=)(B A P 0.2 。

9.设和A B 是任意两个概率不为零的不相容事件,则下列结论肯定正确的是 []。

D (A )A 与B 不相容 (B )A 与B 相容 (C ))()()(B P A P AB P = (D ))()(A P B A P =−10.对于任意二事件和A B ,与B B A =U 不等价的是 [ ]D ()A B A ⊂ (B )A B ⊂ (C )φ=B A ()D φ=B A11.设和A B 为任意两个事件,且A B ⊂,P B ()>0,则必有 [ B ](A ) ()|()(B A P A P <B )P A P A B ()(|)≤(C ) (D )P A P A B ()(|)>P A P A B ()(|)≥12.对于任意二事件和A B()若A φ≠AB ,则、A B 一定独立。

(B )若φ≠AB ,则、A B 有可能独立。

(C )若φ=AB ,则、A B 一定独立。

()若D φ=AB ,则、A B 一定不独立。

[ B ] 13.设事件两两独立,则相互独立的充分必要条件是 [ A B C ,,A B C ,,A ](A )与独立 (A BC B )与独立AB C A U (C )与独立 ()与独立AB AC D B A U C A U 14.将一枚硬币独立地掷两次,引进事件:={掷第一次出现正面},={掷第二次出现正面},={正、反面各出现一次},={正面出现两次},则事件 [ 1A 2A 3A 4A C ](A )相互独立; (321,,A A A B )相互独立;432,,A A A(C )两两独立; ()两两独立;321,,A A A D 432,,A A A 15.设在电炉上安装了4个温控器,其显示温度误差是随机的。

在使用过程中,只要有两个温控器显示温度不低于临界温度电炉就断电。

以0t E 表示事件“电炉断电”,而为4个温控器显示的按递增顺序排列的温度值,则)()()()(4321T T T T ≤≤≤E 等于 [ C ] () (A }{01t T ≥)(B ) (}{02t T ≥)(C ) ()}{03t T ≥)(D }{04t T ≥)( 16.设M 件产品中有n 件次品,从中任取两件,已知所取两件中有一件不是次品,则另一件是次品的概率为 [ C ] () A )1()(2−−M M n M n (B )121−−−n M n (C )12−+n M n (D ))1()12(−−−M M n M n 17.(占位问题)设有n 个人,每个人都以相同的概率1N 被分配到N n N ()≤间房中的每一间中,试求下列事件的概率::某指定的n 间房中各有一个人; A B :恰有间房其中各有一个人; n C :某指定的房中恰有m 个人(m <); :恰有两间房中有人。

n D 18.有两个盒子,第一个盒子装有2个红球,1个黑球,第二个盒子装有2个红球,2个黑球,现从这两个盒子中各任取一球放在一起,再从中任取一球,求(1)这个球是红球的概率;(2)若发现这个球是红球,问第一个盒中取出的球是红球概率。

19.若)|()|(B A P B A P =,证明事件相互独立。

B A 与事件20.设,且1)(01)(0<<<<B P A P ,1)|()|(=+B A P B A P ,则相互独立。

B A 、21.设、A B 是任意二事件,其中的概率不等于0和1,证明,A ).()(A B P A B P =是事件与A B 独立的充分必要条件。

22.考虑一元二次方程,其中分别是将一枚骰子连掷两次先后出现的点数,求该方程有实根的概率02=++C Bx x C B 、p 和有重根的概率根的概率q 。

23.有来自三个地区的各10名、15名、和25名考生的报名表,其中女生的报名表分别为3份、7份、5份。

随机地取一个地区的报名表,从中先后抽出两份,(1)求先抽到的一份是女生表的概率p ;(2)已知后抽到的是男生表,求先抽到的是女生表的概率。

q 24.甲乙两艘轮船驶向一个不能同时停泊两艘轮船的码头,它们在一昼夜内到达的时间是等可能的。

若甲船的停泊时间是1小时,乙船的停泊时间是2小时,求它们中任何一艘都不需要等候码头空出的概率是多少(假定这一昼夜没有别的轮船停靠在该码头上)。

25.随机地向半圆220x ax y −<<(为正常数)内掷一点,点落在半圆内任何区域的概率与区域的面积成正比,则原点和该点的连线与a x 轴的夹角小于4/π的概率为 。

随机变量及其分布1.若且)2(~2σ,N vX r ⋅3.0}42{=<<X P ,则=<}0{X P 0.2 。

2.设ξ在(0,5)上服从均匀分布,方程有实根的概率为 02442=+++ξξx x 3/5 。

3.设随机变量X 服从正态分布(),(2σµN 0>σ)且二次方程无实根的概率为1/2,则042=++X y y =µ 4 。

4.设随机变量X 的概率分布为,以⎩⎨⎧<<=其它,,010)(x Ax x f Y 表示对X 的三次独立重复观察中事件{出现的次数,则/X ≤12}P Y {}=2= 9/64 。

5.设随机变量X 服从参数为(的二项分布,随机变量)2,p Y 服从参数为()的二项分布。

若3,p P X {}≥=15,则P Y {}≥=1 19/27 。

6.一实习生用同一台机器接连独立地制造3个同种零件,第个零件是不合格品的概率i 11+=i p i (i =1,2,3),以X 表示3个零件中合格品个数,则 ==}2{X P 11/24 。

7.设随机变量X 的概率密度为 , 若使得,则k 的取值范围是 ⎪⎩⎪⎨⎧∈∈=其它若若,0]6,3[,9/2]1,0[,3/1)(x x x f k 3/2}{=≥k X P 31≤<k 。

8.设X 是[0,1]上的连续随机变量,并且8.0}3.0{=≤X P ,若X Y −=1,且,则k =2.0}{=≤k Y P 0.7 。

9.设随机变量X 服从正态分布,对给定的)1,0(N )10(<<αα,数满足αu αα=>}{u X P ,若α=<}{x X P ,则x 等于 [ C ](A) . (B) . (C) . (D) . 2/αu 2/1α−u 2/)1(α−u α−1u 10.设与分别为)(1x F )(2x F r v ⋅1X 和的分布函数,为使是某一2X b x aF x F −=)()(1)(2x F r v ⋅的分布函数,则下列给定的各组数值中应取 [ ] A (A )5/2,5/3−==b a (B )3/2,3/2==b a (C )2/3,2/1=−=b a (D )2/3,2/1−==b a11.设和是任意两个相互独立的连续型随机变量,它们的概率密度分别为和,分布函数分别为和,则1X 2X )(1x f )(2x f )(1x F )(2x F ()+必为某一随机变量的概率密度。

A )(1x f )(2x f (B )必为某一随机变量的概率密度。

)(1x f )(2x f (C )+必为某一随机变量的分布函数。

)(1x F )(2x F (D )必为某一随机变量的分布函数。

[ ] )(1x F )(2x F D 12.一汽车沿一街道行驶,需要通过三个均设有红绿信号灯的路口,每个信号灯为红或绿与其它信号灯为红或绿相互独立,且红绿两种信号灯显示的时间相等。

以X 表示该汽车首次遇到红灯前已通过的路口个数,求X 的概率分布及。

))1/(1(X E + 13.从学校乘汽车到火车站的途中有三个交通岗,假定在各个交通岗遇到红绿信号灯的事件是相互独立的,且概率都是2/5。

设X 表示途中遇到红灯的次数,求X 的分布律、分布函数和数学期望。

14.一台设备有三大部件构成,在设备运转过程中各部件需要调整的概率分别为0.10, 0.20,0.30,假设各部件的状态相互独立,以X 表示同时需要调整的部件数,试求X 的概率分布、数学期望、方差。

15.设一厂家生产的每台仪器,以概率0.7可以直接出厂,以概率0.3需要进一步调试,经调试后以概率0.8可以出厂,以概率0.2定为不合格品不能出厂,现该厂新生产仪器台(假定各台仪器生产过程相互独立),求:)2(≥n n (1)全部能出厂的概率α;(2)其中恰好有两台不能出厂的概率β;(3)其中至少有两台不能出厂的概率θ。

16.假设测量的随机误差,试求100次独立重复测量中至少有三次测量误差的绝对值大于19.6的概率)100(~2,N X α,并利用泊松分布求α的近似值。

17.在电源电压不超过200、200~240和超过240伏三种情况下,某种电子元件埙坏的概率分别为0.1、0.001和0.2,假定电源电压,试求:(1)该电子元件被埙坏的概率)25220(~2,N X α;(2)电子元件被埙坏时,电源电压在200~240伏内的概率β。

18.假设一大型设备在任何长为t 的时间内发生故障的次数服从参数为)(t N λt 的泊松分布,求:(1)相继两次故障之间间隔时间T 的概率分布;(2)在设备已经无故障工作8小时的情况下,再无故障工作8小时的概率θ。

19.假设随机变量X 的绝对值不大于1,8/1}1{=−=X P ,;在事件出现的条件下,4/1}1{==X P }11{<<−X X 在(内任一子区间上取值的概率与子区间的长度成正比,试求:(1))−11,X 的分布函数}{)(x X P x F ≤=;(2)X 取负值的概率p 。

相关文档
最新文档