清华工程流体力学课件第六章粘性流体的一维定
合集下载
工程流体力学-粘性流体的一维定常流动

总结词
动量守恒方程是流体运动的基本方程之一,表示流体在运动过程中动量的增加或减少等于作用在流体 上的外力之和。
详细描述
动量守恒方程的数学表达式为ρdudt=−p+ρg+τx+F,其中p表示流体的压强,g表示重力加速度,τx表示 由于粘性作用在x方向上的应力,F表示作用在流体上的外力。
能量守恒方程
总结词
化提供了重要支持。
能源利用
能源领域如火力发电、 水力发电等涉及到大量 的流体流动问题。通过 一维定常流动理论,可 以深入理解流体在涡轮 机内的流动规律,提高
能源利用效率。
生物医学
在生物医学领域,血液 、淋巴液等生物流体也 存在着一维定常流动的 现象。研究这些流动有 助于深入了解人体生理 机制,为疾病诊断和治
边界层。
边界层的分离
当流体经过弯曲的壁面或突然扩大 的区域时,边界层可能会与壁面分 离。分离后的边界层会形成涡旋, 影响流体的流动特性。
边界层的厚度
边界层的厚度与流体的粘性、流速 和壁面的粗糙度有关。了解边界层 的厚度对于控制流体流动和减小阻 力具有重要意义。
射流流动的实例分析
射流的定义
射流是指流体从一定口径的喷嘴喷出后形成的流动。射流的特性与 喷嘴的口径、流体性质和出口压力有关。
一维定常流动的特性
01
流体参数不随时间变化而变化,只与空间位置有关。
02
流体参数沿流程方向不发生变化,只与流程位置有 关。
03
流体参数在垂直方向上均匀分布,不随高度变化而 变化。
05
粘性流体的一维定常流动 的实例分析
管道流动的实例分析
管道流动的特点
在管道中,流体受到壁面的限制,呈现出一定的流动规律。 由于粘性作用,流体的速度在靠近管壁处较小,而在中心 区域较大。
动量守恒方程是流体运动的基本方程之一,表示流体在运动过程中动量的增加或减少等于作用在流体 上的外力之和。
详细描述
动量守恒方程的数学表达式为ρdudt=−p+ρg+τx+F,其中p表示流体的压强,g表示重力加速度,τx表示 由于粘性作用在x方向上的应力,F表示作用在流体上的外力。
能量守恒方程
总结词
化提供了重要支持。
能源利用
能源领域如火力发电、 水力发电等涉及到大量 的流体流动问题。通过 一维定常流动理论,可 以深入理解流体在涡轮 机内的流动规律,提高
能源利用效率。
生物医学
在生物医学领域,血液 、淋巴液等生物流体也 存在着一维定常流动的 现象。研究这些流动有 助于深入了解人体生理 机制,为疾病诊断和治
边界层。
边界层的分离
当流体经过弯曲的壁面或突然扩大 的区域时,边界层可能会与壁面分 离。分离后的边界层会形成涡旋, 影响流体的流动特性。
边界层的厚度
边界层的厚度与流体的粘性、流速 和壁面的粗糙度有关。了解边界层 的厚度对于控制流体流动和减小阻 力具有重要意义。
射流流动的实例分析
射流的定义
射流是指流体从一定口径的喷嘴喷出后形成的流动。射流的特性与 喷嘴的口径、流体性质和出口压力有关。
一维定常流动的特性
01
流体参数不随时间变化而变化,只与空间位置有关。
02
流体参数沿流程方向不发生变化,只与流程位置有 关。
03
流体参数在垂直方向上均匀分布,不随高度变化而 变化。
05
粘性流体的一维定常流动 的实例分析
管道流动的实例分析
管道流动的特点
在管道中,流体受到壁面的限制,呈现出一定的流动规律。 由于粘性作用,流体的速度在靠近管壁处较小,而在中心 区域较大。
第六章 粘性流体的一维定常流动

列截面1-1和2-2的伯努利方程
p V p V z 1 1 1 1 z 2 2 2 2 hf g 2g g 2g
(b)
(c)
4
排水 进水
a.
b.
v 0 vc
层流=>过渡状态 紊流
v vc
v vc vc
c. d.
vc vc
紊流=>过渡状态
v vc
层流
层流——紊流的临界速度——上临界流速 紊流——层流的临界速度——下临界流速
v c ——上临界速度 v c ——下临界速度
p 1、 z g gdqV qV
的积分(势能)
有效截面1和有效截面2处的流动都是缓变流动
z1 p1 C1 g
z2 p2 C2 g
C1
C2 是两个不同的常数
p z gdqV g qV
不可压缩流体
2 V1 p 1 z2 2 2 g dqV g qV qV
V2 1 2 g dqV qV qV
2
h dq
w qV
V
p z g
1 qV
qV
V
V2 dqV 2g 2g
2
hW
1 qV
h dq
紊流流动:
2 2
1.0
42 H hw h2 h1 13 0.7 9 5.52 (m) 2g 2 9.806
【例6-1】 有一文丘里管如图6-3所示,若水银差压计的指示为 360mmHg,并设从截面A流到截面B的水头损失为0.2 mH2O, dA =300mm, dB=150mm,试求此时通过文丘里管的流量是多 少?
p V p V z 1 1 1 1 z 2 2 2 2 hf g 2g g 2g
(b)
(c)
4
排水 进水
a.
b.
v 0 vc
层流=>过渡状态 紊流
v vc
v vc vc
c. d.
vc vc
紊流=>过渡状态
v vc
层流
层流——紊流的临界速度——上临界流速 紊流——层流的临界速度——下临界流速
v c ——上临界速度 v c ——下临界速度
p 1、 z g gdqV qV
的积分(势能)
有效截面1和有效截面2处的流动都是缓变流动
z1 p1 C1 g
z2 p2 C2 g
C1
C2 是两个不同的常数
p z gdqV g qV
不可压缩流体
2 V1 p 1 z2 2 2 g dqV g qV qV
V2 1 2 g dqV qV qV
2
h dq
w qV
V
p z g
1 qV
qV
V
V2 dqV 2g 2g
2
hW
1 qV
h dq
紊流流动:
2 2
1.0
42 H hw h2 h1 13 0.7 9 5.52 (m) 2g 2 9.806
【例6-1】 有一文丘里管如图6-3所示,若水银差压计的指示为 360mmHg,并设从截面A流到截面B的水头损失为0.2 mH2O, dA =300mm, dB=150mm,试求此时通过文丘里管的流量是多 少?
《工程流体力学》第六章 不可压缩流体平面有势流动

3) y = 0 将 y=0 代入
驻点:
把驻点坐标代入流函数y:
过驻点流函数值:y = 0
物体轮廓线方程为:
求物体半宽b/2: 把 x=0 代入物体轮廓线方程:
y:物体半宽b/2
已知流函数 -> 速度场,压强场 在物体前部:附面层很薄 粘性影响大的流动区域:很薄 计算结果:与实验较符合
在物体后部:附面层增厚 形成:尾部旋涡 无粘流势流理论:不再适用
2)在源点左边x轴上,y=0:存在一点s 该点处:源点与直匀流速度:大小相等
方向相反
该点:驻点,复合流场合速度 = 0
求驻点,令: 驻点确在x负轴上
3)从源点流出流体到达驻点s后:不能继续向左流动 被迫分成上下两路 形成绕物体流动轮廓线—— 半无限体
现求半无限体轮廓线方程: 把驻点极坐标: 代入流函数中:
一般称零流线
粘性流体切向速度:0 理想流体切向速度:不受限制
第三节 基本解叠加原理 线性方程叠加原理:两个解的和或差也是该方程的解 平面不可压势流势函数和流函数方程:拉普拉斯方程 拉普拉斯方程:线性方程,可以应用叠加原理
复杂流场的解:可由若干简单流场的解叠加得到
两个有势流动势函数: j1,j2
每一流动都满足拉普拉斯方程:
什么条件? 无旋条件 二维不可压连续方程:
不可压平面有势流动的流函数方程
不可压连续方程和无旋条件 -> 流函数方程 流函数方程-拉普拉斯方程:仅适用于不可压平面有势流 动
不可压平面有旋流动或可压缩平面有势流动: 不存在流函数方程
三、边界条件: 流体:从无穷远流向某物体 条件:不分离 物面法向流体速度:0,即物面是一条流线
都存在流函数
只有无Байду номын сангаас流动:才存在势函数 平面流动:流函数更普遍
工程流体力学课件 第06章 流体流动微分方程 - 4

② μ和ρ随温度变化不大时,温度对流场(速度和压力)的影响很小,这
时 可以不考虑温度的影响,因此也不需要考虑能量方程。
③ 能量方程的微分形式,其推导过程与连续性方程和动量方程的推导 微分相方似程,方方法程:的结构也相似,数学上并没有太多的特殊性。 流体力学中,微分方法和积分方法都是为了研究流体的质量守恒、动量 守恒和能量守恒。积分法研究系统整体,揭示总体性能;微分法研究空 间任一点和包含该点的流体微元,揭示三维流场的空间分布细节。两种 分析方法相辅相成,都必须要学、必须学好。 微元体分析方法的核心:将雷诺输运定理应用于流体微元控制体。
t
z方向:vz dxdydz
t
6.2.3 以应力表示的运动方程
分别将微元控制体中x-,y-和z-方向的动量各对应项代入雷诺 输运定理,可得三个方向的运动微分方程。
X-:
vx t
vx
vx x
vy
vx y
vz
vx z
fx
xx
x
yx
y
zx
z
Y-:
vy t
vx
vy x
vy
vy y
、vz z
)和体变形率(
vx x
vy y
vz z
)
正应力包含两部分:
v
①流体静压产生的正应力(压应力-p);
②流体运动变形产生的附加黏性正应力。与三个方向的线变形率
以及体变形率有关。这种关系类似于固体中的虎克定律。
xx
p
2
vx x
2 3
vx x
vy y
vz z
xx p xx
xx 附加黏性正应力(或附加正应力)
连续性方程变为:
t
(vx )
时 可以不考虑温度的影响,因此也不需要考虑能量方程。
③ 能量方程的微分形式,其推导过程与连续性方程和动量方程的推导 微分相方似程,方方法程:的结构也相似,数学上并没有太多的特殊性。 流体力学中,微分方法和积分方法都是为了研究流体的质量守恒、动量 守恒和能量守恒。积分法研究系统整体,揭示总体性能;微分法研究空 间任一点和包含该点的流体微元,揭示三维流场的空间分布细节。两种 分析方法相辅相成,都必须要学、必须学好。 微元体分析方法的核心:将雷诺输运定理应用于流体微元控制体。
t
z方向:vz dxdydz
t
6.2.3 以应力表示的运动方程
分别将微元控制体中x-,y-和z-方向的动量各对应项代入雷诺 输运定理,可得三个方向的运动微分方程。
X-:
vx t
vx
vx x
vy
vx y
vz
vx z
fx
xx
x
yx
y
zx
z
Y-:
vy t
vx
vy x
vy
vy y
、vz z
)和体变形率(
vx x
vy y
vz z
)
正应力包含两部分:
v
①流体静压产生的正应力(压应力-p);
②流体运动变形产生的附加黏性正应力。与三个方向的线变形率
以及体变形率有关。这种关系类似于固体中的虎克定律。
xx
p
2
vx x
2 3
vx x
vy y
vz z
xx p xx
xx 附加黏性正应力(或附加正应力)
连续性方程变为:
t
(vx )
粘性流体一维流动

vcr ——下临界速度
第三节 粘性流体旳两种流动状态
二、流态旳鉴别
雷诺数
Recr
cr d
Re d
Re'cr
' cr
d
对于圆管流:Recr 2320
工程上取 Recr 2000
当Re≤2023时,流动为层流;当Re>2023时,即以为流动是紊流。
对于非圆形截面管道: 雷诺数 Re de
得: 64 Re 可见 ,层流流动旳沿程损失与平均流速旳一次方成正比
七、其他系数:
因沿程损失而消耗旳功率:
P pqV
128LqV2 d 4
动能修正系数:
1 A
A
( vl v
)3dA
16 r08
r0 0
(r02
r 2 )3 rdr
2
动量修正系数:
1
A
(vx )2 dA 8
v
r06
4. 方程旳两过流断面必须是缓变流截面,而不必顾 及两截面间是否有急变流。
第一节 粘性流体总流旳伯努利方程
伯努利方程旳几何意义:
2
1
1 2g
总水头线
p1
静水头线
g
hw
2 2
2 2g
p
2
g
z1
dA
z2
例题:
a
已知:a 4m/s;
0
0
H
h1 9m;h2 0.7m;
hw 13m
2 h1
求: H
de ——当量直径
第三节 粘性流体旳两种流动状态
三、沿程损失和平均流速旳关系
hf p g lg hf lg k m lg v
v vcr
hf kvn
粘性流体力学课件

适用于牛顿流体
流体运动微分方程——Navier-Stokes方程
y
vx v y vx vz z x x z y
Dvx p 2 x fx 2 Dt x 3 x x x
Dvy
2 y 2 y 2 y 1 p fy 2 2 x Dt y y z 2
2 z 2 z 2 z Dvz 1 p fz 2 2 2 Dt z y z x
( x z ) ( y z ) ( z 2 ) dxdydz x y z
微元体内的动量变化率
x dxdydz x方向: t z dxdydz y方向: dxdydz z方向: t t
y
运动方程
以应力表示的运动方程
p
xx
yy zz 3
这说明:三个正压力在数值上一般不等于压力,但它们的平 均值却总是与压力大小相等。
切应力与角边形率
流体切应力与角变形率相关。
牛顿流体本构方程反映了流体应力与变形速率之间的关系, 是流体力学的虎克定律。
N-S方程
Dvx p 2 x fx 2 Dt x 3 x x x
xx dx x
每个应力有两个下标,第一个下 标表示应力作用面的法线方向; 第二个下标表示应力的作用方向
fz
fy fx
应力正负的规定
应力与所在平面的外法线方向相 同为正,否则为负:
微元体上的表面力和体积力
运动方程
应力状态及切应力互等定律
粘性流体力学.ppt

Dvy Dt
=
fy-
p y
+
x
vy x
vx y
y
2
vy y
2 3
V
z
vz y
vy z
Dvz Dt
=
fz -
p z
在 t 时间内通过控制体左侧面流入控制体的 流体质量为 u y z t 通过右侧面流出控制体的流体质量为
u
u+
x
x y z t
这里对 u 运用了泰勒级数展开,并忽略二阶 以上小量。沿x方向净流出控制体的流体质量 为
u
u
从上式可得
+ u + v + w = 0
1.6
用场论符号表示为: t x y z
+ v = 0
t
利用散度公式 v = v + v
质点 导数表达式,(1D.7)+式 可v =改0写为
Dt
1.7
静止固壁: v 0 (粘附条件)
运动固壁: v流 v固
自由界面上:pnn p0 , pij 0i j
即在自由界面上,法向应力等于自由界面上的压力,切向应
力为零。
对于温度场,还可以有温度边界条件,即
或
qw
k
T n
w
T Tw
式中 Tw 是物面上的温度。qw 为通过单位面积传递给流 体 T / n
流体动力学基础(工程流体力学).ppt课件

dV
II '
t t
dV
II '
t
dt t0
t
lim
dV
III
t t
dV
I
t
t 0
t
δt→0, II’ → II
x
nv
z
III
v II ' n
I
o y
20 20
dV
dV
II
tt II
t
lim t t0
t
dV
dV
lim III
t t
t0
t
v cosdA
质点、质点系和刚体 闭口系统或开口系统
均以确定不变的物质集协作为研讨对象!
7 7
定义:
系统(质量体)
在流膂力学中,系统是指由确定的流体质点所组成的流 体团。如下图。
系统以外的一切统称为外界。 系统和外界分开的真实或假象的外表称为系统的边境。
B C
A
D
Lagrange 方法!
系统
8
8
特点:
(1) 一定质量的流体质点的合集 (2) 系统的边境随流体一同运动,系统的体积、边境面的
31 31
固定的控制体
对固定的CV,积分方式的延续性方程可化为
CS
ρ(
vn
)dA
CV
t
dV
运动的控制体
将控制体随物体一同运动时,延续性方程方式不变,只
需将速度改成相对速度vr
t
dV
CV
CS (vr n)dA 0
32 32
延续方程的简化
★1、对于均质不可压流体: ρ=const
dV 0
令β=1,由系统的质量不变可得延续性方程
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
能z符 合pg这 个常要数求?。这只工程流体力学
由于流线几乎是平行直线,则各有效截面上相应点的 流速几乎不变,成为均匀流,由于速度的变化很小即可将 惯性力忽略不计,又由于流线的曲率半径很大,故向心力 加速度很小,以致可将离心力忽略。于是缓变流中的流体 微团只受重力和压强的作用,故缓变流的有效截面上各点 的压强分布与静压强分布规律一样,即在同一有效截面上 各点的 z p 常数。当然在不同的有效截面上有不同的 常数值。 g
位重量流体的能量损失,即
将式(6-5)和式(6h-7W)代q1V人qV式hW (d6qV-4)中得(:6-7) z1pg 11V 21g2z2pg 22V 22g2hw(6-8)
这就是黏性流体总流的伯努利方程。适用范围是:重力作 用下不可压缩黏性流体定常流动的任意两个缓变流的有效 截面,至于两个有效截面之间是否是缓变流则无关系。由 式(6-8)可以看出,如同黏性流体沿微元流束的流动情况一 样,为了克服流动阻力,总流的总机械能即实际总水头线 也是沿流线方向逐渐减少的,如图6-2所示。
(6-1)
式(6-1)的几何解释如图6-1所示,实际总水头线沿微元流
束下降,而静水头线则随流束的形状上升或下降。
08.08.2020
工程流体力学
08.08.2020
图6-1 伯努利方程的几何解释
工程流体力学
二、黏性流体总流的伯努利方程
流体的实际流动都是由无数微元流束所组成的有效截面为 有限值的总流流动,例如流体在管道中和渠道中的流动等。
和计算阻力的方法。
08.08.2020
工程流体力学
第一节 黏性流体总流的伯努利方程
一、黏性流体微元流束的伯努利方程
在第三章中已经得到了理想不可压缩流体作定常流动时,质
量力仅为重力情况下的微 元流束的伯努利方程,该式说明
流体微团沿流线运动时总机械能不变。但是对于黏性流体,
在流动时为了克服由于黏性的存在所产生的阻力将损失掉部
工程流体力学
在第三章中,通过对理想流体运动的基本规律的讨论,
得到了流场中任一空间点上、任一时刻流体微团的压强和
速度等流动参数之间的关系式,但在推导流体微团沿流线
运动的伯努利方程中,仅局限于微元流束的范围内。而在
工程实际问题中要研究实际流体在整个流场中的运动,其
中大量的是在管道和渠道中的流动问题。所以除了必须把
对于不可压缩流体,以gdqV gqV通除式(6-3)各项得
z1p g 1 q 1 Vq V V 2 1 g 2d q V z2 q V p g 2 q 1 Vq V V 2 2 g 2d q V q 1 Vq V h w d q (V6-4)
用有效截面上的平均流速 V 代替真实流速 V,则可将式(6-
分机械能,因而流体微团在流 动过程中,其总机械能沿流
动方向不断地减少。如果黏性流体从截面1流向截面2,则截
面2处的总机械能必定小于截面1处的总机械能。若以 hW 表 示单 位重量流体自截面1到2的流动中所损失的机械能(又
称为水头损失),则黏性流体微元流束的伯努利方程为
z1pg1V 21g2 z2pg2V 22g2hw
为 z1p g 1 V 2 1 g 2 g d q V z2p g 2 V 2 2 g 2 g d q V h w g d q V
积分上式,则得总流在有效截面1和有效截面2之间的总能量 关系式
q V z1 p g 1 V 2 1 g 2 g d q V q V z2 p g 2 V 2 2 g 2 g d q V q (V h 6w -2g )d q V
掌握了缓变流动的特性之后,就可以将黏性流体微元 流束的伯努利方程应用于总流,从而推导出适用于两个缓 变流有效截面的黏性流体总流的伯努利方程。
08.08.2020
工程流体力学
以总流中每一微元流束的任意两个截面可以写出
z1pg 1 V 21g2 z2pg 2 V 22g2hw
则通过该微元流束的总能量在截面1与截面2之间的关系式
所讨论的范围从微元流束扩展到整个流场(如管道)外,
还需考虑黏性对流体运动的影响,实际流体都具有黏性,
在流动过程中要产生摩擦阻力,为了克服流动阻力以维持
流动,流体中将有一部分机械能不可逆地损失掉。由此可
见,讨论黏性流体流动的重点就是讨论由于黏性在流动中
所造成的阻力问题,即讨论阻力的性质、产生阻力的原因
08.08.2020
工程流体力学
若和有z2 效pg2截面C2,1C和1 和有C效2 是截两面个2处不的同流的动常都数是,缓于变是流式动(,6-则2)z1 可pg1写 C1
成 z 1 p g 1 q Vg d q V q V V 2 1 g 2g d q V z 2 p g 2 q Vg d q V q V (V 2 2 g 2 6-3g d )q V q V h w g d q V
微元流束的有效截面是微量,因而在同一截面上流体质点 的位置高度 、压强 和流速 都可认为是相同的。而
总流的同一有z效截面上p,流体质V点的位置高度 、压强 和流速 是不同的。总流是由无数微元流束所组z成的。 p
因此,由V黏性流体微元流束的伯努利方程来推导总流的伯 努利方程,对总流有效截面进行积分时,将遇到一定的困 难,这就需要对实际流动作某些必要的限制。为了便于积 分,首先考虑在什么条件下总流有效截面上各点的
4)中总流的平均单位重量 流体的动能项改写为
q 1 Vq VV 2 2 g 2dqVA 1 VAV 2 g 2V dA 1 AA V V 3V 2g 2dA V 2g 2 (6-5)
式中 —总流的动能修正系数
08.08.2020
1 V 3dA
A A 工V程流 体力学
(6-6)
以 hW 表示总流有效截面1和有效截面2之间的平均单
第六章 粘性流体的一维定常流动
第一节 黏性流体总流的伯努利方程 第二节 黏性流体的两种流动型态 第三节 流动损失分类 第四节 圆管中流体的层流流动 第五节 圆管中流体的紊流流动 第六节 沿程阻力系数的实验研究 第七节 非圆形截面管道沿程损失的计算
第九节 管 道 水 力 计 算 第十节 水击现象
08.08.2020
由于流线几乎是平行直线,则各有效截面上相应点的 流速几乎不变,成为均匀流,由于速度的变化很小即可将 惯性力忽略不计,又由于流线的曲率半径很大,故向心力 加速度很小,以致可将离心力忽略。于是缓变流中的流体 微团只受重力和压强的作用,故缓变流的有效截面上各点 的压强分布与静压强分布规律一样,即在同一有效截面上 各点的 z p 常数。当然在不同的有效截面上有不同的 常数值。 g
位重量流体的能量损失,即
将式(6-5)和式(6h-7W)代q1V人qV式hW (d6qV-4)中得(:6-7) z1pg 11V 21g2z2pg 22V 22g2hw(6-8)
这就是黏性流体总流的伯努利方程。适用范围是:重力作 用下不可压缩黏性流体定常流动的任意两个缓变流的有效 截面,至于两个有效截面之间是否是缓变流则无关系。由 式(6-8)可以看出,如同黏性流体沿微元流束的流动情况一 样,为了克服流动阻力,总流的总机械能即实际总水头线 也是沿流线方向逐渐减少的,如图6-2所示。
(6-1)
式(6-1)的几何解释如图6-1所示,实际总水头线沿微元流
束下降,而静水头线则随流束的形状上升或下降。
08.08.2020
工程流体力学
08.08.2020
图6-1 伯努利方程的几何解释
工程流体力学
二、黏性流体总流的伯努利方程
流体的实际流动都是由无数微元流束所组成的有效截面为 有限值的总流流动,例如流体在管道中和渠道中的流动等。
和计算阻力的方法。
08.08.2020
工程流体力学
第一节 黏性流体总流的伯努利方程
一、黏性流体微元流束的伯努利方程
在第三章中已经得到了理想不可压缩流体作定常流动时,质
量力仅为重力情况下的微 元流束的伯努利方程,该式说明
流体微团沿流线运动时总机械能不变。但是对于黏性流体,
在流动时为了克服由于黏性的存在所产生的阻力将损失掉部
工程流体力学
在第三章中,通过对理想流体运动的基本规律的讨论,
得到了流场中任一空间点上、任一时刻流体微团的压强和
速度等流动参数之间的关系式,但在推导流体微团沿流线
运动的伯努利方程中,仅局限于微元流束的范围内。而在
工程实际问题中要研究实际流体在整个流场中的运动,其
中大量的是在管道和渠道中的流动问题。所以除了必须把
对于不可压缩流体,以gdqV gqV通除式(6-3)各项得
z1p g 1 q 1 Vq V V 2 1 g 2d q V z2 q V p g 2 q 1 Vq V V 2 2 g 2d q V q 1 Vq V h w d q (V6-4)
用有效截面上的平均流速 V 代替真实流速 V,则可将式(6-
分机械能,因而流体微团在流 动过程中,其总机械能沿流
动方向不断地减少。如果黏性流体从截面1流向截面2,则截
面2处的总机械能必定小于截面1处的总机械能。若以 hW 表 示单 位重量流体自截面1到2的流动中所损失的机械能(又
称为水头损失),则黏性流体微元流束的伯努利方程为
z1pg1V 21g2 z2pg2V 22g2hw
为 z1p g 1 V 2 1 g 2 g d q V z2p g 2 V 2 2 g 2 g d q V h w g d q V
积分上式,则得总流在有效截面1和有效截面2之间的总能量 关系式
q V z1 p g 1 V 2 1 g 2 g d q V q V z2 p g 2 V 2 2 g 2 g d q V q (V h 6w -2g )d q V
掌握了缓变流动的特性之后,就可以将黏性流体微元 流束的伯努利方程应用于总流,从而推导出适用于两个缓 变流有效截面的黏性流体总流的伯努利方程。
08.08.2020
工程流体力学
以总流中每一微元流束的任意两个截面可以写出
z1pg 1 V 21g2 z2pg 2 V 22g2hw
则通过该微元流束的总能量在截面1与截面2之间的关系式
所讨论的范围从微元流束扩展到整个流场(如管道)外,
还需考虑黏性对流体运动的影响,实际流体都具有黏性,
在流动过程中要产生摩擦阻力,为了克服流动阻力以维持
流动,流体中将有一部分机械能不可逆地损失掉。由此可
见,讨论黏性流体流动的重点就是讨论由于黏性在流动中
所造成的阻力问题,即讨论阻力的性质、产生阻力的原因
08.08.2020
工程流体力学
若和有z2 效pg2截面C2,1C和1 和有C效2 是截两面个2处不的同流的动常都数是,缓于变是流式动(,6-则2)z1 可pg1写 C1
成 z 1 p g 1 q Vg d q V q V V 2 1 g 2g d q V z 2 p g 2 q Vg d q V q V (V 2 2 g 2 6-3g d )q V q V h w g d q V
微元流束的有效截面是微量,因而在同一截面上流体质点 的位置高度 、压强 和流速 都可认为是相同的。而
总流的同一有z效截面上p,流体质V点的位置高度 、压强 和流速 是不同的。总流是由无数微元流束所组z成的。 p
因此,由V黏性流体微元流束的伯努利方程来推导总流的伯 努利方程,对总流有效截面进行积分时,将遇到一定的困 难,这就需要对实际流动作某些必要的限制。为了便于积 分,首先考虑在什么条件下总流有效截面上各点的
4)中总流的平均单位重量 流体的动能项改写为
q 1 Vq VV 2 2 g 2dqVA 1 VAV 2 g 2V dA 1 AA V V 3V 2g 2dA V 2g 2 (6-5)
式中 —总流的动能修正系数
08.08.2020
1 V 3dA
A A 工V程流 体力学
(6-6)
以 hW 表示总流有效截面1和有效截面2之间的平均单
第六章 粘性流体的一维定常流动
第一节 黏性流体总流的伯努利方程 第二节 黏性流体的两种流动型态 第三节 流动损失分类 第四节 圆管中流体的层流流动 第五节 圆管中流体的紊流流动 第六节 沿程阻力系数的实验研究 第七节 非圆形截面管道沿程损失的计算
第九节 管 道 水 力 计 算 第十节 水击现象
08.08.2020