中考数学复习与圆有关的角[人教版]

合集下载

人教版2020年中考数学一轮复习《与圆有关的证明和计算》大题专项练习含答案解析

人教版2020年中考数学一轮复习《与圆有关的证明和计算》大题专项练习含答案解析

中考专题——与圆有关的证明和计算纵观近几年全国各地中考题,圆的有关概念以及性质等一般以填空题,选择题的形式考查并占有一定的分值;圆的有关性质,如垂径定理,圆周角,切线的判定与性质等综合性问题的运用一般以计算证明的形式考查;一般在10分-15分左右,以后发展中利用圆的知识与其他知识点如函数,方程等相结合作为中考压轴题将会占有非常重要的地位。

考查的类型:(1)线段、角以及切线的证明;(2)利用勾股定理、相似以及锐角三角函数进行线段,比值和阴影面积的求解.例题精讲:1、如图,点O为Rt△ABC斜边AB上一点,以OA为半径的⊙O与BC切于点D,与AC 交于点E,连接AD.(1)求证:AD平分∠BAC;(2)若∠BAC=60°,OA=2,求阴影部分的面积(结果保留π).2、如图,A,P,B,C是圆上的四个点,∠APC=∠CPB=60°,AP,CB的延长线相交于点D.(1)求证:△ABC是等边三角形;(2)若∠PAC=90°,AB=2,求PD的长.3、如图,∠BAC的平分线交△ABC的外接圆于点D,∠ABC的平分线交AD于点E,(1)求证:DE=DB;(2)若∠BAC=90°,BD=4,求△ABC外接圆的半径.4、如图,△ABC为等腰三角形,O是底边BC的中点,腰AB与⊙O相切于点D,OB与⊙O相交于点E.(1)求证:AC是⊙O的切线;(2)若BD=,BE=1.求阴影部分的面积.5、如图,AB是⊙O的直径,C是⊙O上一点,过点O作OD⊥AB,交BC的延长线于D,交AC于点E,F是DE的中点,连接CF.(1)求证:CF是⊙O的切线.(2)若∠A=22.5°,求证:AC=DC.补充练习:1、如图,在△ABC中,AB=AC,以AB为直径作⊙O,分别交BC,AC于点D,E,过点D作DF⊥AC于点F.(1)求证:DF是⊙O的切线;(2)若∠C=60°,⊙O的半径为2,求由弧DE,线段DF,EF围成的阴影部分的面积(结果保留根号和π)2、如图,在Rt△ABC中,∠C=90°,AC=BC,点O在AB上,经过点A的⊙O与BC相切于点D,交AB于点E.(1)求证:AD平分∠BAC;(2)若CD=1,求图中阴影部分的面积(结果保留π).3、如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E,过点D作DF⊥AB,垂足为F,连接DE.(1)求证:直线DF与⊙O相切;(2)若AE=7,BC=6,求AC的长.4、如图,AB为半圆O的直径,AC是⊙O的一条弦,D为的中点,作DE⊥AC,交AB 的延长线于点F,连接DA.(1)求证:EF为半圆O的切线;(2)若DA=DF=6,求阴影区域的面积.(结果保留根号和π)5、如图所示,以△ABC的边AB为直径作⊙O,点C在⊙O上,BD是⊙O的弦,∠A=∠CBD,过点C作CF⊥AB于点F,交BD于点G,过C作CE∥BD交AB的延长线于点E.(1)判断CE与⊙O的位置关系,并说明理由;(2)若∠DBA=30°,CG=8,求BE的长.6、如图,AB为⊙O的直径,C,E为⊙O上的两点,若AC平分∠EAB,CD⊥AE于点D.(1)求证:DC是⊙O的切线;3,求DE的长;(2)若AO=6,DC=33,求图中阴影部分面积.(3)过点C作CF⊥AB于F,如图2,若AD-OA=1.5,AC=3答案解析例题精讲:1、(1)证明:∵⊙O切BC于D,∴OD⊥BC,∵AC⊥BC,∴AC∥OD,∴∠CAD=∠ADO,∵OA=OD,∴∠OAD=∠ADO,∴∠OAD=∠CAD,即AD平分∠CAB;(2)设EO与AD交于点M,连接ED.∵∠BAC=60°,OA=OE,∴∠AEO是等边三角形,∴AE=OA,∠AOE=60°,∴AE=A0=OD,又由(1)知,AC∥OD即AE∥OD,∴四边形AEDO是菱形,则△AEM≌△DMO,∠EOD=60°,∴S△AEM=S△DMO,∴S阴影=S扇形EOD==.2、(1)证明:∵∵ABC=∵APC,∵BAC=∵BPC,∵APC=∵CPB=60°,∵∵ABC=∵BAC=60°,∵∵ABC是等边三角形.(2)解:∵∵ABC是等边三角形,AB=2,∵AC=BC=AB=2,∵ACB=60°.在Rt∵PAC中,∵PAC=90°,∵APC=60°,AC=2,∵AP=AC•cot∵APC=2.在Rt∵DAC中,∵DAC=90°,AC=2,∵ACD=60°,∵AD=AC•tan∵ACD=6.∵PD=AD﹣AP=6﹣2=4.3、(1)证明:∵BE平分∠BAC,AD平分∠ABC,∴∠ABE=∠CBE,∠BAE=∠CAD,∴,∴∠DBC=∠CAD,∴∠DBC=∠BAE,∵∠DBE=∠CBE+∠DBC,∠DEB=∠ABE+∠BAE,∴∠DBE=∠DEB,∴DE=DB;(2)解:连接CD,如图所示:由(1)得:,∴CD=BD=4,∵∠BAC=90°,∴BC是直径,∴∠BDC=90°,∴BC==4,∴△ABC外接圆的半径=×4=2.4、(1)证明:连接OD,作OF⊥AC于F,如图,∵△ABC为等腰三角形,O是底边BC的中点,∴AO⊥BC,AO平分∠BAC,∵AB与⊙O相切于点D,∴OD⊥AB,∵OF⊥AC,∴OF=OD,∴AC是⊙O的切线;(2)解:在Rt△BOD中,设⊙O的半径为r,则OD=OE=r,∴r2+()2=(r+1)2,解得r=1,∴OD=1,OB=2,∴∠B=30°,∠BOD=60°,∴∠AOD=30°,在Rt△AOD中,AD=OD=,∴阴影部分的面积=2S△AOD﹣S扇形DOF=2××1×﹣=﹣.5、(1)证明:∵AB 是⊙O 的直径,∴∠ACB =∠ACD =90°,∵点F 是ED 的中点,∴CF =EF =DF ,∴∠AEO =∠FEC =∠FCE ,∵OA =OC ,∴∠OCA =∠OAC ,∵OD ⊥AB ,∴∠OAC+∠AEO =90°, ∴∠OCA+∠FCE =90°,即OC ⊥FC ,∴CF 与⊙O 相切;(2)解:∵OD ⊥AB ,AC ⊥BD ,∴∠AOE =∠ACD =90°,∵∠AEO =∠DEC ,∴∠OAE =∠CDE =22.5°, ∵AO =BO ,∴AD =BD ,∴∠ADO =∠BDO =22.5°,∴∠ADB =45°,∴∠CAD =∠ADC =45°,∴AC =CD .补充练习:1、(1)如图,连接OD ∵AB 为⊙O 的直径∴AD ⊥BC ∵AB=AC ∴BD=CD ,D 为BC 中点∵O 为AB 中点∴OD ∥AC ∵DF ⊥AC ∴DF ⊥OD ∴DF 为⊙O 的切线(2)如图,连接OE 、OD ∵AB=AC ,∠C=60°∴△ABC 为等边三角形∴∠B=∠A=60°,AB=AC=BC=2⨯2=4∵OA=OB=OD=OE ∴△OAE ,△OBD 都是等边三角形∴∠ODB=∠BOD=∠AOE -∠OEA=∠C=60° ∴∠DOE=180°-2⨯60°=60°,OD ∥AC ,OE ∥BC ∴四边形ODCE 是平行四边形∴OD=CE=BD=CD=2∴DF=CDsin60°=3232=⨯,CF=CDcos60°=1212=⨯ ∴ππ32-323360260-3121-32--2=⨯⨯⨯⨯==∆ODE CDF S S S S 扇形平行四边形阴影2、(1)证明:连接DE 、OD ∵BC 相切⊙O 于点D ∴∠CDA=∠AED ∵AE 为直径∴∠ADE=90°∵AC ⊥BC ∴∠ACD=90°∴∠DAO=∠CAD ∴AD 平分∠BAC(3)在Rt △ABC 中,∠C=90°,AC=BC ∴∠B=∠BAC=45°∵BC 相切⊙O 于点D ∴∠ODB=90°∴OD=BD ,∠BOD=45°设BD=x ,则OD=OA=x ,0B=3x ∴BC=AC=x+1∵AC 2+BC 2=AB 2∴22)2()12x x x +=+( 所以x=2∴BD=OD=2 ∴()4-1360245-22212ππ=⨯⨯=-∆=DOE S BOD S S 扇形阴影3、(1)证明:连接OD ,∵AB=AC ,∴∠B=∠C 。

人教版中考数学考点系统复习 第六章 圆 第一节 圆的基本性质

人教版中考数学考点系统复习 第六章 圆 第一节 圆的基本性质

论有
( C)
A. 1个
B. 2个
C. 3个
D. 4个
10.(2021·随州第12题3分)如图,⊙O是△ABC的外接圆,连接AO并延 长交⊙O于点D,若∠C=50°,则∠BAD的度数为440 0°°.
11.(2022·随州第12题3分)如图,点A,B,C在⊙O上,若∠ABC=60 °,则∠AOC的度数为121020°°.
另解:计算∠AEB=135°也可以得证.
(2)若AB=10,BE=2 10,求BC的长. 解:如图,连接 OC,CD,OD,OD 交 BC 于点 F. ∵∠DBC=∠CAD=∠BAD=∠BCD,∴BD=DC. ∵OB=OC,∴OD 垂直平分 BC. ∵△BDE 是等腰直角三角形,BE=2 10, ∴BD=2 5. ∵AB=10,∴OB=OD=5. 设 OF=t,则 DF=5-t. 在 Rt△BOF 和 Rt△BDF 中, 52-t2=(2 5)2-(5-t)2. 解得 t=3.∴BF=4.∴BC=8.
长是
( A)
A.10
B.8
C.6
D.4
7.★(2019·十堰第8题3分)如图,四边形ABCD内接于⊙O,AE⊥CB交CB 的延长线于点E,若BA平分∠DBE,AD=5,CE= 13,则AE的长为( D ) A.3 B.3 2 C.4 3 D.2 3
8.(2022·宜昌第7题3分)如图,四边形ABCD内接于⊙O,连接OB, OD,
(4)若∠CAB=30°,则∠CDB=3300°°,∠COB=6600°°,∠OCB=6600°°;若
B 为︵CD的中点,则∠BCD=3300°°; (5)当 CD⊥AB 时,若 AB=10,CD=8,则 BE=22,AE=88,BC=22 5 , AC=44 5 ;

中考数学复习两圆相交2[人教版]

中考数学复习两圆相交2[人教版]

4、已知⊙O和⊙O相交于A、B两点,AB=6,求O1O2和∠O1AO2.
5、如图,P为⊙O上一点, ⊙P交⊙O于 A、B,AD为⊙P的直径,延长DB交⊙O于
C. 求证:PC⊥AD.
A
P O·
DB
C
6、如图, ⊙ O与⊙ O1相交于A、B,过A
作⊙ O1的切线交⊙ O于C,过B作两圆的
两圆相交
复习七
两圆的半径为r和R,圆心距为d (R≥r).
① d>R+r

.

.
④_______.
⑤_______.
; 两圆外切; 两圆相交; 两圆内切; 两圆内含.
测试训练:
1、已知两圆半径之比为5:2, 两圆内切时的圆心距为9,求 当两圆的圆心距分别为30,21, 10,5时相应的两圆的位置关 系.
3、如图,A为⊙O上一点,以A为圆心 的⊙A交⊙O于B、C两点,⊙O的弦AD 交公共弦BC于E.
1)求证:AC AE AD
2)若∠BDC=60°
求 BD DC
B
AD
D
A E O·
C
成“非…不可”,跟他们所幻想的理想世界相对。④像冰的东西:~片|~糖|干~。上面有孔,船身~得非常厉害。【车棚】chēpénɡ名存放自行车等 的棚子。在今河南濮阳西南。这两个角就互为补角。②受宠爱:~臣|~妾。逮住:~猎物|犯罪嫌疑人已被~。③〈方〉(~儿)量用于编成的像辫子的
割线分别交⊙ O、 ⊙ O1于E、F,EF与
AC相交于P. 1)求证:AP·PE=PC·PF;
PE 2 2)求证:PC 2
PF PB

3)当⊙ O与⊙ O为等圆,
A
且 PC : CE : EP =3:4:5时,求⊿ECP

2019届人教版中考数学复习《圆》课件(共13张PPT)高品质版

2019届人教版中考数学复习《圆》课件(共13张PPT)高品质版

∠BAC=40°,则
∠BOC=_8_0_°
5.如图,已知⊙O中,弧AD= D
O
弧BC,∠DCA=30°
则∠BAC= __3_0_°___.
若⊙O的直径AB=4,则
C
B
AD=___2____.
点与圆的 位置关系
O C
A B
点A在圆上 点B在圆外 点C在圆内
d =r d>r d<r
6、根据点与圆的关系解决下列问题:
(1)经过一点A的圆有( 无数 )个,经过A、B两
点的圆( 无数 )个,若AB=6则经过A、B两点的
圆的半径r的取 值范围是( R≥3

(2)经过三角形的三个顶点有且只有( 一) 个
圆 ,若AB=3,AC=5,BC=4则三角形的外接圆的
圆心在( AC的中点 ),半径是( 2.5 )。
直线与圆 相交
PA=PB ∠APO= ∠BPO ∠AOP= ∠BOP
圆与圆的 位置关系
相交 相切 (外切、内切) 相离(外离、内含)
R+r>d>R-r R+r=d d =R-r d<R-r d>R+r 10.(1)已知⊙O1和⊙O2的半径分别为3cm和5cm, 两圆的圆心距是6cm,则这两圆的位置关系是 相交 。
3、如图,在⊙O中,弦EF∥直径AB,若弧AE的度数为50°,则 弧BF的度数为 50° ,弧EF的度数为 80°,∠EOF= 80° , ∠EFO= 50° 。 弦AE与BF是什么关系?
相等
E
F
A
O
B
在同圆或等圆中,同弧或等弧所对的圆周角相等,
都等于这条弧所对的圆心角的一半。
A
4.如图,在⊙O中,若已知

人教版初中数学九年级上册第24章知识复习第一部分圆的有关概念和性质

人教版初中数学九年级上册第24章知识复习第一部分圆的有关概念和性质

在上图中,
D
若∠COD=∠AOB,则 CD=AB,CD=AB ;
若CD=AB,则 ∠COD=∠AOB,CD=AB;
若CD=AB,则 ∠COD=∠AOB,CD=AB,.
CAD=ACB.
(二)圆的有关性质 3、垂径定理:

垂直于弦的直径平分这条弦,并且平分弦 所对的两条弧。 推论:①平分弦(非直径)的直径垂直于这条弦,
(二)圆的有关性质 Q
A•
O•
•B
P
C
4、②在同圆或等圆中,同弧或等弧所对的 圆周角相等,都等于该弧所对的圆心角的 一半;相等的圆周角所对的弧相等。
如图:∠BOC=2∠BAC=2∠BPC=2∠BQC.
(二)圆的有关性质
PQ
O •
D
A C
B
如图:若AB=CD, 则∠AOB=∠COD=2∠APB=2∠CQD.
反之,若∠APB=∠CQD,则AB=CD.
【及时巩固】
d P
P
d
O

r
d
P
1、设⊙O的半径为r,点P到圆心的而距离为d,
则 ①点P在⊙O上 d = r;
②点P在⊙O内 d< r;
③点P在⊙O外 d >r.
【及时巩固】
2、“经过三角形各顶点的圆叫三角形的外接圆. 外接圆的圆心叫做三角形的外心(即三角形三边 中垂线的交点),这个三角形叫圆的内接三角形.” 先分别作出锐角三角形、钝角三角形、直角三 角形的外接圆,再观察图形,填空:
并且平分弦所对的弧; ②平分弧的直径垂直平分这条弧所对的弦;...
(二)圆的有关性质

垂径定理及推论可归纳为: 一条直线若具有“①经过圆心; ②垂直于弦;③平分弦;④平分弦所对的 优弧;⑤平分弦所对的劣弧”这五个性质 中的两个,这条直线就具有其余三个性质. 注意:①③组合有限制.

人教版九年级下册数学中考考点聚焦:第6讲《选择题填空《有关圆的计算、三视图》》

人教版九年级下册数学中考考点聚焦:第6讲《选择题填空《有关圆的计算、三视图》》
1、三视图:
正视图:从正面得到的,由前向后观察物体的视图。 正视图反映物体的长和高.
左视图: 从侧面得到的,由左向右观察物体的视图左视图。 左视图反映物体的宽和高。
俯视图: 从水平面得到的,由上向下观察物体的视图。 俯视图反映物体的长和宽
3、立体图形的展开与折叠: (1)圆锥的侧面展开图
圆锥的侧面展开是一个扇形,圆锥的母线长为 扇形的半径,圆锥的底面圆的周长是扇形的弧长。
典例精析
★1.【2015泸州】如图,PA、PB分别与⊙O相切于A、B两点,
若∠C=65°,则∠P的度数为( C )
A
A. 65° C. 50°
B. 130° D. 100°
O
P
C
★2.【2016泸州】如图,在平面直 角坐标系中,已知点A(1,0),B
B
第8题图
(1-a,0),C(1+a,0)(a>0),
正多边形各边所对的外接圆的圆心角都相等,叫正多边形 的中心角。
正n边形的每个中心角等于 360
n
正多边形都是轴对称图形,一个正n边形共有n条对称轴, 每条对称轴都通过正n边形的中心。
若n为偶数,则正n边形又是中心对称图形,它的中心就是 对称中心。
边数相同的正多边形相似,所以周长的比等于边长的比, 面积的比等于边长平方的比。
2.圆心角、弧、弦、弦心距之间的关系
圆是以圆心为对称中心的中心对称图形。 实际上,圆绕圆心旋转任意一个角度,都能够与原来的 图形重合。 顶点是圆心的角叫圆心角,从圆心到弦的距离叫弦心距。 定理:在同圆或等圆中,相等的圆心角所对的弧相等, 所对的弦相等,所对的弦心距相等。 推理:在同圆或等圆中,如果两个圆心角、两条弧、两 条弦或两条弦的弦心距中,有一组量相等,那么它们所对 应的其余各组量都分别相等。

人教版中考数学考点系统复习 第六章 圆 第二节 与圆有关的位置关系

人教版中考数学考点系统复习 第六章 圆 第二节 与圆有关的位置关系

【分层分析】第一步,连接 OD,根据角平分线的定义得到∠BAD=∠∠CACD,
进而得到B︵D=BC︵DC;第二步:根据垂径定理得到
AD OD⊥BBCC;第三步:根据
平行线的性质得到 OD⊥DDFF,即可得到 DF 与⊙O 相切.
证明:连接 OD.∵∠BAC 的平分线交⊙O 于点 D,∴∠BAD=∠CAD,∴B︵D=
求线段长的问题时,因题图中多含直角三角形,因此可以考虑从以下方 面来找突破口:(1)勾股定理;(2)锐角三角函数;(3)相似三角形. 若题中含有 30°,45°,60°或者三角函数值时,常考虑用三角函数求 解,若不含,常考虑用相似三角形求解.
解:∵∠BAD=∠CAD,∠ADB=∠C,∴△ABD∽△AEC, ∴AABE=BEDC,∴126 3=4BD7,∴BD=2 321.
55
1.如图,在△ABC 中,AB=AC,以 AB 为直径的⊙O 交 BC 于点 D,过点 D 作 DE⊥AC 于点 E,交 AB 的延长线于点 F. 求证:EF 是⊙O 的切线.
∵OA=OE,∴∠OAE=∠AED,∴∠ADE=∠PAE.
(2)若∠ADE=30°,求证:AE=PE;
证明:由(1)知∠ADE=∠PAE=30°, ∵∠DAE=90°,∴∠AED=90°-∠ADE=60°. ∵∠AED=∠PAE+∠APE, ∴∠APE=∠PAE=30°,∴AE=PE.
(3)若 PE=4,CD=6,求 CE 的长.
以点 B 为圆心,BA 长为半径作⊙B,交 BD 于点 E. (1)试判断 CD 与⊙B 的位置关系,并说明理由; 【分层分析】过点 B 作 BF⊥CD 于点 F,由 AD∥BC 可得∠ADB=∠∠CCBBDD, 由 CB=CD 可得∠CDB=∠∠CCBBDD,∴∠ADB=∠∠C CDDB,B 因而利用角平分线性 质可得证,也可证△BDA≌△BDF 得出结论.

二、解答重难题型突破+题型5 圆的综合++++课件+2025年中考数学总复习人教版(山东)

二、解答重难题型突破+题型5 圆的综合++++课件+2025年中考数学总复习人教版(山东)
2
P在半圆弧AB上运动(不与A,B两点重合),过点C作直线PB的垂线CD交PB于点D.
(1)如图1,求证:△PCD∽△ABC.
(2)当点P运动到什么位置时,△PCD≌△ABC?请在图2中画出△PCD并说明理由.
(3)如图3,当点P运动到CP⊥AB时,求∠BCD的度数.
28
【解析】(1)∵AB是☉O的直径,
∴∠BCD=30°.
31
本课结束
∴BF=BE=5.
∵∠ABE=∠AMF=90°,∠BAE=∠MAF,
∴△AMF∽△ABE,


∴ = ,即 = = =2.


设MF=x,则AM=2x,
∴BM=10-2x.
5
∵BM2+MF2=BF2,
∴(10-2x)2+x2=52,解得x=3,x=5(不符合题意,舍去),即MF=3.
∴∠PCD=60°.
∵四边形ABDC内接于☉O,
∴∠B=∠PCD=60°.
9

(2)∵点C为的中点,
∴∠CAD=∠CDA,∴AC=CD.
∵∠ADB=90°,
∴∠CDA+∠CDP=90°.
在Rt△ADP中,∠CAD+∠P=90°,
∴∠CDP=∠P,
∴CD=PC=2 ,
∴AC=CD=PC=2 ,
෽ ,对角线AC为☉O

【例2】(2024·济南三模)如图,四边形ABCD内接于☉O,=
的直径,延长BC交过点D的切线于点E.
(1)求证:DE⊥BE;
3
(2)若☉O的半径为5,tan∠DAC= ,求DE的长.
4
12
【自主解答】(1)连接DO并延长交AB于F,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)判断△ADC的形状
(2)若AB=10,AD=8,求DE的长。
ED C
A
O
B
8、如图P是⊙ O外一点,PO交 ⊙ O于C、D两点,过⊙ O上一点 A作弦AB⊥PD,E为垂足,已知 PA是⊙ O的切线,求证:
()AC平分∠PAB
(2) PC·PD=PE·PO
B
P
CE O
D
A
9、如图,梯形ABCD内接于⊙ O, AD∥BC,过点B引⊙ O的切线分别交 DA、CA的延长线于点E、F。
O
B
C
A
D
4、如图,△ABC中,∠A的平分 线交BC于点D,圆O过点A且与BC 相切于点D,与AB、AC分别相交 于点E、F,AD与EF相交于点G。 求证:AF·FC=GF·DC
A
E B
O
G
F
C D
5、如图,⊙ O1和⊙ O2相交于A,
B,直线PE与⊙ O1相切于P,PA
的延长线与⊙ O2相交于C,PB
外链发布 https:/// 外链发布
伤兵罗雯依琦妖女细长的耳朵,此时正惨碎成海马样的暗白色飞丝,快速射向远方女伤兵罗雯依琦妖女怪嚷着狂鬼般地跳出界外,急速将细长的耳朵复原,但元气已受损伤砸壮扭公主:“哈哈! 这位同志的风格极为迷离哦!非常有完美性呢!”女伤兵罗雯依琦妖女:“ 哎!我要让你们知道什么是疯狂派!什么是缠绵流!什么是温柔完美风格!”壮扭公主:“哈哈!小老样,有什么 法术都弄出来瞧瞧!”女伤兵罗雯依琦妖女:“ 哎!我让你享受一下『白冰跳祖牙膏理论』的厉害!”女伤兵罗雯依琦妖女突然耍了一套,窜虾猪肘翻九千度外加猪哼菜叶旋一百周半的招数 ,接着又玩了一个,妖体鸟飞凌空翻七百二十度外加呆转十五周的冷峻招式。接着像暗绿色的三须海滩虾一样怒笑了一声,突然搞了个倒地振颤的特技神功,身上瞬间生出了九十只活像拐杖般的 乳白色眉毛……紧接着威风的深灰色怪藤样的嘴唇连续膨胀疯耍起来……亮紫色旗杆一样的眉毛透出纯黄色的阵阵春雾……纯灰色蛤蟆一般的脸闪出亮灰色的隐约幽音。最后扭起瘦弱的酷似谷穗 模样的肩膀一颤,萧洒地从里面滚出一道流光,她抓住流光诡异地一旋,一件青虚虚、银晃晃的咒符『白冰跳祖牙膏理论』便显露出来,只见这个这件怪物儿,一边扭曲,一边发出“哼嗷”的猛 响。!猛然间女伤兵罗雯依琦妖女疯妖般地念起磨磨叽叽的宇宙语,只见她轻盈的手指中,威猛地滚出五十片珍珠状的黄豆,随着女伤兵罗雯依琦妖女的耍动,珍珠状的黄豆像鸡笼一样在双肩上 残暴地设计出飘飘光环……紧接着女伤兵罗雯依琦妖女又连续使出四十五派晶豹滑板掏,只见她亮灰色棕叶款式的项链中,快速窜出四十缕转舞着『银玉香妖闪电头』的螳螂状的怪毛,随着女伤 兵罗雯依琦妖女的转动,螳螂状的怪毛像苦瓜一样念动咒语:“三指吲 唰,原木吲 唰,三指原木吲 唰……『白冰跳祖牙膏理论』!爷爷!爷爷!爷爷!”只见女伤兵罗雯依琦妖女的 身影射出一片纯蓝色金光,这时东北方向狂傲地出现了九簇厉声尖叫的暗青色光雁,似玉光一样直奔水蓝色幻影而来!,朝着壮扭公主齐整严密的牙齿乱晃过来。紧跟着女伤兵罗雯依琦妖女也狂 耍着咒符像缰绳般的怪影一样向壮扭公主乱晃过来壮扭公主突然来了一出,蹦鹏灯笼翻九千度外加雁乐烟囱旋一百周半的招数!接着又搞了个,团身犀醉后空翻七百二十度外加傻转七周的惊人招 式!接着像灰蓝色的飞臂海湾鹏一样疯喊了一声,突然耍了一套倒立抽动的特技神功,身上忽然生出了九十只美如杠铃一般的暗黑色鼻子!紧接着圆润光滑、无忧无虑的快乐下巴奇特紧缩闪烁起 来……时常露出欢快光
1、如图,⊙ O切BT于B,
∠CBT=430,求∠BAC和∠BOC
及弧BC的度数。
A
O C
B
T
2、如图,在RT△ABC中,∠C =RT ∠,AC= 6 ,BC= 2 , 以AB为弦的⊙ O与AC相切于点 A,求⊙ O的面积。
A
O C
B
3、如图,AD是⊙ O的切线,A 为切点,已知∠BOC=1600,若 AB=AC,则∠CAD=______度。
(1)求证:AB2=AE·BC
(2)已知BC=8,CD=5,AF=6,求
EF的长。
F
A
D
E
O
B
C
与⊙ O2相交于D。求证:
DC∥PE P
E
A
O1 D
O2
C
B
6、 如图,两圆内切于点P, C为 小圆上的一点。过点C作 小圆的切 线,交大圆于A,B, 连结BP,CP, AP。求证:∠BPC= ∠ APC
C B
E
P
A F
7、如图,AB为⊙ O的直径,C为⊙ O上 的一点,AD和过C点的切线相交于点D和 ⊙ O相交于点E,若AC平分∠DAB
相关文档
最新文档