2018年成考数学真题及其答案(20201009184319)
2018年成人高考《高等数学(一)》真题及答案

A.1B. 2 C. 3 D. 4 解:
设 f x 4x ln 4 x 4 ln x k , x 0,.①
f x 4 4 ln3 x 4 4 x ln3 x 1
则
x
xx
.②
令 f x 0 ,得驻点 x 1.
因为当 x 0,1 时,f x 0 ,故 f x 在 x 0,1单调减少;而当 x 1,时,f x 0 故 f x
x
x
.
第 3 页 共 18 页
综合上述分析可画出 y f x的草图,易知交点个数为 2.
16.设
ln
f
t
cos t
,则
tf f
ttdt
(A)
A. t cost sin t C B. t sin t cost C
C. tcos t sin t C D. t sin t C
lim ln n 1 1 2 1 2 2 1 n 2 17. n n n n (B)
sin x dx
sin 2x dx
2.函数 y 8x 的反函数是(C). A. y 3log 2 x(x 0) ;B. y 8x ;
C.
y
1 3
log 2
x(x
0)
;D.
y
8 x
(x
0)
.
xn
1 n
,当n为奇数,
3.设
107 ,当n为偶数, 则(D)
A.
lim
n
xn
0
;B.
lim
n
xn
107 ;
0, n为奇数,
lim
n
2
2
C. 2 cos y D. 2 cos x
dy 解:因为 dx
2018年成人高考高起点数学(文)考试真题及答案

)
3 A.
2
2 B.
3
3 C.-
2
2 D.-
3
14. 若 1 名女生和 3 名男生排成一排,则该女生不在两端的不同排法共有(
)
A. 24 种
B. 16 种
C. 12 种
D. 8 种
15. 已知平面向量 a=( 1,t ),b=( -1 ,2)若 a+mb 平行于向量 ( -2 ,1)则( )
A. 2t-3m+1=0
B. 2t-3m-1=0
C. 2t+3m+1=0
***
D. 2t+3m-1=0
15 . 函数 f ( x)
π
2cos( 3x - )在区间 3
A.2
ππ 的最大值是()
-, 33
B. 3 C.0
D.-1
16. 函数 y=x2-2x-3 的图像与直线 y=x+1 交于 A,B 两点,则 |AB|= ( )
A. { 6 }
B. { 2 , 4 }
C. { 2 , 4, 8 }
D. { 2,
, 4, 6, 8 }
2. 不等式 x2-2x<0 的解集为( )
A. { x | 0 < x < 2 }
B. { x |-2 < x < 0 }
C. { x | x < 0
或 x>2}
D. { x | x < -2
PF
FF 1
2
22
1 -.
3
PF P F
1 2
***
3
A.4 π
B.2
C. π
π
π D.
2
2018年成人高考专升本《高等数学(一)》考试及参考答案(共三套)

2018年成人高等学校专升本招生全国统一考试高等数学(一)。
答案必须答在答题卡上指定的位置,答在试卷上无效.......(共三套及参考答案)第Ⅰ卷(选择题,共40分)一、选择题:1~10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.A.0B.1C.2D.不存在2.().A.单调增加且为凹B.单调增加且为凸c.单调减少且为凹D.单调减少且为凸3.A.较高阶的无穷小量B.等价无穷小量C.同阶但不等价无穷小量D.较低阶的无穷小量4.A.B.0C.D.15.A.3B.5C.1D.A.-sinxB.cos xC.D.A.B.x2C.2xD.28.A.B.C.D.9.设有直线当直线l1与l2平行时,λ等于().A.1B.0C.D.一110.下列命题中正确的有().A.B.C.D.第Ⅱ卷(非选择题,共110分)二、填空题:11~20小题,每小题4分,共40分.11.12.13.14.15.16.17.18.19.20.三、解答题.21~28小题,共70分.解答应写出推理、演算步骤.21.(本题满分8分)22.(本题满分8分)设y=x+arctanx,求y'.23.(本题满分8分)24.(本题满分8分)计算25.(本题满分8分)26.(本题满分10分)27.(本题满分10分)28.(本题满分10分)求由曲线y=x,y=lnx及y=0,y=1围成的平面图形的面积S及此平面图形绕y轴旋转一周所得旋转体体积.模拟试题参考答案一、选择题1.【答案】C.【解析】本题考查的知识点为左极限、右极限与极限的关系.2.【答案】B.【解析】本题考查的知识点为利用一阶导数符号判定函数的单调性和利用二阶导数符号判定曲线的凹凸性.3.【答案】C.【解析】本题考查的知识点为无穷小量阶的比较.4.【答案】D.【解析】本题考查的知识点为拉格朗日中值定理的条件与结论.可知应选D.5.【答案】A.【解析】本题考查的知识点为判定极值的必要条件.故应选A.6.【答案】C.【解析】本题考查的知识点为基本导数公式.可知应选C.7.【答案】D.【解析】本题考查的知识点为原函数的概念.可知应选D.8.【答案】D.【解析】本题考查的知识点为牛顿一莱布尼茨公式和定积分的换元法.因此选D.9.【答案】C.【解析】本题考查的知识点为直线间的关系.10.【答案】B.【解析】本题考查的知识点为级数的性质.可知应选B.通常可以将其作为判定级数发散的充分条件使用.二、填空题11.【参考答案】e.【解析】本题考查的知识点为极限的运算.12.【参考答案】1.【解析】本题考查的知识点为导数的计算.13.【参考答案】x—arctan x+C.【解析】本题考查的知识点为不定积分的运算.14.【参考答案】【解析】本题考查的知识点为定积分运算.15.【参考答案】【解析】本题考查的知识点为隐函数的微分.解法1将所给表达式两端关于x求导,可得从而解法2将所给表达式两端微分,16.【参考答案】【解析】本题考查的知识点为二阶常系数线性齐次微分方程的求解.17.【参考答案】1.【解析】本题考查的知识点为二元函数的极值.可知点(0,0)为z的极小值点,极小值为1.18.【参考答案】【解析】本题考查的知识点为二元函数的偏导数.19.【参考答案】【解析】本题考查的知识点为二重积分的计算.20.【参考答案】【解析】本题考查的知识点为幂级数的收敛半径.所给级数为缺项情形,三、解答题21.【解析】本题考查的知识点为极限运算.解法1解法2【解题指导】在极限运算中,先进行等价无穷小代换,这是首要问题.应引起注意.22.【解析】23.【解析】本题考查的知识点为定积分的换元积分法.【解题指导】比较典型的错误是利用换元计算时,一些考生忘记将积分限也随之变化. 24.【解析】本题考查的知识点为计算反常积分.计算反常积分应依反常积分收敛性定义,将其转化为定积分与极限两种运算.25.【解析】26.【解析】27.【解析】本题考查的知识点为二重积分运算和选择二次积分次序.28.【解析】所给曲线围成的图形如图8—1所示.2018年成人高等学校专升本招生全国统一考试高等数学(一)。
2018年成人高考数学真题(理工类)版(最新整理)

数学试题(理工农医类)
第Ⅰ卷(选择题,共 85 分) 一、选择题(本大题共 17 小题,每小题 5 分,共 85 分,在每小题给出的四个选项中,只有一项是
符合题目要求的)
1.设集合 M {x -1 x 2}, N {x x 1}, 则 M N
(25)(本小题满分 12 分)设椭圆的焦点为 F1( 3,0), F2 ( 3,0) ,其长轴长为 4.
(1)求椭圆的方程;
(2)若直线 y 3 x m 与椭圆有两个不同的交点,求 m 的取值范围. 2
(22)(本小题满分 12 分)已知 ABC 中, A 60o , AB 5, AC 6, 求 BC .
(23)(本小题满分
12
分)已知数列 an的前 n
项和
sn
1
1 2n
,求‘
(1) an的前 3 项;
(2) an 的通项公式.
(24)(本小题满分 12 分)设函数 f (x) x3 3x2 9x .求 (1)函数 f (x) 的导数; (2)函数 f (x) 在区间[1,4]的最大值与最小值.
C . -2
D . -3
13 .每次射击时,甲击中目标的概率为 0.8 ,乙击中目标的概率为 0.6 ,甲、乙各自独立地射向目标,
则恰有一人击中的概率为
A . 0.44
B . 0.6
C . 0.8
D .1
14 .已知一个球的体积为 32 ,则它的表面积为 3
A . 4 B . 8 C .16
D . 24
B . y x-1 2
C . y 2x 1 D . y 1-2x
7 .若 a, b, c 为实数,且 a 0 。设甲: b2 4ac 0 ,乙: ax2 bx c 0 有实数根,则
2018年成人高考《高等数学(二)》真题和答案解析

B. C.对立事件 D.互不相容事件 二、填空题:11~20 小题,每小题 4 分,共 40 分.把答案填在题中横线上.
11.
12.
13. 14.设函数 y=In(1+x2),则 dy=__________.
15.
16.Leabharlann 17.18.19. 20.由曲线 y=x 和 y=x2 围成的平面图形的面积 S=__________. 三、解答题:21~28 小题,共 70 分.解答应写出推理、演算步骤.
18.【答案】应填 1. 【解析】 利用偶函数在对称区间定积分的性质,则有 19. 【解析】 对于对数函数应尽可能先化简以便于求导.因为
20.【答案】应填吉.
【解析】 画出平面图形如图 2-3—2 阴影部分所示,则
三、解答题 21.本题考查的知识点是重要极限Ⅱ. 【解析】 对于重要极限Ⅱ:
第6页共9页
22.本题考查的知识点是求复合函数在某一点处的导数值. 【解析】 先求复合函数的导数 yˊ,再将 x=1 代入 yˊ.
23.本题考查的知识点是定积分的计算方法. 【解析】 本题既可用分部积分法计算,也可用换元积分法计算.此处只给出分部积分法,有兴趣的读者可以 尝试使用换元积分法计算.
24.本题主要考查原函数的概念和不定积分的分部积分计算方法. 【解析】 这类题常见的有三种形式:
等式右边部分拿出来,这就需要用凑微分法(或换元积分法)将被积表达式写成能利用公式的不定积分的结构式, 从而得到所需的结果或答案.考生如能这样深层次理解基本积分公式,则无论是解题能力还是计算能力与水平 都会有一个较大层次的提高. 基于上面对积分结构式的理解,本题亦为:
第4页共9页
7.【答案】 应选 B. 【解析】 本题考查的知识点是已知导函数求原函数的方法.
2018年《高数》真题

2018年成人高等学校专升本招生全国统一考试高等数学(一)一、选择题:每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求。
1.=→xxx cos lim 0()A.eB.2C.1D.02.设x y cos 1+=,则dy=()A.()dxx sin 1+ B.()dxx sin 1- C.xdxsin D.xdxsin -3.若函数()x x f 5=,则()='x f ()A.15-x B.15-x x C.5ln 5x D.x54.=-⎰dx x21()A.C x +-2ln B.Cx +--2ln C.()Cx +--221D.()Cx +-2215.()='⎰dx x f 2()A.()Cx f +221 B.()Cx f +2 C.()Cx f +22 D.()Cx f +216.若()x f 为连续的奇函数,则()=⎰-dx x f 11A.0B.2C.()12-f D.()12f 7.若二元函数y x y x z 232++=,则=∂∂xz()A.yxy 232++ B.yxy 23++ C.32+xy D.3+xy 8.方程0222=-+z y x 表示的二次曲面是()A.柱面B.球面C.旋转抛物面D.椭球面9.已知区域(){}11,11,≤≤-≤≤-=y x y x D ,则=⎰⎰Dxdxdy ()A.0B.1C.2D.410.微分方程1='y y 的通解为()A.Cx y +=2 B.Cx y +=221 C.Cxy =2 D.Cx y +=22二、填空题:11~20小题,每小题4分,共40分11.曲线43623++-=x x x y 的拐点为___________12.()=-→xx x 1031lim ___________13.若函数()x x x f arctan -=,则()='x f ___________14.若x e y 2=,则=dy ___________15.()=+⎰dx x 32___________16.()=+⎰-dx x x 1125___________17.=⎰dx x π02sin ___________18.=∑∞=031n n___________19.=⎰+∞-dx e x 0___________20.若二元函数22y x z =,则=∂∂∂yx z2___________三、解答题:21~28题,共70分.解答应写出推理、演算步骤21.设函数()⎪⎩⎪⎨⎧≥+=0a,30<,sin 3x x x x xx f ,在0=x 处连续,求a22.求()1sin 123lim2231---→x x x x 23.设函数()()23ln 2++=x x x f ,求()0f ''24.求23sin lim x tdt xx ⎰→25.求⎰xdxx cos 26.求函数()5213123+-=x x x f 的极值27.求微方程x y xy ln 21=-'的通解28.设区域(){}0,9,22≥≤+=y y x y x D ,计算()d xdyy x D⎰⎰+222018年成人高等学校专升本招生全国统一考试高等数学(一)试题答案解析1.【答案】D【解析】010cos lim lim cos lim00===→→→x x x x x x 2.【答案】D【解析】()x x y sin cos 1-='+=',故xdx dy sin -=3.【答案】C【解析】()()5ln 55x x x f ='='4.【答案】B 【解析】C x dx x+--=-⎰2ln 215.【答案】A 【解析】()()()()C x f x d x f dx x f +='='⎰⎰221222126.【答案】A【解析】因为()x f 为连续的奇函数,故()011=⎰-dx x f 7.【答案】C【解析】y x y x z 232++=,故32+=∂∂xy xz8.【答案】C【解析】0222=-+z y x 可化为z y x =+2222,故表示的是旋转抛物面9.【答案】A【解析】02111111===⎰⎰⎰⎰⎰---xdx dy xdx xdxdy D10.【答案】B【解析】原方程分离变量得dx ydy =,两边同时积分得C x y +=221,故方程的通解为C x y +=22111.【答案】(2,-6)【解析】31232+-='x x y ,126-=''x y ,令0=''y ,则6,2-==y x ,故拐点为(2,-6)12.【答案】3-e 【解析】()()[]()33311031lim 31lim --⋅-→→=-+=-e x x xx x x 13.【答案】221x x +【解析】()x x x f arctan -=,则()2221111x x x x f +=+-='14.【答案】dxe x 22【解析】()x x e e y 222='=',则dx e dy x 22=15.【答案】C x x ++32【解析】()C x x dx x ++=+⎰332216.【答案】32【解析】()32316111361125=⎪⎭⎫ ⎝⎛+=+--⎰x x dx x x 17.【答案】2【解析】22cos 222sin 22sin 000=-=⎪⎭⎫ ⎝⎛=⎰⎰πππxx d x dx x 18.【答案】23【解析】2331123lim 3113111lim 31000=⎪⎭⎫ ⎝⎛-=-⎪⎭⎫ ⎝⎛-⋅=→→∞=∑n x n x n n19.【答案】1【解析】10=-=∞+-+∞-⎰x x e dx e 20.【答案】xy4【解析】22y x z =,22xy x z =∂∂,xyyx z 42=∂∂∂21.【答案】()3sin 3limlim 00==--→→xxx f x x ()()aa x x f x x =+=++→→3lim lim 00且()af =0因为()0=x x f 在处连续所以()()()0lim lim 00f x f x f x x ==+-→→3=a 22.【答案】()1123lim1sin 123lim 22312231---=---→→x x x x x x x x ()()()()25113lim 11113lim2121=+++=+--++=→→x x x x x x x xx x 23.【答案】()()()22392332+-=''++='x x f x x f 故()490-=''f 24.【答案】202003cos 31lim 3sin lim xt x tdt x x xx -=→→⎰()2329lim 313cos 131lim 22020==-=→→x xx x x x 25.【答案】⎰⎰-=xdxx x xdx x sin sin cos Cx x x ++=cos sin 26.【答案】()x x x f -='2,令()0='x f ,得01=x ,12=x ,当1>0<x x 或时,()0>x f ',此时()x f 为单调增加函数当1<x <0时,()0<x f ',此时()x f 为单调减少函数故当0=x 时,()x f 取极大值,极大值()50=f 当1=x 时,,()x f 取极小值,极小值()6291=f 27.【答案】这是个一阶线性非齐次微分方程()xx P 1-=,()x x Q ln 2=故通解为⎪⎪⎭⎫ ⎝⎛+⎰⎰=⎰-C dx xe e y dx x x 11ln 2()[]Cx x C dx x x x +=⎪⎭⎫ ⎝⎛+⋅=⎰2ln ln 228.【答案】D 在极坐标系里可表示为30,0≤≤≤≤r πθ,故()πθπ48132022=⋅=+⎰⎰⎰⎰rdr r d dxdy y xD。
2018年成人高考高数一真题及答案

29
6
27.这是个一阶线性非齐次微分方程。
P(x) = −
1
, Q(x) = 2lnx
1
1
故通解为y = ∫ .∫ 2 ∫ ; + C/ = x ∙ .2 ∫
dx + C/ = x,(lnx)2 + -
28.积分区域用极坐标可表示为:0 ≤ θ ≤ π,0 ≤ r ≤ 3,
三、解答题(21-28 题,共 70 分)
21.lim→0− () = limx→0−
3 sin
=3
lim () = lim+(3 + ) =
x→0+
x→0
且 f(x)=a
因为 f(x)在 x=0 处连续,所以.limx→0− () = limx→0+ () = (0)
23.设函数f(x) = 2x + ln(3x + 2),求f ′′ (0)
24.计算lim→0
∫0 sin 3
2
25.求∫ cos
1
1
26.求函数f(x) = 3 x 3 − 2 2 + 5 的极值
1
27.求微分方程y ′ − y = 2lnx的通解
28.设区域D = *(x, y)|x 2 + 2 ≤ 9, ≥ 0+,计算∬( 2 + 2 )。
D. 4
C.2
10.微分方程yy ′ = 1的通解为(
A. 2 = +
)
1
B. 2 2 = +
)
C. y 2 =
2018年成考数学真题及其答案

绝密★启用前2018年成人高等学校招生全国统一考试数 学一、选择题:本大题共17小题,每小题5分,共85分。
在每小题给出的四个选项中,只有一项是符合题目要求的,将所选项前的字母填涂在答题卡相应题号的信息点上............。
(1)设集合M={x ∣-1≤x <2},N={x ∣x ≤1},则集合M ∩N=(A ){x ∣x >-1} (B ){x ∣x >1} (C ){x ∣-1≤x ≤1} (D ){x ∣1≤x ≤2}(2)函数y=51-x 的定义域为 (A )(-∞,5) (B )(-∞,+∞) (C )(5,+∞) (D )(-∞,5)∪(5,+∞)(3)函数y=2sin6x 的最小正周期为(A )3π (B )2π (C )π2 (D )π3 (4)下列函数为奇函数的是(A )y=log 2x (B )y=sinx (C )y=x 2 (D )y=3x(5)过点(2,1)且与直线y=x 垂直的直线方程为(A )y=x+2 (B )y=x-1 (C )y= -x+3 (D )y= -x+2(6)函数y=2x+1的反函数为(A )21+=x y (B )21-=x y (C )y=2x-1 (D )y=1-2x (7)若a,b,c 为实数,且a ≠0.设甲:b 2-4ac ≥0,乙:ax 2+bx+c=0有实数根,则(A )甲是乙的必要条件,但不是乙的充分条件(B )甲是乙的充分条件,但不是必要条件(C )甲既不是乙的充分条件,也不是乙的必要条件(D )甲是乙的充分必要条件(8)二次函数y=x 2+x-2的图像与x 轴的交点坐标为(A )(-2,0)和(1,0) (B )(-2,0)和(-1,0)(C )(2,0)和(1,0) (D )(2,0)和(-1,0)(9)设i z 31+=,i 是虚数单位,则=z1 (A )431i + (B )431i - (C )432i + (D )432i - (10)设a >b >1,则(A )a 4≤b 4 (B )log a 4>log b 4 (C )a -2<b -2 (D )4a <4b(11)已知平面向量a =(1,1),b =(1,-1),则两向量的夹角为(A )6π (B )4π (C )3π (D )2π (12))(x x 1-的展开式中的常数项为 (A )3 (B )2 (C )-2 (D )-3(13)每次射击时,甲击中目标的概率为0.8,乙击中目标的概率为0.6,甲、乙各自独立地射向目标,则恰有一人击中的概率为(A )0.44 (B )0.6 (C )0.8 (D )1(14)已知一个球的体积为π332,则它的表面积为 (A )4π (B )8π (C )16π (D )24π(15)在等腰三角形ABC 中,A 是顶角,且21=cosA -,则cosB= (A )23 (B )21 (C )21- (D )23- (16)四棱锥P-ABCD 的底面为矩形,且AB=4,BC=3,PD ⊥底面ABCD ,PD=5,则PB 与底面所成角为(A )30° (B )45° (C )60° (D )75°(17)将5本不同的历史书和2本不同的数学书排成一行,则2本数学书恰好在两端的概率为(A )101 (B )141 (C )201 (D )211 二、填空题:本大题共4小题,每小题4分,共16分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(6)函数 y=2x+1 的反函数为
(A) y x 1 ( B) y 2
(7)若 a,b,c 为实数,且
x1
( C)y=2x-1 ( D) y=1-2x
2
a≠0. 设甲: b2-4ac ≥ 0,乙: ax 2+bx+c=0 有实数根,则
(A)甲是乙的必要条件,但不是乙的充分条件
(B)甲是乙的充分条件,但不是必要条件
经典文档 下载后可复制编辑
1 (23)(本小题满分 12 分) 已知数列 {a n} 的前 n 项和 Sn = 1 - 2n ,求
(I ) {a n} 的前 3 项; (II ){a n} 的通项公式 .
(24)(本小题满分 12 分) 设函数 f(x)=x 3-3x 2-9x. 求 (I )函数 f(x) 的导数; (II )函数 f(x) 在区间 [1,4] 的最大值与最小值 .
(A) ( B)
( C) 2 ( D) 3
3
2
(4)下列函数为奇函数的是
(A) y=log 2x ( B) y=sinx (C) y=x 2 ( D) y=3x
(5)过点( 2, 1)且与直线 y=x 垂直的直线方程为 (A) y=x+2 ( B) y=x-1 (C) y= -x+3 ( D)y= -x+2
半;如果后继部分的解答有较严重的错误,就不再给分
.
3. 解答右端所注分数,表示考生正确做到这一步应得的累加分数
.
4. 只给整数分数 . 选择题和填空题不给中间分 .
一、选择题
(1) C (2) D (3) A (4) B (5) C (6) B (7) D (8) A (9) B (10) C
(11) D (12) D (13) A (14) C (15) A (16) B (17) D
(9)设 z 1
3i , i 是虚数单位,则 1 z
(A) 1 3i ( B) 1 3i ( C) 2 3i ( D) 2 3i
4
4
4
4
(10)设 a> b> 1,则 (A) a4≤ b4 (B) log a4> log b4 (C) a-2 < b-2 ( D)4a< 4b
(11)已知平面向量 a=( 1, 1), b=( 1,-1 ),则两向量的夹角为
2
2
2
2
(16) 四棱锥 P-ABCD的底面为矩形,且 AB=4, BC=3,PD⊥底面 ABCD, PD=5,则 PB与底面所
成角为
(A) 30° ( B) 45° ( C)60° (D) 75°
(17)将 5 本不同的历史书和 2 本不同的数学书排成一行, 则 2 本数学书恰好在两端的概率
为
(A) 1 ( B) 1 ( C) 1 ( D) 1
x ,则 f ( 3)
.
x1
(21)某运动员射击 10 次,成绩(单位:环)如下
8 10 9 9 10 8 9 9 8 7
则该运动员的平均成绩是
环.
三、解答题:本大题共 4 小题,共 49 分。解答题应写出推理、演算步骤,并将其写在答题 ..
卡.相.应.题.号.后. 。 (22)(本小题满分 12 分) 已知△ ABC中, A=60°, AB=5,AC=6,求 BC.
(A)
6
(12) (
( A) 3
( B)
( C)
( D)
4
3
2
x 1 ) 的展开式中的常数项为 x
( B) 2 ( C) -2 ( D) -3
经典文档 下载后可复制编辑
(13)每次射击时,甲击中目标的概率为 0.8 ,乙击中目标的概率为
地射向目标,则恰有一人击中的概率为
( A) 0.44
( B) 0.6
( C)0.8
( D) 1
(14)已知一个球的体积为 32 ,则它的表面积为 3
(A) 4π ( B) 8π ( C) 16π ( D) 24π
( 15 )在等腰三角形
ABC中, A 是顶角,且 cosA =
1
,则 cosB=
2
0.6 ,甲、乙各自独立
(A) 3 ( B) 1 ( C) 1 ( D) 3
数学(理工农医类)试题答案及评分参考
说明:
1. 本解答给出了媒体的一中或几种解法供参考,如果考生的解法与本解答不同,可根据
试题的主要考查内容比照评分参考制定相应的评分细则
.
2. 对计算题, 当考生的解答在某一步出现错误时, 如果后继部分的解答为改变该题的内
容和难度, 可视影响的成都决定后继部分的给分, 但不得超过该部分正确解答应得分数的一
(C)甲既不是乙的充分条件,也不是乙的必要条件
(D)甲是乙的充分必要条件 (8)二次函数 y=x 2+x-2 的图像与 x 轴的交点坐标为
(A)( -2 ,0)和( 1, 0) ( B)( -2 , 0)和( -1 , 0)
(C)( 2, 0)和( 1, 0) ( D)( 2,0)和( -1 , 0)
经典文档 下载后可复制编辑
(25)(本小题满分 12 分) 设椭圆的焦点为 F1(- 3,0) , F2 ( 3,0) ,其长轴长为 4.
(I )求椭圆的方ห้องสมุดไป่ตู้;
(II )若直线 y
3 x m 与椭圆有两个不同的交点,求 2
m的取值范围 .
经典文档 下载后可复制编辑
绝密★启用前
2014 年成人高等学校招生全国统一考试
(A) {x ∣ x> -1} ( B) {x ∣ x>1} ( C){x ∣ -1 ≤ x≤ 1} ( D) {x ∣ 1≤x≤ 2}
(2)函数 y= 1 的定义域为 x5
(A)( - ∞, 5) ( B)( - ∞, +∞)
( C)( 5, +∞)
( D)( - ∞, 5)∪( 5, +∞)
(3)函数 y=2sin6x 的最小正周期为
10
14
20
21
二、填空题:本大题共 4 小题,每小题 4 分,共 16 分。把答案写在答题.卡.相.应.题.号.后.. 。
(18)已知空间向量 a=( 1, 2,3), b=(1, -2 , 3),则 2a+b=
.
(19)曲线 y=x 3-2x 在点( 1, -1 )处的切线方程为
.
(20)设函数 f ( x 1)
绝密★启用前
2018 年成人高等学校招生全国统一考试
数学
一、选择题:本大题共 17 小题,每小题 5 分,共 85 分。在每小题给出的四个选项中,只
有一项是符合题目要求的,将所选项前的字母填涂在答题卡相.应.题.号.的.信.息.点.上.... 。
(1)设集合 M={x ∣-1 ≤ x<2} , N={x ∣ x≤1} ,则集合 M∩ N=