高中数学排列组合 平均分组(分配问题)
排列组合中的分组分配

• 练习:9件不同的玩具,按下列分配方案各有几
•
• • • • 种分法? ①甲得2件,乙得3件,丙得4件,有多少种分法 ? ②一人得2件,一人得3件,一人得4件,有多少 种分法? ③每人3件,有多少种分法? ④平均分成三堆,有多少种分法? ⑤分为2、2、2、3四堆,有多少种分法?
• 练习: 9件不同的玩具,按下列分配方案各有几种
9
C C C C C C C C C C C 2174
3 3 3 9 2 1 3 3 5 8 1 2 3 3 5 7 0 3 3 3 5 6
排列组合中的分组分配问题
ab ac ad bc bd cd
cd bd bc
ad ac ab
引旧育新
1 把abcd分成平均两组 有_____多少种分法? 2 C4 ab ac ad bc bd cd cd bd bc ad ac ab 2 C2 2 A2
3
这两个在分组时只能算一个
记住:
平均分成的组,不管 它们的顺序如何,都 是一种情况,所以分 组后要除以m!,其中m
2 每组中选正、副组长都有 A5 种方法.
5 5 C10 C5 2 2 A A 种. 5 5 50400 2 A2
由分步计数原理共有
二:均分有分配对象的问题
例2:6本不同的书按2∶2∶2平均分给甲、乙、 丙三个人,有多少种不同的分法? 方法:先分再排法。分成的组数看成元 素的个数· (1)均分的三组看成是三个元素在三 个位置上作排列
例7 六本不同的书分给甲、乙、丙3人,1人1本,1人2 本,1人3本有多少种分法?
C61C52C33A33
练习1
1:12本不同的书平均分成四组有多少 种不同分法?
C CCC 4 A4
排列组合中的分组问题

2 4 2 2
2 2 C4 C2 x 2 A2
6人平均分为三组有多少种不同的结果? 处理方法相同
C
3 9
2 2 2 C6 C4 C2 3 A3
混合分组也称为局部平均分组,对于平均 分组部分一定要注意按照平均分组处理。
排列组合中的分组问题
分组问题的类型
一、平均分组
二、不平均分组 三、混合分组
所谓“平均分组”是指将所有元素分成所有 组元素个数相等的组。
例如. 将4个人分成两组,每组都是2人,有多少种不同的分法? 由分步计数原理: 2 第1步: C4 2 第2 步: C 2 2 2 共计: C4 C2 6 现在我们利用列举法列出6种可能:假设4人分别为A、B、C、D。 1 2 3 4 5 6 (A、B),(A、C),(A、D),(B、C),(B、D),(C、D) (C、D),(B、D),(B、C),(A、D),(A、C),(A、B) 实际只有3种
2 2 2 C6 C4 C2 3 A3
对于n个元素,平均分为m组时,我们一定要在分组后要除以
A m!
m m
• 所谓“非均匀分组”是指将所有元素分成 元素个数彼此不相等的组。 例如. 将6人分别以1人、2人、3人分成三 组,有多少种不同的分组方法?
3 2 C C C 4 3
1 6
• 所谓“混合分组”是指即有平均分组又有 不平均分组。 例如,将9人分成人数为3人、2人 、2人、2 四组,有多少种分配方法? 方法相类似利用分步计数原理
排列组合平均分组不平均分组问题

1
2
3
4
C 42 C 21C11 A22
A44
C
41C
31C
2 2
A22
A44
C
2 4
A44
144
例14、将六本不同的书分给三人, 一人1本,一人1本,另一人4本,有 多少种不同的分法?
1
2
3
4
5
6
C
4 6
2 4
6
例6、将六本不同的书分成三堆,一 堆1本,一堆1本,另一堆4本,有多 少种不同的分法?
1
2
3
4
5
6
C
4 6
C
21C11
A22
C
61C
51C
4 4
A22
15
三、完全不平均分组
例7、将三本不同的书分成两堆,一 堆1本,一堆2本,有多少种不同的 分法?
1
2
3
C
31C
2 2
C
2 3
C
1 1
排列组合平均分组问题
一、完全平均分组
例1、将两本不同的书分成两堆,有 多少种不同的分法?
1
2
例2、将三本不同的书分成三堆,有 多少种不同的分法?
1
2
3
例3、将四本不同的书分成两堆,每 堆两本,有多少种不同的分法?
1
2
3
4
12 34 13 24 14 23 34 12 24 13 23 14
C42C
2 2
A22
3
例4、将六本不同的书分成三堆,每 堆两本,有多少种不同的分法?
排列组合中分组分配问题

分组分配问题一.基本内容1.案例分析:将4个不同的元素分为2份,每份2个,请问有多少不同的分法?解析:若按照2422C C 6=的方法进行分组,不妨设4个元素分别为,,,a b c d ,则会出现以下情况:①,ab cd ;②,cd ab ;③,ac bd ;④,bd ac ;⑤,ad bc ;⑥,bc ad .显然,用组合数公式计算出来的结果重复了三次,最终的分组结果应以为:242222C C 3A =2.基本原理2.1分组问题属于“组合”问题,常见的分组问题有三种:将n 个不同元素分成m 组,且每组的元素个数分别为m m m m m ,,,,321 ,记m m mm m m n mm m n mm n mn C C C C N )()(121321211-+++-+--⋅⋅⋅⋅= .(1)非均匀不编号分组:n 个不同元素分成m 组,每组元素数目均不相等,且不考虑各组间的顺序,其分法种数为N .(2)均匀不编号分组:将n 个不同元素分成不编号(即无序)的m 组,每组元素数目相等,其分法种数为m mA N .(3)部分均匀不编号分组:将n 个不同元素分成不编号的m 组,其中有r 组元素个数相等,其分法种数为r rA N ,如果再有k 组均匀分组,应再除以kk A .2.2分配问题属于“排列”问题,分配问题可以按要求逐个分配,也可以分组后再分配.3.相同元素的分组问题:挡板法及其应用:对于n 个相同元素分成m 组(m n <),且每组至少一个元素的分组问题,可采用“隔板法”解决:n 个元素之间形成1n -个空格,只需放入1m -个隔板即可,故不同的分配方案有11C m n --种,其等效于不定方程的非负整数解个数:不定方程r x x x n =+⋅⋅⋅++21的非负整数解.(1)方程r x x x n =+⋅⋅⋅++21的正整数解为11--n r C 个.(2)方程r x x x n =+⋅⋅⋅++21的非负整数解为11--+n r n C 个.二.例题分析例1.某校有5名大学生打算前往观看冰球,速滑,花滑三场比赛,每场比赛至少有1名学生且至多2名学生前往,则甲同学不去观看冰球比赛的方案种数有()A .48B .54C .60D .72【解析】将5名大学生分为1-2-2三组,即第一组1个人,第二组2个人,第三组2个人,共有2215312215C C C A ∙∙=种方法;由于甲不去看冰球比赛,故甲所在的组只有2种选择,剩下的2组任意选,所以由2224A =种方法;按照分步乘法原理,共有41560⨯=种方法;故选:C.例2.甲、乙、丙、丁、戊5名志愿者参加新冠疫情防控志愿者活动,现有,,A B C 三个小区可供选择,每个志愿者只能选其中一个小区.则每个小区至少有一名志愿者,且甲不在A 小区的概率为()A .193243B .100243C .23D .59【解析】首先求所有可能情况,5个人去3个地方,共有53243=种情况,再计算5个人去3个地方,且每个地方至少有一个人去,5人被分为3,1,1或2,2,1当5人被分为3,1,1时,情况数为3353C A 60⨯=;当5人被分为2,2,1时,情况数为12354322C C A 90A ⨯⨯=;所以共有6090150+=.由于所求甲不去A ,情况数较多,反向思考,求甲去A 的情况数,最后用总数减即可,当5人被分为3,1,1时,且甲去A ,甲若为1,则3242C A 8⨯=,甲若为3,则2242C A 12⨯=共计81220+=种,当5人被分为2,2,1时,且甲去A ,甲若为1,则224222C A 6A ⨯=,甲若为2,则112432C C A 24⨯⨯=,共计62430+=种,所以甲不在A 小区的概率为()1502030100243243-+=,故选:B.例3.安排5名大学生到三家企业实习,每名大学生只去一家企业,每家企业至少安排1名大学生,则大学生甲、乙到同一家企业实习的概率为()A .15B .310C .325D .625【解析】5名大学生分三组,每组至少一人,有两种情形,分别为2,2,1人或3,1,1人;当分为3,1,1人时,有3353C A 60=种实习方案,当分为2,2,1人时,有22353322C C A 90A ⋅=种实习方案,即共有6090150+=种实习方案,其中甲、乙到同一家企业实习的情况有13233333C A C A 36+=种,故大学生甲、乙到同一家企业实习的概率为36615025=,故选:D.例4.学校要安排2名班主任,3名科任老师共五人在本校以及另外两所学校去监考,要求在本校监考的老师必须是班主任,且每个学校都有人去,则有()种不同的分配方案.A .18B .20C .28D .34【解析】根据本校监考人数分为:本校1人监考,另外4人分配给两所学校,有2,2和3,1两种分配方案,所以总数为:28)(2233142222222412=+∙A C C A A C C C ;本校2人监考,另外3人分配给两所学校,有2,1一种分配方案,所以总数为:()212223226C C C A =,根据分类计数原理,所有分配方案总数为28+6=34;故选:D.例5.现有甲、乙、丙、丁、戊五位同学,分别带着A 、B 、C 、D 、E 五个不同的礼物参加“抽盲盒”学游戏,先将五个礼物分别放入五个相同的盒子里,每位同学再分别随机抽取一个盒子,恰有一位同学拿到自己礼物的概率为()A .45B .12C .47D .38【解析】先从五人中抽取一人,恰好拿到自己的礼物,有15C 种情况,接下来的四人分为两种情况,一种是两两一对,两个人都拿到对方的礼物,有224222C C A 种情况,另一种是四个人都拿到另外一个人的礼物,不是两两一对,都拿到对方的情况,由3211C C 种情况,综上:共有22111425322245C C C C C A ⎛⎫⋅+= ⎪⎝⎭种情况,而五人抽五个礼物总数为55120A =种情况,故恰有一位同学拿到自己礼物的概率为4531208=.故选:D 例6.为贯彻落实《中共中央国务院关于全面深化新时代教师队伍建设改革的意见》精神,加强义务教育教师队伍管理,推动义务教育优质均衡发展,安徽省全面实施中小学教师“县管校聘”管理改革,支持建设城乡学校共同体.2022年暑期某市教体局计划安排市区学校的6名骨干教师去4所乡镇学校工作一年,每所学校至少安排1人,则不同安排方案的总数为()A .2640B .1440C .2160D .1560【解析】将6人分组有2种情况:2211,3111,所以不同安排方案的总数为2234646422C C A 1560A C ⎛⎫+= ⎪⎝⎭.故选:D.例7.为促进援疆教育事业的发展,某省重点高中选派了3名男教师和2名女教师去支援边疆工作,分配到3所学校,每所学校至少一人,每人只去一所学校,则两名女教师分到同一所学校的情况种数为______.【解析】①若2位女老师和1名男老师分到一个学校有1333C A =18种情况;②若2位女老师分在一个学校,则3名男教师分为2组,再分到3所学校,有2333C A =18种情况,故两名女教师分到同一所学校的情况种数为181836+=种.故答案为:36.例8.2020年是脱贫攻坚决战决胜之年,某市为早日实现目标,现将甲、乙、丙、丁4名干部派遣到,,A B C 三个贫困县扶贫,要求每个贫困县至少分到一人,则甲、乙2名干部不被分到同一个贫困县的概率为___________.【解析】每个贫困县至少分到一人,4名干部分到三个县有211342132236C C C A A =种方案,其中甲、乙2名干部被分到同一个贫困县的方案有336A =种所以甲、乙2名干部不被分到同一个贫困县的概率为3665366P -==,故答案为:56例9.为弘扬学生志愿服务精神,某学校开展了形式多样的志愿者活动.现需安排5名学生,分别到3个地点(敬老院、幼儿园和交警大队)进行服务,要求每个地点至少安排1名学生,则有_______________________种不同的安排方案(用数字作答).【解析】先将5人分为三组,每组的人数分别为3、1、1或2、2、1,再将三组分配给三个地点,由分步乘法计数原理可知,不同的安排方案数为2233535322150C C C A A ⎛⎫+= ⎪⎝⎭种.故答案为:150.例10.6名教师分配到3所薄弱学校去支教,每个学校至少分配一名教师,甲乙两人不能去同一所学校,丙丁两人必须去同一所学校,共有________种分配方案(用数字作答).【解析】按题目要求可按4、1、1或3、2、1或2、2、2分配,若按4、1、1分配,丙丁必须在4人里,需要从其余剩下的4人里选2人,有24C 种,去掉选中甲乙的1种情况,有(24C -1)种选法,安排去3个学校,共有(24C -1)33A =30种;若按3、2、1分配有两类,丙丁为2,甲乙中选1人作1,分配到3个学校有1323C A ,丙丁在3人组中,从剩余4人中取1人,组成3人组,剩余3人取2人组成2人组,剩余1人构成1人组,去掉甲乙构成2人组的情况2种,共有12432C C -种取法,安排去3个学校有(12432C C -)33A 种,两类共有1323C A +(12432C C -)33A =72种;若按2、2、2分配有2·33A =12种,∴共有30+72+12=114种分配方案.下面是挡板法及其应用,仅做了解即可.例11.不定方程12x y z ++=的非负整数解的个数为()A .55B .60C .91D .540解析:不定方程12x y z ++=的非负整数解的个数⇔将12个相同小球放入三个盒子,允许有空盒的放法种数.现在在每个盒子里各加一个相同的小球,问题等价于将15个相同小球放入三个盒子,没有空盒的放法种数,则只需在15个小球中形成的空位(不包含两端)中插入两块板即可,因此,不定方程12x y z ++=的非负整数解的个数为21491C =.故选:C.例12.方程123412x x x x +++=的正整数解共有()组A .165B .120C .38D .35解析:如图,将12个完全相同的球排成一列,在它们之间形成的11个空隙中任选三个插入三块隔板,把球分成四组,每一种分法所得球的数目依次是1x 、2x 、3x 、4x ,显然满足123412x x x x +++=,故()1234,,,x x x x 是方程123412x x x x +++=的一组解,反之,方程123412x x x x +++=的每一组解都对应着一种在12个球中插入隔板的方式,故方程123412x x x x +++=的正整数解的数目为:31111109165321C ⨯⨯==⨯⨯,故选:A.。
高中数学排列组合-平均分组(分配问题)概要

每班至少一个.由(1)可知共有 C62 种15分法
注:第一小题也可以先给每个班一个指标,
然后,将剩余的4个指标按分给一个班、两
个班、三个班、四个班进行分类,共有
C61 3C62 3C63 C64 126 种分法.
C61C52C33
注意:非均分问题无分配对象只要按比例分完 再用乘法原理作积
六、非均分组分配对象确定问题
例6 六本不同的书按1∶2∶3分给甲、乙、丙三个人有 多少种不同的分法?
C61C52C33
七、非均分组分配对象不固定问题
例7 六本不同的书分给3人,1人1本,1人2本,1人3本 有多少种分法
C61C52C33 A33
例2:6本不同的书按2∶2∶2平均分给甲、乙、丙三 个人,有多少种不同的分法?
方法:先分再排法。分成的组数看成元素的个数·
解:均分的三组看成是三个元素在三个位 置上作排列
C
2 6
C
2 4
C
2 2
A
3 3
A
3 3
C
2 6
C
2 4
C
2 2
=90
三、部分均分有分配对象的问题
例3 12支笔按3:3:2:2:2分给A、B、C、D、E五 个人有多少种不同的分法?
注意:非均分组有分配对象要把组数当作元素 个数再作排列。
五、当堂训练
练习1
1:12本不同的书平均分成四组有多少 种不同分法?
C132
C
39 C 36
C
3 3
A
4 4
练习2
2:10本不同的书
(1)按2∶2∶2∶4分成四
排列组合中的分组分配问题例解

排列组合中的分组分配问题例解在排列、组合的学习中分组分配问题经常遇到,本文谈一谈几种常见问题。
实例:6本不同的书,按照以下要求处理,各有几种分法(1) 分成三堆,一堆一本,一堆两本,一堆三本; (2) 平均分成三堆;(3) 分成三堆,一堆四本,另两堆各一本; (4) 分成四堆,两堆各一本,另两堆各两本;(5) 分给甲、乙、丙三个人 ,甲得一本,乙得两本,丙得三本;(6) 分给甲、乙、丙三个人 ,一人得一本,一人得两本,一人得三本; (7) 平均分给甲、乙、丙三个人;(8) 分给甲、乙、丙三个人 ,甲得四本,乙、丙各得一本; (9) 分给甲、乙、丙三个人 ,一人得四本,另两人各得一本; (10) 分给甲、乙、丙、丁四个人 ,甲、乙各得一本,丙、丁各得两本; (11) 分给甲、乙、丙、丁四个人 ,两人各得一本,另两人各得两本;分析:在排列、组合中分组分配问题一般按照“先分组再分配”的原则,但不排除其他途径。
在分组时要区分是均分还是非均分或部分均分,在分配时要区分是定向分配还是非定向分配。
(1)非均匀分组,分步产生每一组不会造成重复:123653C C C(2) 均匀分组,分步产生每一组会造成重复,应消去步骤造成的重复计数:22264233C C C A(3)部分均匀分组,应消去均匀分组时步骤上造成的重复计数:41162122C C C A(4)同(3):112265422222C C C C A A(5)非均匀定向分配,等同于非均匀分组:123653C C C 亦可理解为甲、乙、丙依次选择。
(6)非均匀不定向分配,分组后再分配:12336533C C C A (7)均匀分配,分组后再分配:2223642333C C C A A 亦可理解为甲、乙、丙依次选择:222642C C C(8)部分非均匀定向分配,均匀部分要分配:4112621222C C C A A 亦可理解为甲、乙、丙依次选择:411621 C C C(9)部分非均匀不定向分配,分组后再分配:4113 621232C C CA A(10)同(8)::1122226542222222C C C CA AA A亦可理解为甲、乙、丙依次选择:11226542 C C C C(11)同(9)11224 654222422C C C CA A A小结:(1)分组时应注意消去均匀部分的重复计数。
6、排列组合问题之分组分配问题(两个五个方面)

排列组合问题之分组分配问题(一)(五个方面)一、非均匀分组(分步组合法)“非均匀分组”是指将所有元素分成元素个数彼此不相等的组。
例1、7人参加义务劳动,按下列方法分组有多少种不同的分法?①分成3组,分别为1人、2人、4人;②选出5个人分成2组,一组2人,另一组3人。
解:①先选出1人,有17C 种,再由剩下的6人选出2人,有26C 种,最后由剩下的4人为一组,有44C 种。
由分步计数原理得分组方法共有124764105C C C =(种)。
②可选分同步。
先从7人中选出2人,有27C 种,再由剩下的5人中选出3人,有35C 种,分组方法共有2375210C C =(种)。
也可先选后分。
先选出5人,再分为两组,由分步计数原理得分组方法共有523753210C C C =(种)。
二、均匀分组(去除重复法)“均匀分组”是指将所有元素分成所有组元素个数相等或部分组元素个数相等的组。
㈠全部均匀分组(去除重复法)例2、7人参加义务劳动,选出6个人,分成2组,每组都是3人,有多少种不同的分法?解:可选分同步。
先选3人为一组,有37C 种;再选3人为另一组,有34C 种。
又有2组都是3人,每22A 种分法只能算一种,所以不同的分法共有33742270C C A =(种)。
也可先选后分。
不同的分法共有3366372270C C C A ⋅=(种)。
㈡部分均匀分组(去除重复法)例3、10个不同零件分成4堆,每堆分别有2、2、2、4个,有多少种不同的分法?解:分成2、2、2、4个元素的4堆,分别有210C 、28C 、26C 、44C 种,又有3堆都是2个元素,每33A 种分法只能算一种,所以不同的分组方法共有222410864333150C C C C A ⋅=(种)。
【小结:不论是全部均匀分组,还是部分均匀分组,如果有m 个组的元素是均匀的,都有mm A 种顺序不同的分法只能算一种分法。
】 三、编号分组㈠非均匀编号分组(分步先组合后排列法)例4、7人参加义务劳动,选出2人一组、3人一组,轮流挖土、运土,有多少种分组方法?解:分组方法共有232752420C C A =(种)。
排列组合中的分组分配问题

如果先跨2个台阶还剩3个台阶3种方法再上去,5+3=8种。 登上6个台阶,… … 8+5=13种。 登上7个台阶,… … 13+8=21种。 … … … 21+13=34种 … … … 34+21=55种。 登上10个台阶, 55+34=89种。
分析:
(1)矩形 C82C52 280;即: (7 6 5 4 3 2 1)( 4 3 2 1) 280
若求正方形个数,则: ①只由一个小正方形组成的有7 * 4; ②由2 * 2小正方形组成的有6 *3; ③由3*3小正方形组成的有5* 2 ; ④ 由4 * 4小正方形组成的有4 *1。 故7 * 4+6 *3+5* 2+4 *1 60 。
排列组合中的分组分配问题
ab
cd
ac
bd
ad
bc
bc
ad
bd
ac
cd
ab
引旧育新:
1 把abcd分成平均两组共 有_____多少种分法?
ab
cd
ac
bd
C
2 4
C
2 2
A
2 2
3
ad
bc
bc
ad
这两个在分组时只能算一个
bd
ac
cd
ab
2平均分成的组,不管它们的顺序如何,都是一种情况, 所以分组后要除以A(m,m),即m!,其中m表示组数。
5、
1. 平面上有10个点,其中有且只有4点共线,
现从中任取2点,共可以组成多少条直线?
C120 - C42 +1