排列组合中分组(分堆)与分配问题
排列组合的题型与方法

(二)分组分配问题 5.限制条件的分配问题分类法: 例6.某高校从某系的10名优秀毕业生中选4人分别到西 部四城市参加中国西部经济开发建设,其中甲同学不 到银川,乙不到西宁,共有多少种不同派遣方案?
A 60 种。 A
5 5 2 2
(一)排序问题 4.定位问题优先法:某个或几个元素要排在指定位 置,可先排这个或几个元素;再排其它的元素。
例4.现有1名老师和4名获奖同学排成一排照相留念, 若老师不站两端则有不同的排法有多少种?
解析:老师在中间三个位置上选一个有 A1 种 ,
3
种,4名同学在其余4个位置上有 A4 种方法; 4
解析、(1)先从10人中选出2人承担甲项任务,再从剩下的8人中 选1人承担乙项任务,第三步从另外的7人中选1人承担丙项任务, 2 1 1 不同的选法共有 C10 C8C7 2520 种
(二)分组分配问题 2.有序分配问题逐分法:有序分配问题指把元素分成若 干组,可用逐步下量分组法.
例3、(2)12名同学分别到三个不同的路口进行流量的 调查,若每个路口4人,则不同的分配方案有( A )
(2)5本不同的书,全部分给4个学生,每个学生至少 一本,不同的分法种数为( B ) A、480种 B、240种 C、120种 D、96种
2 4 C5 A4 240
(二)分组分配问题
4.名额分配问题隔板法(无差别物品分配问题隔板法): 例5:10个三好学生名额分到7个班级,每个班级至少 一个名额,有多少种不同分配方案?
排列组合问题,常见解题策略

排列组合问题,常见解题策略曹永玉排列组合问题是高考的必考内容,也是高考题中正确率最低的题目之一。
究其原因,是因为其思维方式独特,解题思路新颖,如果对题意认识出现偏差的话,极易出现计数中的“重复”和“遗漏”。
教学中,提高学生解排列组合题的有效途径是将一些常见题型进行方法归类,构造模型解题,这样有利于学生认识模式,进而熟练应用。
本文列举了几种常见的排列组合问题的解题策略,以期对大家有所帮助。
一、排列问题1.某个(或某几个)元素要排在指定位置——特殊元素“优先法”。
例1. 乒乓球队的10 名队员中有3名主力队员,派5名参加比赛,3名主力要排在第一、三、五位置,其余7队员中选2名排在第二、四位置,那么不同的出场安排共有多少种?解析:3名主力的位置确定在第一、三、五位中选,将他们优先安排,有A72A33种可能,然后从其他队员中选2 人安排在第二、四位置,有A72种排法,因此结果有A33种。
点评:先排特殊(特殊元素或特殊位置)是解决排列问题的基本方法。
2.某个元素不排在指定位置——排除法。
例2. 5个人排队,其中甲不在排头的排法有多少?解析1:(排除法)5人的全排列数A55,其中甲在排头的排列数A44,故甲不在排头的排列数A55 --A44=96种解析2:(特殊元素优先法):先从余下的4个位置中选一位置排上,甲有A41种方法,然后其他4个元素排在余下的四个位置A44,所以总计A44A41种排法。
解析3:(特殊元素优先法):先从甲以外的4人中选出一人排在特殊位置——排头A41,然后其他四个元素排在余下的4个位置A44,所以总计A41A44种排法。
3. 相邻问题——捆绑法例3. 4名男生和4名女生排成一排照相,要求4名女生必须相邻,有多少种排法?解析:4名女生看作一个整体(捆绑),与4名男生共五个元素全排列A55,但这4名女生内部又有顺序A44,故A44A55种不同排法。
4. 小团体问题——捆绑法例4.5人站一排,其中甲、乙之间有且只有一人的站法有多少?解析:先从甲、乙之外的3人中选一人,然后将甲、乙排在他的两边有C31A22种方式,3人形成一个小团体,看作一个元素再与余下的2人排列有A33种。
排列组合中的分堆问题

C120C82C62C44
(2)按2∶2A∶332∶4分给甲、乙、丙、丁四个人有
多少种不同的分法?
C120C82C62C44 A33
A44
非均分问题
例1:6本不同的书 (1)按1∶2∶3分成三堆有多少种不同的分法?
C16C52C33
(2)按1∶2∶3分给三个人有多少种不同的分法?
C16C52C33 A33
பைடு நூலகம்(3)甲两本,乙、丙各五本;
C122
C150C55 A22
A22
C122C150C55
(4)一人两本,另两人各五本·
C122
C150C55 A22
A33
3C122C150C55
A33
C62C42C22
(2)12支笔按3:3:2:2:2分给A、B、C、
D、E五个人有多少种不同的分法?
C132C93C62C42C22 A22 A33
A55
练习
1:12本不同的书平均分成四组有多少种不同分法?
C132C39C36C33 A44
2:10本不同的书
(1)按2∶2∶2∶4分成四堆有多少种不同的分法?
注意
(1)非均分问题只要按比例分完再用乘法原理作积
(2)分组安排工作要把组数当作元素个数再作排列。
非均分问题
例2.有六本不同的书分给甲、乙、丙三名同学,按 下条件,各有多少种不同的分法?
(1)每人各得两本;C62C42C22
(2)甲得一本,乙得两本,丙得三本;C16C52C33
(3)一人一本,一人两本,一人三本;C16C52C33 A33
法?
C142C84C44 A33
5775
(2)按2∶2∶2∶6分成四堆有多少种不同的分法?
行测数量关系技巧:排列组合异素不均分的分堆与分配问题

⾏测数量关系技巧:排列组合异素不均分的分堆与分配问题 公务员⾏测考试主要是考量⼤家的数学推理能⼒和逻辑分析能⼒,下⾯由店铺⼩编为你精⼼准备了“⾏测数量关系技巧:排列组合异素不均分的分堆与分配问题”,持续关注本站将可以持续获取更多的考试资讯!⾏测数量关系技巧:排列组合异素不均分的分堆与分配问题 公务员考试⾏测卷中,要说最难的题型,可能⼀千个读者⼼中有⼀千个哈姆雷特,各有各的说法。
但是要说到最容易出错的题型,那⾮排列组合不可。
但是排列组合在⺫前的公务员考试中尤其是国考,⼏乎是每年必考的题型,所以还是需要花精⼒去学习掌握。
今天带⼤家⼀起来学习其中的⼀个⼩知识点,即异素不均分的分堆与分配问题,主要是为了和我们之前所说的异素均分的分堆与分配形成对⽐和区分。
⼀、异素不均分的分堆与分配 概念并不难理解,所谓的异素,就是指被分的元素是不相同的,有区别的。
⽽不均分则是指分完后每⼀份数量不⼀样,⽐如说四个不同颜⾊的⼩球,分作两份,分别为1个和3个,这就是个异素不均分的问题。
⽽分堆与分配,⼜是有区别的,分堆就是把元素按照要求分开就⾏,⽐如说分成1个和3个,就可以了。
分配则是在分堆的基础上需要将分好的堆再分配给相应的对象。
⽐如说4个颜⾊不同的⼩球,分给⼩⺩和⼩李,其中⼀⼈拿3个,另⼀⼈则拿1个,这就是不均分的分配问题。
⼆、实际应⽤中的具体计算⽅法 我们通过⼀个例题来理解两种不同的分堆分配⽅式的具体计算。
例1:将标有A、B、C、D的四本书分作两组,其中⼀组3本,⼀组1本,有多少种分法? 【解析】通过上边的描述我们知道,这属于异素不均分的分堆问题,直接按照分步思想来操作就可以了,第⼀步从4本书中选出3本,第⼆步则选出剩下的1本,即 所以当我们把不同元素进⾏不均分分堆时,只需要按照基本的分步思想去操作即可。
例2:将标有A、B、C、D的四本书分给甲、⼄两个⼈,其中甲1本,⼄2本,有多少种分法? 【解析】这个题属于不均分分堆之后的指定分配,当我们分好堆的时候,其实已经确定了每⼀堆的归属,所以计算⽅式和结果,和例题1是⼀样的。
高中数学分堆分配问题

高中数学分堆分配问题篇一:高中数学排列组合中的分组分配问题排列组合中的分组分配问题分组分配问题是排列组合教学中的一个重点和难点。
某些排列组合问题看似非分配问题,实际上可运用分配问题的方法来解决。
下面就排列组合中的分组分配问题,谈谈自己在教学中的体会和做法。
一、提出分组与分配问题,澄清模糊概念n个不同元素按照某些条件分配给k个不同得对象,称为分配问题,分定向分配和不定向分配两种问题;将n个不同元素按照某些条件分成k组,称为分组问题.分组问题有不平均分组、平均分组、和部分平均分组三种情况。
分组问题和分配问题是有区别的,前者组与组之间只要元素个数相同是不区分的;而后者即使2组元素个数相同,但因对象不同,仍然是可区分的.对于后者必须先分组后排列。
二、基本的分组问题例1 六本不同的书,分为三组,求在下列条件下各有多少种不同的分配方法?(1)每组两本.(2)一组一本,一组二本,一组三本. (3)一组四本,另外两组各一本.22分析:(1)分组与顺序无关,是组合问题。
分组数是C26C4C2=90(种) ,这90种分组实际上重复了6次。
我们不妨把六本不同的书写上1、2、3、4、5、6六个号码,考察以下两种分法:(1,2)(3,4)(5,6)与(3,4)(1,2)(5,6),由于书是均匀分组的,三组的本数一样,又与顺序无关,所以这两种分法是同一种分法。
以上的分组方法实际上加入了组的顺序,因此还应取消分组的顺序,即除以组数的全排列数A3所以分法是3,222C6C4C2=15(种)。
(2)先分A3323组,方法是C1那么还要不要除以A3由于每组的书的本数是不一样的,6C5C3,3?我们发现,23因此不会出现相同的分法,即共有C16C5C3=60(种) 分法。
11(3)分组方法是C46C2C1=30(种) ,那么其中有没有重复的分法呢?我们发现,其中两组的书的本数都是一本,因此这两组有了顺序,而与四本书的那一组,由于书的本数不一样,CC2C1=15(种)。
排列组合中的分组、分配问题的有效解法

图6
2= 4.
(2)由旋转体的定义可知,阴影部分绕直线 BC 旋
转一周形成的几何体为圆柱中挖掉一个半球和一个圆
锥 . 该圆柱的底面半径 R=BA=2,母线长 l=AD=2,故该圆
柱的体积 V1=π × 22 × 2 = 8π,半球的半径为 1,其体积
个不同对象,称为分配问题 . 包括定向分配和不定向分
配两类 . 其关键词:
不同元素、不同对象、条件、分配 .
2 分组 . 把 n 个不同元素按照确定的条件分成 m 组
(或 m 堆),称为分组问题,包括平均分组、非平均分组和
混合分组三类 . 其关键词:
不同元素、条件、分组 .
从以上概念的关键词足以看出,分配与分组联系紧
平面 ABB1A1⊥平面 A1BC.
点评:立体几何证明题,是历年高考必考题型,难度
不大,命题者一般不会在试题的难度上下“猛药”,而是
处处考查考生的转化思想,如要证线垂直于线,常常通
过线面垂直转化,要证线平行于面,常常通过线面平行
或面面平行转化 .
转化,是数学解题的主旋律,尤其是对于立体几何
来说更是如此 . 只要掌握Fra bibliotek转化的方法与技巧,那么立
1 4
2π
V2= × π ×13 =
;圆锥的底面半径为 2,高为 1,其体
2 3
3
1
4
积 V3= π × 22 × 1= π,所以阴影部分绕直线 BC 旋转一
3
3
周形成的几何体的体积 V=V1-V2-V3=6π.
点评:割补法适用于求不规则几何体的体积,就是
排列组合中的分组分配问题完整

五非均分组分配对象确定问题
例6 六本不同的书按1∶2∶3分给甲、乙、丙三个人 有多少种不同的分法?
C61C52C33
非均分组有分配对象要把组数当作元素个数 再作排列。
五非均分组分配对象不固定问题
例7 六本不同的书分给3人,1人1本,1人2本,1人3本 有多少种分法
C
2 10
C
2 8
C
2 6
C
4 4
A
3 3
C
2 10
C
2 8
C
2 6
C
4 4
3 有六本不同的书分给甲、乙、丙三名同学,按下条 件,各有多少种不同的分法?
(1)每人各得两本; (2)甲得一本,乙得两本,丙得三本; (3)一人一本,一人两本,一人三本; (4)甲得四本,乙得一本,丙得一本; (5)一人四本,另两人各一本·
排列组合中的分组分配问题
ab
cd
ac
bd
ad
bc
bc
ad
bd
ac
cd
ab
一、 提出分组与分配问题,澄清模糊概念 n 个不同元素按照某些条件分配给 k 个不同得对象,称为
分配问题,分定向分配和不定向分配两种问题;将 n 个不同 元素按照某些条件分成 k 组,称为分组问题.分组问题有不平 均分组、平均分组、和部分平均分组三种情况。分组问题和 分配问题是有区别的,前者组与组之间只要元素个数相同是 不区分的;而后者即使 2 组元素个数相同,但因对象不同, 仍然是可区分的.对于后者必须先分组后排列。
C61C52C33 A33
练习1
1:12本不同的书平均分成四组有多少 种不同分法?
排列组合中的分堆问题最新版

例2:(1)6本不同的书按2∶2∶2平均分给甲、 乙、丙三个人,有多少种不同的分法?
方法:先分再排法。分成的组数看成元 素的个数·
(1)均分的三组看成是三个元素在三 个位置上作排列
(1)
C
2 6
C
2 4
C
2 2
A
3 3
A
3 3
C
2 6
C
2 4
C
2 2
例2:(1)6本不同的书按 2∶2∶2平均分给甲、乙、丙三个 人,有多少种不同的分法?
一:均分不安排工作的问题
例1:12本不同的书 (1)按4∶4∶4平均分成三堆有多少种不同的分法? (2)按2∶2∶2∶6分成四堆有多少种不同的分法?
(1)
C
14 2 C
84C
4 4
A
3 3
12! 8! 1 5775
4!·8! 4!·4! 3!
(2)
C
12 2 C
120C82
C
6 6
A
3 3
二:分堆安排工作的问题
C
2 6
C
2 4
C
2 2
(2)
C
1 6
C
2 5
C
3 3
(3)
C
1 6
C
2 5
C
3 3
A
3 3
(4)
C
4 6
C
1 2
C
1 1
(5)
Aቤተ መጻሕፍቲ ባይዱ
1 3
C
4 6
C
1 2
C
1 1
练习3
练习:12本不同的书分给甲、乙、丙三人按下列条 件,各有多少 种不同的分法?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
太奇MBA 数学助教
李瑞玲
一.分组(分堆)与分配问题
将n 个不同元素按照某些条件分配给k 个不同的对象,称为分配问题,又分为定向分配和不定向分配两种问题。
将n 个不同元素按照某些条件分成k 组,称为分组问题。
分组问题有不平均分组,平均分组,部分平均分组三情况。
分组问题和分配问题是有区别的,前者组与组之间只要元素个数相同是不区分的,而后者即使两组的元素个数相同,但因所要分配的对象不同,仍然是可区分的。
对于后者必须先分组后排列。
一.基本的分组问题
例1.六本不同的书,分为三组,求在下列条件下各有多少种不同的分配方法?
(1)每组两本(均分三组)(平均分组问题)(2)一组一本,一组两本,一组三本(不平均分组问题)(3)一组四本,另外两组各一本
(部分平均分组问题)
分析:(1)分组和顺序无关,是组合问题。
分组数为90222426=C C C ,而这90种分组方法实际上重复了6次。
现把六本不同的书标上
6,5,4,3,2,1六个号码,先看一下这种情况:
(1,2)(3,4)(5,6)(1,2)(5,6)(3,4)(3,4)(1,2)(5,6)(3,4)(5,6)(1,2)(5,6)(1,2)(3,4)
(5,6)(3,4)(1,2)
由于书是均匀分组的,三组的本数都一样,又与顺序无关,所以这种
情况下这六种分法是同一种分法,于是可知重复了6次。
以上的分组实际上加入了组的顺序,同理其他情况也是如此,因此还应取消分组
的顺序,即除以3
3
P ,于是最后知分法为156
90
332
22426==P C C C .
(2)先分组,分组方法是603
32516=C C C ,那么还要不要除以33P ???(很
关键的问题)
由于每组的书的本数是不一样的,因此不会出现相同的分法,即
共有60332516=C C C 。
(3)先分组,分组方法是30111246=C C C ,这其中有没有重复的分法???(需
要好好考虑)
现还把六本不同的书标上6,5,4,3,2,1六个号码,先看以下情况1)先取四本分一组,剩下的两本,一本一组,情况如下(1,2,3,4)5
6
(1,2,3,4)6
5
2)先取一本分一组,再取四本分一组,剩余的一本为一组,情况如下
5
(1,2,3,4)6
6(1,2,3,4)5
3)先取一本分一组,再取一本为一组,剩下的四本为一组,情况如下
5
6(1,2,3,4)
6
5(1,2,3,4)
由此可知每一种分法重复了2次,原因是其中两组的的书的本数都是一本,这两组有了顺序,需要把分组的顺序取消掉,而四本的那一组,由于书的本数不一样,不可重复,故最后的结果为
152
30
2
21
11246==P C C C .通过以上三个小题的分析,可以得出分组问题的一般结论如下:一般地,将n 个不同的元素分成p 组,各组内元素个数分别为
p m m m ,,,21⋯,其中k 组内元素个数相等,那么分组方法数为
()k
k m
m m m m m n m m n m n P C C C C p
p i i ⋯⋯⋯121211−+++−−,即选完元素后要除以元素相同
的总组数的全排列!
三.基本的分配问题1.定向分配问题
例2六本不同的书,分给甲乙丙三人,求在下列条件下各有多少种不同的分法?
(1)甲两本,乙两本,丙两本(2)甲一本,乙两本,丙三本(3)甲四本,乙一本,丙一本
分析:由于分配给三人,每人分几本是一定的,属于分配问题中的定向分配问题。
由分步计数原理得(1)222426C C C =90(2)60
3
32516=C C C (3)30
1
11246=C C C 2.不定向分配问题
例3.六本不同的书,分给甲乙丙三人,求在下列条件下各有多少种不同的分法?(1)每人两本
(2)一人一本,一人两本,一人三本(3)一人四本,一人一本,一人一本
分析:此题属于分配中的不定向分配问题。
由于分配给三人,同一本书给不同的人是不同的分法,所以是排列问题。
实际上可看作是“六本不同的书分为三组,再将这三组分给甲乙丙三人”,因此只要将元素的分组的方法数再乘以所分配对象的全排列即可!
所以有(1)90333
3
2
2
2426=×P P C C C (2)360333
32516=×P C C C (3)90332
2
1
1
1246=×P P C C C 结论:一般地,如果把n 个不同的元素分配给k 个不同的对象,并且每个不同的对象可接受的元素个数没有限制,那么实际上是先分组后排列的问题,结果为分组方案数乘以不同对象数的全排列。
解不定向分配题的一般原则是:先分组后排列!
数学讲义上第95页排列组合本章作业
第4题属于不定向分配问题(需要先分组,再分配,其中分组为不
平均分组)结果为36033332516=×P C C C ,故选B 。
第5题属于定向分配问题,所以为60332516=C C C ,故选D 。
第6题属于不定向分配问题(需要先分组,再分配,其中分组为平均
分组)结果为903
33
3
2
22426=×P P C C C ,故选C 。
第28题也属于不定向分配问题,同第6题,结果为
4
448412333
3
4448412C C C P P C C C =×,故选A 。
元素种类
(1)元素相同(2)元素不同
1)分配对象相同2)分配对象不同1)分配对象相同2)分配对象不同分组(分堆)问题隔板法解决分组(分堆)问题可重复和不可重复此时要依据每组的数量来区别
要依据每组的数量和元素特征来区别可重复:投信,人进房间问题不可重复:组合,排列问题
例:现有6个球,4个盒子,每个盒子至少一个球,在下列各种情况下各有多少种放法?
(1)球不同,盒子不同(2)球不同,盒子相同(3)球相同,盒子不同(4)球相同,盒子相同解:(1)属于组合,排列问题,需要先分组,再分配给不同的对象。
分组有两种分法:1)2211
2)3111
则有33111213362211122426P C C C C P C C C C +,最后结果为44331
11213362211122426P P C C C C P C C C C ×⎟⎟⎠
⎞⎜⎜⎝⎛+.(2)由于分配对象相同,没有区别,所以实质上为分组问题。
分组有两种分法:1)2
2112)3
1
11
则有3
31
1
1213362211122426P C C C C P C C C C +,即为最后结果。
(3)球相同,即元素相同,但分配对象不同,又要求每个盒子至少一个球,故
为隔板问题,需用隔板法来解决,即103
5=C 种。
(4)球相同,盒子相同,就有两种方法,即2211和3111这两
种方法。