固体物理学整理要点
固体物理重要知识点总结

固体物理重要知识点总结晶体:是由离子,原子或分子(统称为粒子)有规律的排列而成的,具有周期性和对称性非晶体:有序度仅限于几个原子,不具有长程有序性和对称性点阵:格点的总体称为点阵晶格:晶体中微粒重心,周期性的排列所组成的骨架,称为晶格格点2微粒重心所处的位置称为晶格的格点(或结点)晶体的周期性和对称性:晶体中微粒的排列按照一定的方式不断的做周期性重复,这样的性质称为晶体结构的周期性。
晶体的对称性指晶体经过某些对称操作后,仍能恢复原状的特性。
(有轴对称,面对称,体心对称即点对称)密勒指数:某一晶面分别在三个晶轴上的截距的倒数的互质整数比称为此晶面的密勒指数配位数:可用一个微粒周围最近邻的微粒数来表示晶体中粒子排列的紧密程度,称为配位数致密度:晶胞内原子所占体积与晶胞总体积之比称为点阵内原子的致密度固体物理学元胞:选取体积最小的晶胞,称为元胞:格点只在顶角,内部和面上都不包含其他格点,整个元胞只含有一个格点:元胞的三边的平移矢量称为基本平移矢量(或者基矢);突出反映晶体结构的周期性元胞:体积通常较固体物理学元胞大;格点不仅在顶角上,同时可以在体心或面心上;晶胞的棱也称为晶轴,其边长称为晶格常数,点阵常数或晶胞常数;突出反映晶体的周期性和对称性。
布拉菲格子:晶体由完全相同的原子组成,原子与晶格的格点相重合而且每个格点周围的情况都一样复式格子:晶体由两种或者两种以上的原子构成,而且每种原子都各自构成一种相同的布拉菲格子,这些布拉菲格子相互错开一段距离,相互套购而形成的格子称为复式格子,复式格子是由若干相同的布拉菲格子相互位移套购而成的声子:晶格简谐振动的能量化,以hv i来增减其能量,hv i就称为晶格振动能量的量子叫声子非简谐效应:在晶格振动势能中考虑了8 2以上3高次项的影响,此时势能曲线能是非对称的,因此原子振动时会产生热膨胀与热传导点缺陷的分类:晶体点缺陷:①本征热缺陷:弗伦克尔缺陷,肖脱基缺陷②杂质缺陷:置换型,填隙型③色心④极化子布里渊区:在空间中倒格矢的中垂线把空间分成许多不同的区域,在同一区域中能量是连续的,在区域的边界上能量是不连续的,把这样的区域称为布里渊区爱因斯坦模型在低温下与实验存在偏差的根源是什么?答:按照爱因斯坦温度的定义,爱因斯坦模型的格波的频率大约为1013H Z,属于光学支频率,但光学格波在低温时对热容的贡献非常小,低温下对热容贡献大的主要是长声学格波,也就是说爱因斯坦没考虑声学波对热容的贡献是爱因斯坦模型在低温下与实验存在偏差的根源。
固体物理重点总结

所对应的点的排列。晶格是晶体结构周期性的数学抽象。
原胞
构造:取一格点为顶点,由此点向近邻的三个格点作三个 不共面的矢量,以此三个矢量为边作平行六面体即为固体物理 学原胞。
特点:格点只在平行六面体的顶角上,面上和内部均无
格点,平均每个固体物理学原胞包含1个格点。它反映了晶体 结构的周期性。 基矢:固体物理学原胞基矢通常用 a 1 , a 2 , a表示。 3 体积:
h h h 若遇负数,则在该数上方加一横线h h h 。
1 2 3
1 2 3
配位数、密堆积、致密度
1.配位数 一个粒子周围最近邻的粒子数称为配位数。它可以描述晶 体中粒子排列的紧密程度,粒子排列越紧密,配位数越大。 可能的配位数有:12、8、6、4、3、2 。 2.密堆积 如果晶体由完全相同的一种粒子组成,而粒子被看作小圆 球,则这些全同的小圆球最紧密的堆积称为密堆积。密堆积的 配位数最大,为12 。
(2)在低温时,绝缘体的比热按T3趋于零。
2.模式密度 定义: 单位频率间隔内的振动模式数。 计算:
D
Vc 3 1 2 π
3n
s
q q
ds
3.晶体比热的爱因斯坦模型和德拜模型
爱因斯坦模型
(1)晶体中原子的振动是相互 独立的;
德拜模型
(1)晶体视为连续介质,格波视 为弹性波; (2)有一支纵波两支横波; (3)晶格振动频率在 0 ~ D 之间 (D为德拜频率)。
在此范围内k共有N个值(N为晶体原胞数) ,可容纳2N个电子。
(r ) (r ) k K
k
h
布里渊区
在倒格空间中以任意一个倒格点为原点,做原点和其他所 有倒格点连线的中垂面(或中垂线),这些中垂面(或中垂线)将倒 格空间分割成许多区域,这些区域称为布里渊区。
固体物理学整理要点

固体物理复习要点第一章 1、晶体有哪些宏观特性?答:自限性、晶面角守恒、解理性、晶体的各向异性、晶体的均匀性、晶体的对称性、固定的熔点这是由构成晶体的原子和晶体内部结构的周期性决定的。
说明晶体宏观特性是微观特性的反映2、什么是空间点阵?答:晶体可以看成由相同的格点在三维空间作周期性无限分布所构成的系统,这些格点的总和称为点阵。
3、什么是简单晶格和复式晶格?答:简单晶格:如果晶体由完全相同的一种原子组成,且每个原子周围的情况完全相同,则这种原子所组成的网格称为简单晶格。
复式晶格:如果晶体的基元由两个或两个以上原子组成,相应原子分别构成和格点相同的网格,称为子晶格,它们相对位移而形成复式晶格。
4、试述固体物理学原胞和结晶学原胞的相似点和区别。
答:(1)固体物理学原胞(简称原胞)构造:取一格点为顶点,由此点向近邻的三个格点作三个不共面的矢量,以此三个矢量为边作平行六面体即为固体物理学原胞。
特点:格点只在平行六面体的顶角上,面上和内部均无格点,平均每个固体物理学原胞包含1个格点。
它反映了晶体结构的周期性。
(2)结晶学原胞(简称晶胞)构造:使三个基矢的方向尽可能地沿着空间对称轴的方向,它具有明显的对称性和周期性。
特点:结晶学原胞不仅在平行六面体顶角上有格点,面上及内部亦可有格点。
其体积是固体物理学原胞体积的整数倍。
5、晶体包含7大晶系,14种布拉维格子,32个点群?试写出7大晶系名称;并写出立方晶系包含哪几种布拉维格子。
答:七大晶系:三斜、单斜、正交、正方、六方、菱方、立方晶系。
6.在晶体的宏观对称性中有哪几种独立的对称元素?写出这些独立元素。
答:7.密堆积结构包含哪两种?各有什么特点? 答:(1)六角密积第一层:每个球与6个球相切,有6个空隙,如编号1,2,3,4,5,6。
第二层:占据1,3,5空位中心。
第三层:在第一层球的正上方形成ABABAB······排列方式。
固体理论知识点总结

固体理论知识点总结1. 固体的结构固体的结构是固态理论研究的重要内容之一。
固体的结构可以分为晶体和非晶体两种。
晶体是一种有序排列的固体,其中原子或分子以一定的规则排列,使得晶格结构具有周期性。
晶体的结构可以被描述为晶格和基元的组合。
晶格是空间中一组平行排列的点,在每个点上放置着一个基元,即晶体的最小重复单元。
晶体的结构可以根据晶格的对称性分为立方晶系、四方晶系、六角晶系、正交晶系、单斜晶系和三斜晶系六种。
非晶体是一种没有规则排列的固体,其中原子或分子的排列没有周期性,呈现出无序的结构。
非晶体的结构通常被描述为玻璃态或凝胶态。
2. 固体的性质固体的性质是由其结构和相互作用力决定的。
固体的性质包括机械性能、导电性、磁性、光学性质等。
其中,机械性能是固体最基本的性质之一,包括硬度、弹性模量、屈服强度等。
导电性是固态物理学中的重要研究内容,固体的导电性与其电子结构和晶格结构密切相关。
磁性是固态物理学中另一个重要的性质,固体的磁性可以分为铁磁性、反铁磁性、顺磁性和抗磁性四种。
光学性质是固体的另一个重要性质,包括折射率、吸收系数、反射率等。
3. 固体的相互作用固体中原子或分子之间存在着多种相互作用力,包括离子键、共价键、金属键、范德华力等。
离子键是一种电子转移的化学键,它是正离子和负离子之间的相互吸引力。
共价键是一种共享电子的化学键,它是由两个原子之间的电子共享所形成的化学键。
金属键是金属原子之间的一种特殊相互作用力,它是由金属原子之间的自由电子形成的。
范德华力是分子之间的一种弱相互作用力,它是由分子之间的瞬时偶极子相互作用所形成的力。
4. 固体的缺陷固体中存在着各种各样的缺陷,包括点缺陷、线缺陷、面缺陷等。
点缺陷是由于晶格中一个或多个原子的缺失或额外存在而形成的缺陷,包括空位缺陷、间隙缺陷、固溶体等。
线缺陷是由于晶体中晶格排列出现错误而形成的缺陷,包括蠕滑位错、螺位错、边界位错等。
面缺陷是由于晶格中晶面的形成而引起的缺陷,包括晶界、晶粒边界、孪晶界等。
固体物理各章节知识点详细总结

3.1 一维晶格的振动
3.1.1 一维单原子链的振动
1. 振动方程及其解 (1)模型:一维无限长的单原子链,原子间距(晶格常量)为
a,原子质量为m。
模型 运动方程
试探解
色散关系
波矢q范围 B--K条件
波矢q取值
一维无限长原子链,m,a,
n-2 n-1 n mm
n+1 n+2
a
..
m x n x n x n 1 x n x n 1
x M 2 n x 2 n 1 x 2 n 1 2 x 2 n
..
x m 2n1 x 2 n 2 x 2 n 2 x 2 n 1
x
Aei2n1aqt
2 n1
x
Bei2naqt
2n
相隔一个晶格常数2a的同种原子,相位差为2aq。
色散关系
2co as q A M 22B0 m 22A 2co as q B0
a h12 h22 h32
由
2π Kh
d h1h2h3
2π
d K 得: h1h2h3
h1h2h3
简立方:a 1 a i,a 2 aj,a 3 a k ,
b12πa2a3 2πi
Ω
a
b22πa3a1 2πj
Ω
a
b32πa1a2 2πk
Ω
a
b1 2π i a
b2 2π j a
2π b3 k
2n-1
2n
2n+1
2n+2
M
m
质量为M的原子编号为2n-2 、2n、2n+2、···
质量为m的原子编号为2n-1 、2n+1、2n+3、···
固体物理各章节重点总结

固体物理各章节重点总结第一章1、晶体的共性:长程有序、自限性、各向异性2、长程有序:晶体中的原子都是按照一定规则排列的,这种至少在微米数量级范围内的有序排列,称为长程有序。
3、自限性:晶体具有自发地形成封闭几何多面体的特性。
4、原子之间的结合遵从能量最小原理5、一个原子周围最近邻的原子数,称为该晶体的配位数,用来表征原子排列的紧密程度,最紧密的堆积称密堆积6、布喇菲提出了空间点阵学说:晶体内部结构可以看成是由一些相同的点子在空间做规则的周期性的无线分布。
这一学说是对实际晶体结构的一个数学抽象,它只反映出晶体结构的周期性。
人们把这些点子的总体称为布喇菲点阵7、沿三个不同方向通过点阵中的结点作平行的直线,把结点包括无遗,点阵便构成一个三维网格。
这种三维格子称为晶格,又称为布喇菲格子,结点又称点阵。
8、某一方向上两相邻结点的距离为该方向上的周期,以一结点为顶点,以三个不同方向的周期为边长的平行六面体可作为晶格的一个重复单元,体积最小的重复单元,称为原胞或固体物理学原胞,它能反映晶格的周期性。
9、为了同时反映晶体对称的特征,结晶学上所取的重复单元,体积不一定最小,结点不仅在顶角上,还可以是体心或面心。
这种重复单元称作晶胞,惯用晶胞或布喇菲原胞10、简立方:a1=a,a2=b,a3=c11、体心立方:a1=0.5(-a+b+c)|a2=0.5(a-b+c)|a3=0.5(a+b-c)12、面心里放:a1=0.5(b+c)|a2=0.5(a+c)|a3=0.5(a+b)|13、氯化铯结构为简立方结构14、氯化钠结构为面心立方结构15、金刚石结构为面心立方结构16、所欲格点都分布在相互平行的一平面族上,每一平面都有格点分布,称这样的平面为晶面17、若ij=1,2…则可用正格基失来构造倒格基失18、将正格基失在空间平移可构成正格子,相应地我们把倒格基失平移形成的格子叫做倒格子19、正格原胞体积与倒格原胞体积之积等于(2π)3;正格子与倒格子互为多方的倒格子;倒格失K h=h1b1+h2b2+h3b3与正格子晶面族正交;倒格失的模K h与晶面族(h1h2h3)的面间距成反比20、晶体有230种对称类型,称其为空间群;若不包括平移,有32种宏观对称类型,称其为点群21、晶体的宏观对称操作一共有八种基本对称操作P1922、计算题P25P34第二章1、五种基本结合类型:共价结合、离子结合、金属结合、分子结合、氢键结合2、体积弹性模量3、计算题P53P63第三章1、玻恩和卡门提出了一个遐想的边界条件,即所谓的周期性边界条件。
固体物理知识点总结

固体物理知识点总结1. 固体的结构固体的结构是固体物理研究的重要内容之一。
固体的结构可以分为晶体结构和非晶体结构两类。
晶体是指固体物质中原子、离子或分子按照一定规则有序排列的结构,具有长程有序性。
晶体的周期性结构使其具有一些特殊的性质,如晶格常数和晶胞结构等。
晶体的结构可以根据晶体的对称性将晶系分为七类:三斜晶系、单斜晶系、单轴晶系、三方晶系、四方晶系、立方晶系和六方晶系。
非晶体是指固体中原子、离子或分子无序排列的结构,没有明显的周期性,具有短程有序性。
2. 固体的热力学性质固体的热力学性质是指固体在温度、压力等条件下的热力学行为。
其中包括固体的热容、热导率、热膨胀系数等热力学性质。
固体的热容是指单位质量的固体物质吸收或释放的热量与温度变化之间的关系。
固体的热导率是指单位时间内,单位面积和单位温度梯度下热量的传导速率。
固体的热膨胀系数是指单位体积的固体物质在温度变化时体积的变化与温度变化之间的关系。
3. 固体的光学性质固体的光学性质是指固体对光的吸收、散射和折射等性质。
固体的光学性质与其结构和原子(分子)的能级结构有关。
固体物质中的原子和分子会吸收特定波长的光子,产生特定的光谱线。
固体的折射率是指光在固体中传播时的光线偏折情况,也称为光线传播速度与真空中的光速之比。
4. 固体的电学性质固体的电学性质包括固体的导电性、介电常数、电阻率等。
固体的导电性是指固体对电流的导通能力。
固体的介电常数是指固体在外电场作用下的电极化程度。
固体的电阻率是指固体对电流的阻碍程度。
5. 固体的磁学性质固体的磁学性质是指固体在外磁场下的磁化行为。
固体物质中的原子和分子会在外磁场下产生磁化。
固体的磁学性质与其结构和原子(分子)的磁矩分布有关。
固体的磁化率是指固体在外磁场下的磁化程度。
固体物理是物理学中一个重要而广泛的研究领域,涉及的内容十分丰富和复杂。
本文仅对固体物理的基本知识点进行了简要的介绍和总结,希望能够为读者的学习和研究提供一些帮助。
固体物理复习要点

固体物理复习要点名词解释1、基元、布拉伐格子、简单格子。
2、基矢、原胞3、晶列、晶面4、声子5、布洛赫定理(Bloch定理)6、能带能隙、晶向及其标志、空穴7、紧束缚近似、格波、色散关系8、近自由近似9、振动模、10、施主,N型半导体、受主,P型半导体11、本征光吸收;本征吸收边12、导带;价带;费米面简单回答题1、倒格子是怎样定义的?为什么要引入倒格子这一概念?2、如果将等体积的刚球分别排成简单立方、体心立方、面心立方结构,则刚球所占体积与总体积之比分别是多少?3、在讨论晶格振动时,常用到Einstein模型和Debye模型,这两种模型的主要区别是什么?以及这两种模型的局限性在哪里?6、叙述晶格周期性的两种表述方式。
7、 晶体中传播的格波和普通连续媒质中传播的机械波如声波、水波等有何不同?导致这种不同的根源又是什么?8、 晶格热容的爱因斯坦模型和德拜模型各自的假设是什么?两个模型各自的优缺点分别是什么?9、 本征光吸收分为哪两种?分别写出这两种光吸收过程中的能量守恒和准动量守恒的数学表达式。
10、 能带理论中的近自由电子近似和紧束缚近似的基本假设各是什么?两种近似方法分别适合何种对象?11、 以一维简单晶格和三维简单立方晶格为例,给出它们的第一布里渊区。
12、 以简单立方晶格为例,给出它的晶向标志和晶面标志(泰勒指数)。
13、 试证明任何晶体都不存在宏观的5次对称轴。
14、 在运用近自由电子模型计算晶体中电子能级(能带)时为什么同时用到简并微扰和非简并微扰?。
15、 给出导体,半导体和绝缘体的能带填充图,并以此为基础说明三类晶体的导电性。
16、 给出简单立方晶格中Γ点(其波矢(0,0,0)k =)波函数在点群操作下的变换规律。
17、 简要叙述能带的近自由电子近似法和紧束缚近似法的区别。
18、 给出Bloch 能带理论的基本假设。
19、 晶态、非晶态、准晶态在院子排列上各有什么特点?20、 晶体中可以独立存在的对称元素有哪些?21、 可以测定晶格振动色散关系的实验方法有哪些(至少回答3种)?22、 在晶体衍射中,为什么不能应用可见光?23、 长光学支格波与长声学支格波在本质上有何差异?24、 引入伯恩-卡门条件的理由是什么?25、 在布里渊区边界上电子的能带有什么特点?26、原子结合成固体有哪几种基本形式?其本质是什么?27、画出二维正方晶格的第一和第二布里渊区。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
固体物理复习要点第一章,第二章的前三节,第三章的1,2,4节,第五章(第四节除外),第六章的前四节第一章1、晶体有哪些宏观特性?答:自限性、晶面角守恒、解理性、晶体的各向异性、晶体的均匀性、晶体的对称性、固定的熔点这是由构成晶体的原子和晶体内部结构的周期性决定的。
说明晶体宏观特性是微观特性的反映2、什么是空间点阵?答:晶体可以看成由相同的格点在三维空间作周期性无限分布所构成的系统,这些格点的总和称为点阵。
3、什么是简单晶格和复式晶格?答:简单晶格:如果晶体由完全相同的一种原子组成,且每个原子周围的情况完全相同,则这种原子所组成的网格称为简单晶格。
复式晶格:如果晶体的基元由两个或两个以上原子组成,相应原子分别构成和格点相同的网格,称为子晶格,它们相对位移而形成复式晶格。
4、试述固体物理学原胞和结晶学原胞的相似点和区别。
答:(1)固体物理学原胞(简称原胞)构造:取一格点为顶点,由此点向近邻的三个格点作三个不共面的矢量,以此三个矢量为边作平行六面体即为固体物理学原胞。
特点:格点只在平行六面体的顶角上,面上和内部均无格点,平均每个固体物理学原胞包含1个格点。
它反映了晶体结构的周期性。
(2)结晶学原胞(简称晶胞)构造:使三个基矢的方向尽可能地沿着空间对称轴的方向,它具有明显的对称性和周期性。
特点:结晶学原胞不仅在平行六面体顶角上有格点,面上及内部亦可有格点。
其体积是固体物理学原胞体积的整数倍。
5、晶体包含7大晶系,14种布拉维格子,32个点群?试写出7大晶系名称;并写出立方晶系包含哪几种布拉维格子。
答:七大晶系:三斜、单斜、正交、正方、六方、菱方、立方晶系。
6.在晶体的宏观对称性中有哪几种独立的对称元素?写出这些独立元素。
答:7.密堆积结构包含哪两种?各有什么特点?答:(1)六角密积第一层:每个球与6个球相切,有6个空隙,如编号1,2,3,4,5,6。
第二层:占据1,3,5空位中心。
第三层:在第一层球的正上方形成ABABAB······排列方式。
六角密积是复式格,其布拉维晶格是简单六角晶格。
基元由两个原子组成,一个位于(000),另一个原子位于c b a r 213132:++=即(2)立方密积第一层:每个球与6个球相切,有6个空隙,如编号为1,2,3,4,5,6。
第二层:占据1,3,5空位中心。
第三层:占据2,4,6空位中心,按ABCABCABC······方式排列,形成面心立方结构,称为立方密积。
8.试举例说明哪些晶体具有简单立方、面心立方、体心立方、六角密积结构。
并写出这几种结构固体物理学原胞基矢。
答:CsCl 、ABO3 ; NaCl ; ; 纤维锌矿ZnS9.会从正格基矢推出倒格基矢,并知道倒格子与正格子之间有什么区别和联系?10.会画二维晶格的布里渊区。
11.会求晶格的致密度。
12.会求晶向指数、晶面指数,并作出相应的平面。
13.理解原子的形状因子,会求立方晶格结构的几何结构因子。
14.X 射线衍射的几种基本方法是什么?各有什么特点?答:劳厄法:(1)单晶体不动,入射光方向不变;(2)X 射线连续谱,波长在间变化,反射球半径 转动单晶法:(1)X 射线是单色的;(2)晶体转动。
max min ~λλmaxmin π2π2λλ<<R粉末法:(1)X射线单色( 固定);(2)样品为取向各异的单晶粉末。
第二章1、什么是晶体的结合能,按照晶体的结合力的不同,晶体有哪些结合类型及其结合力是什么力?答:晶体的结合能就是将自由的原子(离子或分子)结合成晶体时所释放的能量。
结合类型:离子晶体—离子键分子晶体—范德瓦尔斯力共价晶体—共价键金属晶体—金属键氢键晶体—氢键2、原子间的排斥力主要是什么原因引起的?库仑斥力与泡利原理引起的3、离子晶体有哪些特点?为什么会有这些特点?答:离子晶体主要依靠吸引较强的静电库仑力而结合,其结构十分稳固,结合能的数量级约在800kJ/mol。
结合的稳定性导致了导电性能差,熔点高,硬度高和膨胀系数小等特点。
4、试述共价键定义,为什么共价键具有饱和性和方向性的特点?答:共价键是化学键的一种,两个或多个原子共同使用它们的外层电子,在理想情况下达到电子饱和的状态,由此组成比较稳定和坚固的化学结构叫做共价键。
当原子中的电子一旦配对后,便再不能再与第三个电子配对,因此当一个原子与其他原子结合时,能够形成共价键的数目有一个最大值,这个最大值取决于它所含有的未配对的电子数。
即由于共价晶体的配位数较低,所以共价键才有饱和性的特点。
另一方面,当两个原子在结合成共价键时,电子云发生交叠,交叠越厉害,共价键结合就越稳固,因此在结合时,必定选取电子云交叠密度最大的方位,这就是共价键具有方向性的原因。
5、金属晶体的特点是什么?为什么会有这些特点?一般金属晶体具有何种结构,最大配位数为多少?答:特点:良好的导电性和导热性,较好的延展性,硬度大,熔点高。
金属性的结合方式导致了金属的共同特性。
金属结合中的引力来自于正离子实与负电子气之间的库仑相互作用,而排斥力则有两个来源,由于金属性结合没有方向性要求的缘故,所以金属具有很大的塑性,即延展性较好。
金属晶体多采用立方密积(面心立方结构)或六角密积,配位数均为12;少数金属为体心立方结构,配位数为8。
6、简述产生范德瓦斯力的三个来源?为什么分子晶体是密堆积结构?答:来源:1、极性分子间的固有偶极矩产生的力称为Keesen力;2、感应偶极矩产生的力称为Debye力;3、非极性分子间的瞬时偶极矩产生的力称为London力。
由于范德瓦耳斯力引起的吸引能与分子间的距离r的6次方成反比,因此,只有当分子间的距离r很小时范德瓦耳斯力才能起作用。
而分子晶体的排斥能与分子间的距离r的12次方成反比,因此排斥能随分子间的距离增加而迅速减少。
范德瓦耳斯力没有方向性,也不受感应电荷是否异同号的限制,因此,分子晶体的配位数越大越好。
配位数越大,原子排列越密集,分子晶体的结合能就越大,分子晶体就越稳定,在自然界排列最密集的晶体结构为面心立方或六方密堆积结构。
7、什麽叫氢键?试举出氢键晶体的例子答:氢原子同时与两个负电性较大,而原子半径较小的原子(O、F、N等)结合,构成氢键。
如:水(H2O),冰,磷酸二氢钾(KH2PO40),脱氧核糖酸(DNA)等。
第三章1、会推导一维单原子链的色散关系。
2、引入玻恩卡门条件的理由是什么?答:(1) 方便于求解原子运动方程.由本教科书的(3.4)式可知, 除了原子链两端的两个原子外, 其它任一个原子的运动都与相邻的两个原子的运动相关. 即除了原子链两端的两个原子外, 其它原子的运动方程构成了个联立方程组. 但原子链两端的两个原子只有一个相邻原子, 其运动方程仅与一个相邻原子的运动相关, 运动方程与其它原子的运动方程迥然不同. 与其它原子的运动方程不同的这两个方程, 给整个联立方程组的求解带来了很大的困难.(2) 与实验结果吻合得较好.对于原子的自由运动, 边界上的原子与其它原子一样, 无时无刻不在运动. 对于有N个原子构成的的原子链, 硬性假定的边界条件是不符合事实的. 其实不论什么边界条件都与事实不符. 但为了求解近似解, 必须选取一个边界条件. 晶格振动谱的实验测定是对晶格振动理论的最有力验证(参见本教科书§3.2与§3.4). 玻恩卡门条件是晶格振动理论的前提条件. 实验测得的振动谱与理论相符的事实说明, 玻恩卡门周期性边界条件是目前较好的一个边界条件.3、什么叫格波?答:晶格中的原子振动是以角频率为ω的平面波形式存在的,这种波就叫格波。
4、为什么把格波分为光学支与声学支?答:因为晶格振动波矢为N,格波支数为mp,这其中,m支为声学支,m(p-1)支为光学支。
5、长光学支格波与长声学支格波本质上有何差别?答:长光学支格波的特征是每个原胞内的不同原子做相对振动, 振动频率较高, 它包含了晶格振动频率最高的振动模式. 长声学支格波的特征是原胞内的不同原子没有相对位移, 原胞做整体运动, 振动频率较低, 它包含了晶格振动频率最低的振动模式, 波速是一常数. 任何晶体都存在声学支格波, 但简单晶格(非复式格子)晶体不存在光学支格波.6、什么叫声子?与光子有何区别?答:将格波的能量量子叫声子。
声子和光子的区别:光子是一种真实粒子,它可以在真空中存在;但声子是人们为了更好地理解和处理晶格集体振动设想出来的一种粒子,它不能游离于固体之外,更不能跑到真空中,离开了晶格振动系统,也就无所谓声子,所以,声子是种准粒子。
声子和光子一样,是玻色子,它不受泡利不相容原理限制,粒子数也不守恒,并且服从玻色-爱因斯坦统计。
7.对于一给定的固体,它是否拥有一定种类和数目的声子?声子是否携带一定的物理动量,为什么?答:8.温度一定,一个光学波的声子和一个声学波的声子数目哪个多,为什么?答:频率为ω的格波的(平均) 声子数为因为光学波的频率ω0比声学波的频率ωA高, ( )大于( ), 所以在温度一定情况下, 一个光学波的声子数目少于一个声学波的声子数目.9、什么是爱因斯坦模型?为什么爱因斯坦模型计算的热容在低温下与实验值不符?答:爱因斯坦对晶格振动采用了一个极简单的假设,即晶格中的各原子振动都是独立的,这样所有原子振动都有同一频率。
按照爱因斯坦温度的定义, 爱因斯坦模型的格波的频率大约为, 属于光学支频率. 但光学格波在低温时对热容的贡献非常小, 低温下对热容贡献大的主要是长声学格波. 也就是说爱因斯坦没考虑声学波对热容的贡献是爱因斯坦模型在低温下与实验存在偏差的根源.10.什么是德拜模型?为什么温度很低时,德拜近似与实验符合较好,爱因斯坦近似与实验结果的偏差增大?为什么德拜近似还不能与实验完全符合?答:在甚低温下, 不仅光学波得不到激发, 而且声子能量较大的短声学格波也未被激发, 得到激发的只是声子能量较小的长声学格波. 长声学格波即弹性波. 德拜模型只考虑弹性波对热容的贡献. 因此, 在甚低温下, 德拜模型与事实相符, 自然与实验相符.11.对一个具体的晶体,知道晶体中波矢数目、原胞数目、自由度数之间的关系?12.用简谐近似下,晶体会有热膨胀吗?为什么?答:在简谐近似下,(1)γ=0,晶体不会有热膨胀;当考虑非谐项的贡献时,γ不等于0,则晶体有热膨胀;(2)由于1/K是体压缩系数,晶体受热时如果容易膨胀,受压时则容易压缩,这显然是由原子间结合键的强弱决定的;(3)低温下,Cv按T³下降,因此低温下,热膨胀系数会急剧随温度下降。
第四章知识点1、什么是点缺陷?点缺陷主要有哪些类型,各有什么特点?答:点缺陷:它是在格点附近一个或几个晶格常量范围内的一种晶格缺陷。