《等差数列前n项和公式》教学设计53171

合集下载

等差数列前n项和公式教学设计

等差数列前n项和公式教学设计

等差数列前n项和公式教学设计一、引言等差数列是数学中常见的数列类型之一,它的前n项和公式是数学教学中的重要内容。

本文将针对等差数列前n项和公式的教学设计进行讨论,旨在帮助学生理解和应用该公式。

二、教学目标通过本次教学,学生将能够:1. 掌握等差数列的定义和性质;2. 推导等差数列前n项和公式;3. 熟练应用前n项和公式解决实际问题。

三、教学内容1. 等差数列的定义和性质在开始介绍前n项和公式之前,首先向学生介绍等差数列的定义和性质。

教师可以通过提供具体的数列示例,并引导学生观察数列中的规律,以加深他们对等差数列的理解。

2. 推导等差数列前n项和公式为了引导学生主动参与教学过程,并提高他们对公式的理解程度,教师可以采用探究性学习的方法来推导等差数列前n项和公式。

以下是一种教学策略:(1)教师先给出一个等差数列,例如:2, 5, 8, 11, 14, ...(2)教师引导学生观察数列中的规律,如何由前一项得到后一项。

(3)学生通过观察和思考,可以发现每一项与前一项的差是相同的,即公差(d)。

(4)接下来,教师可以引导学生通过等差数列的通项公式(an =a1 + (n-1)d)来表示数列中的各项。

(5)通过代入相应的值,教师指导学生推导出等差数列前n项和的公式(Sn = (n/2)(a1 + an))。

3. 应用前n项和公式解决实际问题为了提高学生的应用能力,教师可以设计一些实际问题,要求学生运用前n项和公式解决。

例如:(1)小明连续10天每天跑步,第一天跑了2公里,每天比前一天多跑3公里,问小明共跑了多少公里?(2)某商店连续7天的销售额分别是100元、110元、120元、...,每天比前一天增加10元,求7天的总销售额。

四、教学步骤1. 引导学生回顾等差数列的定义和性质;2. 通过探究性学习的方法,引导学生推导等差数列前n项和的公式;3. 提供实际问题,要求学生运用前n项和公式进行计算;4. 指导学生总结等差数列前n项和的公式;5. 练习巩固:提供更多练习题,让学生进行接触和熟练应用。

等差数列前n项和公式教学设计

等差数列前n项和公式教学设计

等差数列前n项和公式教学设计一、引言等差数列是数学中常见的一种数列,对于学生来说,了解等差数列的基本概念和求和公式是非常重要的。

本文旨在设计一堂教学课程,帮助学生理解等差数列前n项和公式,并加深他们对该概念的理解。

二、教学目标本节课的主要教学目标如下:1. 学习等差数列的定义和基本概念;2. 学会推导和运用等差数列的前n项和公式;3. 培养学生的逻辑思维和问题解决能力。

三、教学过程1. 导入为了激发学生的学习兴趣,我会以一个有趣的例子开始课程,例如让学生想象他们正在参加一个奖励活动,每天奖励的数目以等差数列递增。

引导学生思考如何计算他们在活动结束时累计获得的奖励数目。

2. 探究在导入后,我将引导学生自主探究等差数列的定义和基本概念。

通过给出一些数列示例和观察数列的特点,学生将逐渐理解等差数列的概念。

我会鼓励学生提出问题并进行讨论,以促进他们的思维发展。

3. 归纳当学生们了解等差数列的基本概念后,我会引导他们发现等差数列的前n项和公式的规律,并与他们分享推导公式的思路。

然后,我会帮助学生将这个过程总结成一般的等差数列前n项和公式。

通过引导学生自主发现规律,他们将更好地理解公式的来源和应用。

4. 实践在学习归纳出的等差数列前n项和公式后,我会给学生一些实际问题进行练习。

这些问题既能考察学生对公式的运用,也能培养他们的问题解决能力。

我会鼓励学生积极参与解答问题,并提供必要的指导和反馈。

5. 总结在课程结束前,我会与学生一起回顾所学内容,并对他们的学习进行总结。

我会强调等差数列前n项和公式的重要性,并和学生一起讨论如何将这个概念应用到更复杂的问题中。

我还会鼓励学生继续探索和学习数学的其他概念,培养他们对数学的兴趣和自信心。

四、教学评估为了评估学生的学习情况和理解程度,我将设计一些形式多样的评估活动,如课堂练习、小组合作探究和个人作业等。

通过这些评估活动,我能够及时发现学生的问题并及时给予指导和帮助。

五、教学资源为了支持教学过程,我将准备以下教学资源:1. 幻灯片:用于引入、讲解和总结课程内容;2. 笔记板:用于记录学生的思考和解答过程,并引导他们进行讨论;3. 实例练习题:用于巩固学生对等差数列前n项和公式的理解;4. 参考书籍和网上资源:用于进一步学习和拓展。

《等差数列前n项和公式》教学设计

《等差数列前n项和公式》教学设计

《等差数列的前n项和公式》教学设计大理州实验中学赵高锦一.课标分析:高中数列研究的主要对象是等差、等比两个基本数列。

本节课的教学内容是等差数列前n项和公式的推导及其简单应用。

二.教材分析:数列在生产实际中的应用范围很广,而且是培养学生发现、认识、分析、综合等能力的重要题材,同时也是学生进一步学习高等数学的必备的基础知识。

三.学生分析:数列在整个高中阶段对于学生来说是难点,因为学生对于这部分仅有初中学的简单函数作为基础,所以新课的引入非常重要。

四.教学目标:知识与技能目标:掌握等差数列前n项和公式,能较熟练应用等差数列前n项和公式求和。

过程与方法目标:培养学生观察、归纳能力,应用数学公式的能力及渗透函数、方程的思想。

情感、态度与价值观目标:体验从特殊到一般,又到特殊的认识事物的规律,培养学生勇于创新的科学精神。

五.教学重点与难点:等差数列前n项和公式是重点。

获得等差数列前n项和公式推导的思路是难点。

六.教学用具:ppt七:教学过程整节课分为三个阶段:问题呈现阶段探究发现阶段公式应用阶段问题呈现1:首先讲述世界七大奇迹之一泰姬陵的传说(泰姬陵坐落于印度古都阿格,是十七世纪莫卧儿帝国皇帝沙杰罕为纪念其爱妃所建,她宏伟壮观,纯白大理石砌建而成的主体建筑叫人心醉神迷,陵寝以宝石镶饰,图案之细致令人叫绝,成为世界七大奇迹之一。

)传说陵寝中有一个三角形图案,以相同大小的圆宝石镶饰而成,共有100层,你知道这个图案一共花了多少宝石吗?也就是计算1+2+3+ (100)紧接着讲述高斯算法:高斯,德国著名数学家,被誉为“数学王子”。

200多年前,高斯的算术教师提出了下面的问题:1+2+3+…+100=?据说,当其他同学忙于把100个数逐项相加时,10岁的高斯却用下面的方法迅速算出了正确答案:(1+100)+(2+99)+……+(50+51)=101×50=5050(首尾配对相加)【设计说明】了解历史,激发兴趣,提出问题,紧扣核心。

《等差数列的前n项和》教学设计(精选五篇)

《等差数列的前n项和》教学设计(精选五篇)

《等差数列的前n项和》教学设计(精选五篇)第一篇:《等差数列的前n项和》教学设计:等差数列的前n项和是人教实验版必修5第二章第3节的内容,是学生学习了等差数列的定义、通项公式后,对数列知识的进一步学习。

学情分析:学生通过对等差数列基本概念和通项公式的学习,对等差数列有了一定的了解。

但是由于学生是第一次接触到数列的求和,缺乏相关经验,因此,需要借助几何直观学习和理解。

教学目标:1、情感态度与价值观(1)获得发现的成就感,逐步养成科学严谨的学习态度,提高代数推理的能力。

(2)注重在学习过程中师生情感交流,鼓励学生自主发现,激发学生的学习热情,培养学生的探索精神与创新意识。

2、过程与方法(1)通过公式的探索、发现,在知识发生、发展以及形成过程中培养学生观察、联想、归纳、分析、综合和逻辑推理的能力;(2)利用以退求进的思维策略,遵循从特殊到一般的认知规律,让学生在实践中通过观察、尝试、分析、类比的方法导出等差数列的求和公式,培养学生类比思维能力。

3、情感态度与价值观(1)获得发现的成就感,逐步养成科学严谨的学习态度,提高代数推理的能力。

(2)注重在学习过程中师生情感交流,鼓励学生自主发现,激发学生的学习热情,培养学生的探索精神与创新意识。

教学重点、难点:1、等差数列前n项和公式是重点。

2、获得等差数列前n项和公式推导的思路是难点。

设计理念:在教学中通过生动具体的现实问题,激发学生探究的兴趣和欲望,由浅入深,层层深入,增强学生学好数学的心理体验,产生热爱数学的情感,体验在学习中获得成功。

教学资源:现代教育多媒体技术教学过程:(一)创设问题情境故事引入:德国伟大的数学家高斯“神述求和”的故事。

高斯在上小学四年级时,老师出了这样一道题“1+2+3……+99+100”高斯稍微想了想就得出了答案。

高斯到底用了什么巧妙的方法呢?下面给同学们一点时间来挑战高斯。

高斯的方法:首项与末项的和:1+100=101 第2项与倒数第2项的和:2+99=101 第3项与倒数第3项的和:3+98=101 ……第50项与倒数第50项的和:50+51=101 ∴前100个正整数的和为:101×50=50502.故事引入:泰姬陵坐落于印度古都阿格,是十七世纪莫卧儿帝国皇帝沙杰罕为纪念其爱妃所建,她宏伟壮观,纯白大理石砌建而成的主体建筑叫人心醉神迷,成为世界七大奇迹之一。

《等差数列的前n项和公式》教学设计

《等差数列的前n项和公式》教学设计

《等差数列的前n项和公式》教学设计一、教学设计思想在以往的教学中,课堂教学实施往往过于注重知识传授倾向,学生被动地接受,很难从多方面培养学生的综合素质。

而本堂课的设计是以个性化教学思想为指导进行设计的。

本堂课的教学设计对教材部分内容进行了有意识的选择和改组,个性化地处理教材使学生更便于接受和理解。

为了体现个性化教学的教学理念,在教法上,采用了以学生为主体,以问题为中心,以老师为引导,以小组的合作为主要学习方式。

在教学中通过生动具体的现实问题,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的心理体验,产生热爱数学的情感,体验在学习中获得成功。

二、学生情况与教材分析1、学生情况分析:学生思维较活跃,有一定的分析问题、探究问题进而解决问题的能力,并且学生已经学习了等差数列的定义和通项公式,而且具有一些生活中的实际经验和掌握了高斯数的推导方法.2、几何能直观地启迪思路,帮助理解,因此,借助几何直观学习和理解数学,是数学学习中的重要方面。

只有做到了直观上的理解,才是真正的理解。

因此在教学中,要鼓励学生借助几何直观进行思考,揭示研究对象的性质和关系,从而渗透了数形结合的数学思想。

三、教学目标1、知识与技能目标(1)理解等差数列前n项和公式的推导过程;(2)会运用等差数列前n项和公式进行相关计算。

2、过程与方法目标:通过等差数列求和公式的探索及推导过程,培养学生的“科学猜想能力和合情推理能力”,掌握“倒序相加”的数学方法,渗透数形结合的数学思想,培养创新意识。

3、情感态度与价值观目标:(1)、通过生动具体的现实问题,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的心理体验,产生热爱数学的情感,体验在学习中获得成功的喜悦。

(2)、通过师生、生生的合作学习,增强学生团队协作意识,培养主动与他人合作交流的能力.四、教学重点、难点等差数列前n项和公式的推导过程及公式应用是重点等差数列前n项和公式的发现过程及推导方法是难点。

《等差数列前n项和的公式》教案

《等差数列前n项和的公式》教案

《等差数列前n项和的公式》教案一、教学目标1、知识与技能目标学生能够理解并掌握等差数列前 n 项和的公式。

能够熟练运用公式解决与等差数列前 n 项和相关的问题。

2、过程与方法目标通过推导等差数列前 n 项和公式的过程,培养学生的逻辑推理能力和数学思维能力。

让学生经历从特殊到一般,再从一般到特殊的研究过程,体会数学中的转化思想。

3、情感态度与价值观目标激发学生学习数学的兴趣,培养学生勇于探索、敢于创新的精神。

让学生在解决问题的过程中,体验成功的喜悦,增强学习数学的自信心。

二、教学重难点1、教学重点等差数列前 n 项和公式的推导和理解。

公式的熟练运用。

2、教学难点等差数列前 n 项和公式的推导过程中数学思想的渗透。

三、教学方法讲授法、讨论法、练习法四、教学过程1、导入新课回顾等差数列的定义和通项公式。

提出问题:如何求等差数列的前 n 项和?2、公式推导以等差数列:1,2,3,4,5,,n 为例,引导学生思考求和的方法。

方法一:依次相加。

方法二:倒序相加。

设等差数列\(a_n\)的首项为\(a_1\),公差为\(d\),前\(n\)项和为\(S_n\)。

\(S_n = a_1 + a_2 + a_3 ++ a_{n-1} + a_n\)①\(S_n = a_n + a_{n-1} + a_{n-2} ++ a_2 + a_1\)②①+②得:\\begin{align}2S_n&=(a_1 + a_n) +(a_2 + a_{n-1})++(a_{n-1} + a_2) +(a_n + a_1)\\2S_n&=n(a_1 + a_n)\\S_n&=\frac{n(a_1 + a_n)}{2}\end{align}\又因为\(a_n = a_1 +(n 1)d\),所以\(S_n =\frac{n(a_1 +a_1 +(n 1)d)}{2} = na_1 +\frac{n(n 1)d}{2}\)3、公式理解分析公式中各项的含义。

等差数列前n项和公式教学设计

等差数列前n项和公式教学设计

等差数列前n项和公式教学设计
教学目标:
1. 理解等差数列的概念,掌握等差数列的通项公式和前n项和公式。

2. 通过对等差数列前n项和公式的推导,培养学生的推理能力和数学运算能力。

3. 通过对等差数列前n项和公式的应用,培养学生的实际应用意识和解决问题的能力。

教学重点:
1. 等差数列的概念和通项公式。

2. 等差数列的前n项和公式及其推导。

3. 等差数列前n项和公式的应用。

教学难点:
1. 等差数列前n项和公式的推导。

2. 等差数列前n项和公式的应用。

教学方法:
1. 讲授法:通过讲授等差数列的概念和通项公式,为学生理解等差数列的前n项和公式打下基础。

2. 讨论法:通过组织学生讨论等差数列前n项和公式的推导和应用,培养学生的合作学习和解决问题的能力。

教学过程:
一、引入课题
通过举例和归纳,引出等差数列的概念,并引导学生探究等差数列的特点和通项公式。

二、讲解新课
1. 等差数列的概念和通项公式。

2. 等差数列的前n项和公式及其推导。

通过实例引导学生探究等差数列前n 项和公式的推导方法,并总结公式。

3. 等差数列前n项和公式的应用。

通过实例引导学生探究等差数列前n项和公式的应用,并总结应用方法。

三、巩固练习
1. 通过举例引导学生运用等差数列前n项和公式解决实际问题。

2. 通过练习题巩固等差数列前n项和公式的应用。

四、归纳小结
引导学生总结等差数列前n项和公式的推导和应用方法,并强调注意事项。

等差数列前n项和公式(优质课)教案

等差数列前n项和公式(优质课)教案

等差数列的前n 项和 (优质课)教案教学目标:教学重点: 掌握等差数列前n 项和通项公式及性质,数列最值的求解,与函数的关系 教学难点: 数列最值的求解及与函数的关系教学过程:1. 数列的前n 项和一般地,我们称312...n a a a a ++++为数列{}n a 的前n 项和,用n S 表示;记法:123...n n S a a a a =++++ 显然,当2n ≥时,有1n n n a S S −=− 所以n a 与n S 的关系为n a = ①1S ()1n =②()12n n S S n −−≥2. 等差数列的前n 项和公式()()11122n n n a a n n S na d +−==+ 3. 等差数列前n 项和公式性质(1) 等差数列中,依次()2,k k k N +≥∈项之和仍然是等差数列,即23243,,,,...k k k k k k k S S S S S S S −−− 成等差数列,且公差为2k d(2) n S n ⎧⎫⎨⎬⎩⎭是等差数列 (3) 等差数列{}n a 中,若(),n m a m a n m n ==≠,则0m n a +=;若(),,n m S m S n m n ==≠则()m n S m n +=−+(4) 若{}n a 和{}n b 均为等差数列,前n 项和分别是n S 和n T ,则有2121n n n n a S b T −−=(5) 项数为2n 的等差数列{}n a ,有()1,n n n S n a a +=+有S 偶 -S 奇 =nd ,S S 奇 /偶 =1nn a a + 4. 等差数列前n 项和公式与函数的关系等差数列前n 项和公式()112n n n S na d −=+可以写成2122n d d S n a n ⎛⎫=+− ⎪⎝⎭ 若令1,,22d dA aB =−=类型一: 数列及等差数列的求和公式例1.已知数列{}n a 的前n 项和22,n S n n =+ 求{}n a解析:当1n =时,113a S ==;当2n ≥时,121n n n a S S n −=−=+当1n =时,上式成立所以21n a n =+答案:21n a n =+练习1. 已知数列{}n a 的前n 项和22,n S n n =+求2a 答案:25a =练习2:已知数列{}n a 的前n 项和22,n S n n =+求10a 答案:1021a =例2.已知等差数列{}n a 的前n 项和为n S ,131,,15,22m a d S ==−=−求m 及m a 解析:()131..15222m m m S m −⎛⎫=+−=− ⎪⎝⎭,整理得27600,m m −−= 解得12m =或5m =−(舍去)()12311211522m a a ⎛⎫∴==+−⨯−=− ⎪⎝⎭答案:1212,4m a ==−练习3. 已知等差数列{}n a 的前n 项和为n S ,11,512,1022n n a a S ==−=−,求d答案:171d =−练习4. 已知等差数列{}n a 的前n 项和为n S ,524,S =求24a a + 答案:24485a a +=例3.在等差数列{}n a 中,前n 项和为n S (1) 若81248,168,S S ==求1a 和公差d(2) 若499,6,a a ==−求满足54n S =的所有n 的值解析:(1)由等差数列前n 项和公式有11182848,1266168,8,4a d a d a d +=+=∴=−=(2)由4919,6,18,3a a a d ==−∴==−所以()()11813542n S n n n =+−−=即213360n n −+= 解得4n =或9n = 答案:(1)18,4a d =−= (2)4n =或9n =练习5.设n S 是等差数列{}n a 的前项和,1532,3,a a a ==则9S =___________ 答案:54−练习6.在等差数列{}n a 中,241,5,a a ==则{}n a 的前5项和 5S = ______________ 答案:15类型二: 等差数列前n 项和公式的性质 例4.在等差数列{}n a 中, (1) 若41720a a +=,求20S(2) 若共有n 项,且前四项之和为21,后四项之和为67,前n 项和286n S = ,求n (3) 若10100100,10S S ==求110S解析:(1)由等差数列的性质,知()1204172012020202002a a a a S a a +=+=∴=+= (2)由题意得,知123412321,67,n n n n a a a a a a a a −−−+++=+++= 由等差数列的性质知()121324311488,22n n n n n n a a a a a a a a a a a a −−−+=+=+=+∴+=∴+=又()12n n nS a a =+ ,即 222862n ⨯=26n ∴= (4) 因为数列{}n a 是等差数列,所以10,2010302010090110100,,...,,S S S S S S S S S −−−−成等差数列,首项为10100S =,设其公差为d ,则100S 为该数列的前10项和,()()10010201010090109 (10100102)S S S S S S d ⨯∴=+−++−=⨯+=解得22d =−,又110S 为该数列的前11项和,故()110111011100221102S ⨯=⨯+⨯−=− 答案:(1)20200S = (2)26n = (3)110110S =−练习7.(2014山东淄博一中期中)设n S 是等差数列{}n a 的前n 项和,若4813S S =,则816S S 等于()A.19 B.13 C.310 D.18答案:C练习8.(2014山东青岛期中)已知等差数列{}n a 的公差0d >,()122013...2013t a a a a t N ++++=∈ 则t = ()A.2014B.2013C.1007D.1006 答案:C例5.已知等差数列{}n a 和{}n b 的前n 项和分别为n S 和n T ,且21n n S nT n =+则33a b =() A.32 B.43 C.53 D. 127解析:当n 为奇数时,等差数列{}n a 的前n 项和()1122n n n n a a S na ++== 同理12n n T nb +=令5n =得33533552555513a a Sb b T ⨯====+ 答案:C练习9.已知是{}n a 等差数列,n S 为其前n 项和,n N +∈若32016,20a S ==则10S 的值为______ 答案:110练习10.已知等差数列{}n a 的公差为2,项数是偶数,所有奇数项之和为15,所有偶数项之和为35,则这个数列的项数为______________ 答案:20类型三:等差数列前n 项和公式的最值及与函数的关系 例6.已知数列{}n a 的前项和为2230n S n n =− (1) 这个数列是等差数列吗?求出它的通项公式 (2) 求使得n S 最小的n 值解析:(1)因为()14322n n n a S S n n −=−=−≥当1n =时1123028a S ==−=−也适合上式,所以这个数列的通项公式为432n a n =−又因为()()()1432413242n n a a n n n −−=−−−−=≥⎡⎤⎣⎦ 所以{}n a 是等差数列(2)2215225230222n S n n n ⎛⎫=−=−− ⎪⎝⎭因为n 是正整数,所以当7n =或8时n S 最小,最小值为-112答案:(1)是;432n a n =−(2)当7n =或8时n S 最小,最小值为-112练习11.已知等差数列{}n a 的前n 项和为715,7,75n S S S ==,n T 为数列n S n ⎧⎫⎨⎬⎩⎭的前n 项和,求数列{}n T 的通项公式答案:2944n n T n =− 练习12.等差数列{}n a 中,若61024,120S S ==,求15S =_____________ 答案:15330S =例7.已知等差数列{}n a 中,19120,,a S S <=求使该数列前n 项和n S 取得最小值的n 的值 解析:设等差数列{}n a 的公差为d ,则由题意得111199812121122a d a d +⨯⨯⨯=+⨯⨯⨯ 即21112121330,10,00228n d a d a d a d S n d ⎛⎫=−∴=−<∴>∴=−− ⎪⎝⎭ 0n d S >∴有最小值;又,10n N n +∈∴=或11n =时,n S 取最小值答案:10n =或11n =时,n S 取最小值练习13.已知等差数列{}n a 中,128,4a d =−=则使前n 项和n S 取得最小值的n 值为() A.7 B.8 C.7或8 D.6或7 答案:C练习14.数列{}n a 满足211n a n =−+,则使得其前n 项和取得最大值的n 等于() A.4 B.5 C.6 D.7 答案:B1. 四个数成等差数列,S 4=32,a 2a 3=13,则公差d 等于( )A .8B .16C .4D .0 答案:A2. 设{a n }是等差数列,S n 为其前n 项和,且S 5<S 6,S 6=S 7>S 8,则下列结论错误的是( ) A .d <0 B .a 7=0 C .S 9>S 5 D .S 6与S 7均为S n 的最大值. 答案:C3. 已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,S n 是等差数列{a n }的前n 项和,则使得S n 达到最大值的n 是( )A .21B .20C .19D .18 答案:B4. 已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列{1a n a n +1}的前100项和为( )A.100101B.99101C.99100D.101100 答案:A5. 在等差数列{a n }中,若S 12=8S 4,且d ≠0,则a 1d等于( )A.910B.109 C .2 D.23 答案:A6. 设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S k +2-S k =24,则k =( ) A .8 B .7 C .6 D .5 答案:D7. (2014·福建理,3)等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( ) A .8 B .10 C .12 D .14 答案:C_________________________________________________________________________________ _________________________________________________________________________________基础巩固 1. 等差数列{a n }的前n 项和为S n ,已知a m -1+a m +1-a 2m =0,S 2m -1=38,则m =( ) A .38 B .20 C .10 D .9 答案:C2.数列{a n }是等差数列,a 1+a 2+a 3=-24,a 18+a 19+a 20=78,则此数列的前20项和等于( ) A .160 B .180 C .200 D .220 答案:B3.等差数列{a n }的公差为d ,前n 项和为S n ,当首项a 1和d 变化时,a 2+a 8+a 11是一个定值,则下列各数中也为定值的是( )A .S 7B .S 8C .S 13D .S 15 答案:C4. 已知等差数列共有10项,其中奇数项之和为15,偶数项之和为30,则其公差是( ) A .5 B .4 C .3 D .2 答案:C5. 在等差数列{a n }中,a 1>0,d =12,a n =3,S n =152,则a 1=________,n =________.答案:2 ,36. 设S n 是等差数列{a n }(n ∈N *)的前n 项和,且a 1=1,a 4=7,则S 5=________.答案:257. 设{a n }是公差为-2的等差数列,若a 1+a 4+a 7+…+a 97=50,则a 3+a 6+a 9+…+a 99的值为________. 答案:-828.若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大. 答案:89. 已知等差数列{a n }的前n 项和S n 满足S 3=0,S 5=-5.(1)求{a n }的通项公式;(2)求数列{1a 2n -1a 2n +1}的前n 项和.答案:(1)设{a n }的公差为d ,则S n =na 1+n (n -1)2d .由已知可得⎩⎪⎨⎪⎧3a 1+3d =05a 1+10d =-5,解得a 1=1,d =-1.由{a n }的通项公式为a n =2-n . (2)由(1)知1a 2n -1a 2n +1=1(3-2n )(1-2n )=12(12n -3-12n -1), 从而数列{1a 2n -1a 2n +1}的前n 项和为12(1-1-11+11-13+…+12n -3-12n -1)=n 1-2n. 10. 设{a n }是等差数列,前n 项和记为S n ,已知a 10=30,a 20=50.(1)求通项a n ;(2)若S n =242,求n 的值. 答案:(1)设公差为d ,则a 20-a 10=10d =20, ∴d =2.∴a 10=a 1+9d =a 1+18=30, ∴a 1=12.∴a n =a 1+(n -1)d =12+2(n -1)=2n +10. (2)S n =n (a 1+a n )2=n (2n +22)2=n 2+11n =242, ∴n 2+11n -242=0, ∴n =11.能力提升11. 在等差数列{a n }和{b n }中,a 1=25,b 1=15,a 100+b 100=139,则数列{a n +b n }的前100项的和为( )A .0B .4 475C .8 950D .10 000 答案:C12. 等差数列{a n }中,a 1=-5,它的前11项的平均值是5,若从中抽取1项,余下的10项的平均值为4,则抽取的项是( )A .a 8B .a 9C .a 10D .a 11 答案:D13. 一个凸多边形的内角成等差数列,其中最小的内角为120°,公差为5°,那么这个多边形的边数n 等于( )A .12B .16C .9D .16或9答案:C14. 已知一个等差数列的前四项之和为21,末四项之和为67,前n 项和为286,则项数n 为( ) A .24 B .26 C .27 D .28 答案:B15. 设S n 为等差数列{a n }的前n 项和,S 3=4a 3,a 7=-2,则a 9=( )A .-6B .-4C .-2D .2 答案:A16. 设S n 是等差数列{a n }的前n 项和,若S 3S 6=13,则S 6S 12等于( )A.310B.13C.18D.19 答案:A17. 已知等差数列{a n }的前n 项和为S n ,若OB →=a 1OA →+a 200OC →,且A 、B 、C 三点共线(该直线不过点O ),则S 200=( )A .100B .101C .200D .201 答案:A18. 已知等差数列{a n }的前n 项和为18,若S 3=1,a n +a n -1+a n -2=3,则n =________. 答案:2719. 已知数列{a n }的前n 项和S n =n 2-8,则通项公式a n =________.答案:⎩⎪⎨⎪⎧-7 (n =1)2n -1 (n ≥2)20. 设{a n }是递减的等差数列,前三项的和是15,前三项的积是105,当该数列的前n 项和最大时,n 等于( )A .4B .5C .6D .7 答案: A21. 等差数列{a n }中,d <0,若|a 3|=|a 9|,则数列{a n }的前n 项和取最大值时,n 的值为______________. 答案:5或622. 设等差数列的前n 项和为S n .已知a 3=12,S 12>0,S 13<0.(1)求公差d 的取值范围;(2)指出S 1,S 2,…,S 12中哪一个值最大,并说明理由.答案:(1)依题意⎩⎨⎧S 12=12a 1+12×112d >0S13=13a 1+13×122d <0,即⎩⎪⎨⎪⎧2a 1+11d >0, ①a 1+6d <0. ②由a 3=12,得a 1+2d =12. ③将③分别代入②①,得⎩⎪⎨⎪⎧24+7d >03+d <0,解得-247<d <-3.(2)由d <0可知{a n }是递减数列,因此若在1≤n ≤12中,使a n >0且a n +1<0,则S n 最大. 由于S 12=6(a 6+a 7)>0,S 13=13a 7<0,可得 a 6>0,a 7<0,故在S 1,S 2,…,S 12中S 6的值最大. 23. 已知等差数列{a n }中,a 1=1,a 3=-3.(1)求数列{a n }的通项公式;(2)若数列{a n }的前k 项和S k =-35,求k 的值. 答案:(1)设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d .由a 1=1,a 3=-3可得1+2d =-3.解得d =-2. 从而,a n =1+(n -1)×(-2)=3-2n . (2)由(1)可知a n =3-2n . 所以S n =n [1+(3-2n )]2=2n -n 2.进而由S k =-35,可得2k -k 2=-35. 又k ∈N *,故k =7为所求. 24. 在等差数列{a n }中:(1)已知a 5+a 10=58,a 4+a 9=50,求S 10; (2)已知S 7=42,S n =510,a n -3=45,求n . 答案:(1)解法一:由已知条件得⎩⎪⎨⎪⎧a 5+a 10=2a 1+13d =58a 4+a 9=2a 1+11d =50, 解得⎩⎪⎨⎪⎧a 1=3d =4.∴S 10=10a 1+10×(10-1)2×d =10×3+10×92×4=210. 解法二:由已知条件得⎩⎪⎨⎪⎧a 5+a 10=(a 1+a 10)+4d =58a 4+a 9=(a 1+a 10)+2d =50, ∴a 1+a 10=42,∴S 10=10(a 1+a 10)2=5×42=210. 解法三:由(a 5+a 10)-(a 4+a 9)=2d =58-50,得d =4由a 4+a 9=50,得2a 1+11d =50,∴a 1=3.故S 10=10×3+10×9×42=210. (2)S 7=7(a 1+a 7)2=7a 4=42,∴a 4=6. ∴S n =n (a 1+a n )2=n (a 4+a n -3)2=n (6+45)2=510. ∴n =20.25.已知等差数列{a n }的前n 项和S n =-32n 2+2052n ,求数列{|a n |}的前n 项和T n . 答案:a 1=S 1=101,当n ≥2时,a n =S n -S n -1=(-32n 2+2052n )-[-32(n -1)2+2052(n -1)] =-3n +104.又n =1也适合上式.∴数列通项公式a n =-3n +104.由a n =-3n +104≥0,得n ≤1043, 即当n ≤34时,a n >0;当n ≥35时,a n <0.①当n ≤34时,T n =a 1+a 2+…+a n =S n =-32n 2+2052n . ②当n ≥35时,T n =|a 1|+|a 2|+…+|a 34|+|a 35|+…+|a n | =a 1+a 2+…+a 34-(a 35+a 36+…+a n ) =2(a 1+a 2+…+a 34)-(a 1+a 2+…+a n ) =2S 34-S n=32n 2-2052n +3 502.故T n =⎩⎨⎧ -32n 2+2052n (n ≤34)32n 2-2052n +3 502 (n ≥35).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《等差数列的前n项和》教学设计一、设计理念让学生在具体的问题情境中经历知识的形成和发展,让学生利用自己的原有认知结构中相关的知识与经验,自主地在教师的引导下促进对新知识的建构,因为建构主义学习理论认为,学习是学生积极主动地建构知识的过程.在教学过程中,根据教学内容,从介绍高斯的算法开始,探究这种方法如何推广到一般等差数列的前n项和的求法.通过设计一些从简单到复杂,从特殊到一般的问题,层层铺垫,组织和启发学生获得公式的推导思路,并且充分引导学生展开自主、合作、探究学习,通过生生互动和师生互动等形式,让学生在问题解决中学会思考、学会学习.同时根据我校的特点,为了促进成绩优秀学生的发展,还设计了选做题和探索题,进一步培养优秀生用函数观点分析、解决问题的能力,达到了分层教学的目的.二、背景分析本节课教学内容是高中课程标准实验教科书必修5(北师大)中第二章的第三节内容.本节课主要研究如何应用倒序相加法求等差数列的前n项和以及该求和公式的应用.等差数列在现实生活中比较常见,因此等差数列求和就成为我们在实际生活中经常遇到的一类问题.同时,求数列前n项和也是数列研究的基本问题,通过对公式推导,可以让学生进一步掌握从特殊到一般的研究问题方法.三、学情分析1、学生已掌握的理论知识角度:学生已经学习了等差数列的定义及通项公式,掌握了等差数列的基本性质,有了一定的知识准备。

2、学生了解数列求和历史角度:大部分学生对高斯算法有比较清晰的认识,并且知道此算法原理,但在高斯算法中数列1,2,3,……,100只是一个特殊的等差数列,对于一般的等差数列的求和方法和公式学生还是一无所知。

3、学生的认知规律角度:本节课采取了循序渐进、层层深入的教学方式,以问题解答的形式,通过探索、讨论、分析、归纳而获得知识,为学生积极思考、自主探究搭建了理想的平台,让学生去感悟倒序相加法的和谐对称以及使用范围。

四、教学目标1、类比高斯算法,探求等差数列前n项和公式,理解公式的推导方法;2、能较熟练地应用等差数列前n项和公式解决相关问题;3、经历公式的推导过程,体会层层深入的探索方式,体验从特殊到一般、具体到抽象的研究方法,学会观察、归纳、反思与逻辑推理的能力;4、通过生动具体的现实问题,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的心理体验,产生热爱数学的情感,体验在学习中获得成功;五、教学重点与难点1、教学重点:等差数列前n项和公式的推导和应用2、教学难点:公式推导的思路3、重难点解决的方法策略:本课在设计上采用了从特殊到一般、从具体到抽象的教学策略。

利用分类讨论、类比归纳的思想,层层深入。

通过学生自主探究,分析、整理出推导公式的不同思路,同时,借助多媒体的直观演示,帮助学生理解,通过教师的点拨引导、师生互动、讲练结合,突出重点、突破难点。

六、教学过程设计(一)创设情景,提出问题欣赏图片——泰姬陵:泰姬陵坐落于印度古都阿格,是17世纪莫卧儿帝国皇帝沙杰罕为纪念其爱妃所建。

它宏伟壮观,纯白大理石砌建而成的主体建筑叫人心醉神迷,成为世界七大奇迹之一。

陵寝以宝石镶嵌,图案之细致令人叫绝。

传说陵寝中有一个三角形图案,以相同大小的圆宝石镶饰而成,共有100层,奢靡之程度,可见一斑。

问题1:你能计算出这个图案一共花了多少颗宝石吗教师活动:利用多媒体,展示泰姬陵的图片,并截取出三角形宝石图案,引导学生观察宝石数目变化情况。

学生活动:欣赏之余观察三角形中宝石变化情况并尝试解决问题1.活动预设:(1)能得到的信息:从上到下,宝石数目以1为公差依次递增,构成等差数列。

(2)需要解决的问题:100层中究竟共有多少颗宝石【设计意图】(1)教师先用多媒体展示彩图呈现的问题,使学生进入问题情境,激发学生的兴趣,并使学生体会数学来源于生产生活。

(2)以问题的提出作为引入方式,使学生带着问题学习新课,更有目的性。

(二)探究等差数列前n项和公式教师活动:指出此数列的求和方法在1787年已被高斯解决,让学生讲高斯故事。

学生活动:学生根据课前的搜集简介高斯“神速求和”的故事:小高斯上小学四年级时,一次数学老师布置了一道数学习题:把从1到100的自然数加起来,和是多少年仅10岁的小高斯略一思索就得到答案:5050,这使老师非常吃惊。

问题1:高斯是采用了什么方法来巧妙地计算出答案的呢教师活动:指导学生快速找出规律。

学生活动:高斯算法解决:1 + 2 + 3 + … + 50 + 51 + … + 98 + 99 + 100=活动预设:高斯算法:1+100=101,2+99=101,……,50+51=101,所以原式=50×(1+101)=5050问题2:在高斯算法中实际上利用了等差数列通项的哪种性质教师活动:引导学生思考高斯算法的技巧性及理论依据。

学生活动:利用高斯算法计算答案,并指出算法的技巧性以及高斯算法隐藏的等差数列项的何种性质。

活动预设:构造数列:12991001,2,99,100a a a a ====L ,则有性质:等差数列{}n a 中,若m n p q +=+,则m n p q a a a a +=+。

【设计意图】高斯算法首尾组合的思想揭示了等差数列“角标和相等,对应的项和相等”的特征,为等差数列前n 项和公式的推导的“倒序相加法”做好铺垫,开启了更深入、更细致的研究大门。

问题3:你能否利用高斯算法解决一般等差数列的求和问题方法:倒序相加法 (借助几何图形之直观性,把这个“全等三角形”倒置,与原图补成平行四边形,由此引入倒序相加法)教师活动::12321n n n nS a a a a a a --=++++++L 12321n n n n S a a a a a a --=++++++L12132231212()()()()()()n n n n n n n S a a a a a a a a a a a a ----=++++++++++++L 由性质“若m n p q +=+,则m n p q a a a a +=+”可得:11()2()2n n n n n a a S n a a S +=+⇒=(等差数列前n 项和公式) 【设计意图】(1)数学问题的解决讲究最优化原则,因此引导让学生体会到数学方法的多样性,但需要寻求高效率的方法;(2)倒序相加求和法是数列求和常用方法之一,方法比公式本身更为重要,也为以后数列求和的学习做好铺垫;(三)公式理解和深化 公式一、1()2n n n S a a =+ 问题1:此公式中有哪些变量,已知哪些量可求另外量教师活动:引导学生找出变量学生活动:观察公式,找出变量。

活动预设:此公式中,共有四个变量:1,,,n n S n a a ,可知三求一。

【设计意图】让学生从变量上理解公式,从形式上初步了解如何由已知探求未知,在头脑中初步建构公式的适用情况。

问题2:此公式还可进行怎样的变形教师活动:引导学生从n a 下手对公式进行变形,投影学生的变形过程。

学生活动:尝试对公式进行变形。

活动预设:公式二、1(1)2n n n S na d -=+【设计意图】(1)让学生学会在旧知与新知之间搭建桥梁,运用旧知巩固新知,利用旧知得出新知;(2)体会知识之间的整体性和关联性,感受运用旧知推导新知的成功和喜悦。

问题3:观察、对比公式一、二,你能得出什么结论有利于你解题时对公式进行筛选 教师活动:引导学生从两个公式中的变量进行总结。

学生活动:总结出两公式的区别及适用情况。

活动预设:(1)在两个公式,五个变量中:1,,,,n n a n d a S ,可知三求二(2)若已知n a ,优先选用公式一,若已知d ,优先选用公式二。

【设计意图】通过两公式的对比研究,可进一步加深学生对公式的记忆,公式一、二的区别可提高学生的做题速度和质量,再一次体现了数学的简洁美和精准性。

(四)公式应用、反馈评价课堂练习之“争分夺秒”:五个元素 a 1, a n , n, d, S n ,知 三 求 二你能自己构造一个类似的题目并自己解决吗 变式训练:例2.等差数列-10,-6, -2,2,…前多少项和是54解:∵a 1=-10,d=-6-(-10)=4∴-10n+[n(n-1) /2] ×4=54解得n=9,n=-3(舍)∴前9项的和是54变式训练:求等差数列13,15,17,…81的各项和例3已知一个等差数列的前10项的和是310,前20项的和是1220,由此可以确定求其前n 项和的公式吗教师活动:分析解决问题,组织学生交流、讨论,再进行公式的应用。

【设计意图】透过此题,培养学生 熟练地选取恰当的公式进行求解。

1n n n 1(1)a 14.5d 0.7a 32;(2)d 3a 20S 65a 1n ======n 已知,,,求S 已例、在等差数知,,,求列中:和 ;nd s a a n n ,,999,54,20)1(1求===2(1)4632n n S n n n n -∴=+⨯=+1020310,1220S S ==又1(1)2n n n S na d -=+Q 111045310201901220a d a d +=⎧∴⎨+=⎩146a d =⎧⇒⎨=⎩六、布置作业1.课本P习题,第1题(1)(3)46八、教学反思“等差数列前n项和”的推导不只一种方法,本节课是通过介绍高斯的算法,探究这种方法如何推广到一般等差数列的求和.该方法反映了等差数列的本质,可以进一步促进学生对等差数列性质的理解,而且该推导过程体现了人类研究、解决问题的一般思路.本节课教学过程的难点在于如何获得推导公式的“倒序相加法”这一思路.为了突破这一难点,在教学中采用了以问题驱动的教学方法,设计的三个问题体现了分析、解决问题的一般思路,即从特殊问题的解决中提炼方法,再试图运用这一方法解决一般问题.在教学过程中,通过教师的层层引导、学生的合作学习与自主探究,尤其是借助图形的直观性,学生“倒序相加法”思路的获得就水到渠成了.。

相关文档
最新文档