人教版 八年级数学下册 第16章 二次根式 复习题(含答案)
人教版初二数学8年级下册 第16章(二次根式)经典好题专题训练(含答案)

人教版八年级数学下册第16章二次根式经典好题专题训练(附答案)1.下列二次根式中,能与合并的是( )A.B.C.D.2.下列等式正确的是( )A.=3B.=﹣3C.=3D.=﹣3 3.已知a=+2,b=﹣2,则a2+b2的值为( )A.4B.14C.D.14+44.式子在实数范围内有意义,则x的取值范围是( )A.x≤1B.x<1C.x>1D.x≥1 5.若,,则x与y关系是( )A.xy=1B.x>y C.x<y D.x=y6.+()2的值为( )A.0B.2a﹣4C.4﹣2a D.2a﹣4或4﹣2a7.设,,则a、b的大小关系是( )A.a=b B.a>b C.a<b D.a+b=08.若x=2﹣5,则x2+10x﹣2的值为( )A.10+1B.10C.﹣13D.19.若代数式有意义,则x的取值范围是( )A.x>且x≠3B.x≥C.x≥且x≠3D.x≤且x≠﹣310.若实数x、y满足:y=++,则xy= .11.若有意义,则x的取值范围为 .12.若x=+1,y=﹣1,则的值为 .13.计算的结果是 .14.计算(﹣)×的结果为 .15.已知a+b=﹣8,ab=6,则的值为 .16.已知实数a满足+|2020﹣a|=a,则a﹣20202= .17.化简﹣()2的结果是 .18.已知y=+﹣,则x2021•y2020= .19.若x=3+,y=3﹣,则x2+2xy+y2= .20.如果=,则a的取值范围是 .21.当b<0时,化简= .22.计算:(1)2•÷5;(2).23.24.已知x=.(1)求代数式x+;(2)求(7﹣4)x2+(2﹣)x+的值.25.先化简,再求值:(+)﹣(+),其中x=,y=27.26.解答下列各题.(1)已知:y=﹣﹣2019,求x+y的平方根.(2)已知一个正数x的两个平方根分别是a+2和a+5,求这个数x.27.已知.(1)求代数式m2+4m+4的值;(2)求代数式m3+m2﹣3m+2020的值.28.已知关于x、y的二元一次方程组,它的解是正数.(1)求m的取值范围;(2)化简:.参考答案1.解:A、不能与合并,本选项不合题意;B、==2,不能与合并,本选项不合题意;C、==2,不能与合并,本选项不合题意;D、==2,能与合并,本选项符合题意;故选:D.2.解:A、()2=3,本选项计算正确;B、=3,故本选项计算错误;C、==3,故本选项计算错误;D、(﹣)2=3,故本选项计算错误;故选:A.3.解:∵a=+2,b=﹣2,∴a+b=(+2+﹣2)=2,ab=(+2)(﹣2)=﹣1,∴a2+b2=(a+b)2﹣2ab=(2)2﹣2×(﹣1)=14,故选:B.4.解:∵式子在实数范围内有意义,∴≥0,∴1﹣x>0,∴x的取值范围是x<1.故选:B.5.解:∵==2+,,∴x=y.故选:D.6.解:要使有意义,必须2﹣a≥0,解得,a≤2,则原式=2﹣a+2﹣a=4﹣2a,故选:C.7.解:a=(﹣)2=3,b==3,则a=b,故选:A.8.解:x2+10x﹣2=x2+10x+25﹣27=(x+5)2﹣27,当x=2﹣5时,原式=(2﹣5+5)2﹣27=28﹣27=1,故选:D.9.解:由题意得,3x﹣2≥0,x﹣3≠0,解得,x≥且x≠3,故选:C.10.解:由题意得,x﹣4≥0,4﹣x≥0,解得,x=4,则y=,∴xy=4×=2,故答案为:2.11.解:由题意得:1﹣2x≥0,且x+1≠0,解得:x≤且x≠﹣1,故答案为:x≤且x≠﹣1.12.解:∵x=+1,y=﹣1,∴x+y=(+1)+(﹣1)=2,则====,故答案为:.13.解:﹣4=3﹣2=,故答案为:.14.解:(﹣)×=×﹣×=4﹣=3.故答案为:3.15.解:∵a+b=﹣8,ab=6,∴a<0,b<0,∴+=﹣﹣=﹣×=﹣×()=,故答案为:.16.解:要使有意义,则a﹣2021≥0,解得,a≥2021,∴+a﹣2020=a,∴=2020,∴a=20202+2021,∴a﹣20202=2021,故答案为:2021.17.解:要使有意义,则1﹣x≥0,解得,x≤1,则﹣()2=﹣(1﹣x)=2﹣x﹣1+x=1,故答案为:1.18.解:由题意得,x﹣2≥0,2﹣x≥0,解得,x=2,则y=﹣,∴x2021•y2020=x•x2020•y2020=2×(﹣×2)2020=2,故答案为:2.19.解:x+y=3++3﹣=6,∴x2+2xy+y2=(x+y)2=62=36,故答案为:36.20.解:∵=,∴a﹣5≥0,且6﹣a≥0,∴5≤a≤6,则a的取值范围是5≤a≤6.故答案为:5≤a≤6.21.解:当b<0时,==﹣b.故答案为:﹣b .22.解:(1)原式=4••=;(2)原式=(6×﹣5×)(×2﹣)=(3﹣)(﹣)=3﹣6﹣+=﹣.23.解:原式=5+(24﹣3)﹣(27﹣6+2)=5+21﹣29+6=6﹣3.24.解:(1)x ===2+,则=2﹣,∴x +=2++2﹣=4;(2)(7﹣4)x 2+(2﹣)x +=(7﹣4)(2+)2+(2﹣)(2+)+=(7﹣4)(7+4)+(2﹣)(2+)+=49﹣48+4﹣3+=2+.25.解:原式=6x ×+×y ﹣4y ×﹣6=6+3﹣4﹣6=﹣,当x =,y =27时,原式=﹣=﹣=﹣3.26.解:(1)由题意得,x ﹣2020≥0,2020﹣x ≥0,解得,x =2020,则y =﹣2019,∴x +y =2020﹣2019=1,∵1的平方根是±1,∴x +y 的平方根±1;(2)由题意得,a +2+a +5=0,解得,a =﹣,则a +2=﹣+2=﹣,∴x=(﹣)2=.27.解:(1)m2+4m+4=(m+2)2,当m=﹣1时,原式=(﹣1+2)2=(+1)2=3+2;(2)∵m=﹣1,∴m+1=,∴m3+m2﹣3m+2020=m3+2m2+m﹣m2﹣4m+2020=m(m+1)2﹣m2﹣4m+2020=2m﹣m2﹣4m+2020=﹣m2﹣2m﹣1+2021=﹣(m+1)2+2021=﹣2+2021=2019.28.解:(1)解关于x、y的二元一次方程组,得,∵方程组的解是一对正数,∴,解得;(2),当时,m﹣2<0,m+1>0,m﹣1<0,∴=2﹣m﹣(m+1)﹣(1﹣m)=2﹣m﹣m﹣1﹣1+m=﹣m;当时,m﹣2<0,m+1>0,m﹣1≥0,∴=2﹣m﹣(m+1)﹣(m﹣1)=2﹣m﹣m﹣1﹣m+1=2﹣3m.。
数学 八年级下册 人教版 二次根式 单元复习(+答案)

第十六章单元复习二次根式一、选择题1.(青海海东模拟)下列的式子一定是二次根式的是( ) A.-x-2B.x C.x2+2D.x2-22.(新疆和田质检)要使x+12有意义,则x的取值范围为( )A.x>0 B.x≥-1 C.x<0 D.x>-13.(内蒙古包头模拟)下列二次根式中,为最简二次根式的是( )A.45B.a2+b2C.12D. 3.64.(重庆中考)计算14×7-2的结果是( )A.7 B.62C.72D.275.(恩施中考)从2,-3,-2这三个实数中任选两数相乘,所有积中小于2的有________个.( )A.0 B.1 C.2 D.36.(河北中考)与32-22-12结果相同的是( )A.3-2+1 B.3+2-1 C.3+2+1 D.3-2-17.(甘肃定西模拟)实数a在数轴上的位置如图所示,则(a-5)2+(a-13)2化简后为( )A.8 B.-8 C.2a-18 D.无法确定8.设a=7+2,则( )A.2<a<3 B.3<a<4C.4<a<5 D.5<a<69.(宁夏石嘴山模拟)若x为实数,在“(3+1)□x”的“□”中添上一种运算符号(在“+,-,×,÷”中选择)后,其运算的结果为有理数,则x不可能是( )A.3+1 B.3-1 C.23D.1-310.(兰州模拟)甲、乙两人计算a+1-2a+a2的值,当a=5的时候得到不同的答案,甲的解答是a+1-2a+a2=a+(1-a)2=a+1-a=1;乙的解答是a+1-2a+a2=a+(a-1)2=a+a-1=2a-1=9.下列判断正确的是( )A.甲、乙都对B.甲、乙都错C.甲对,乙错D.甲错,乙对二、填空题11.(衡阳中考)若二次根式x-3有意义,则x的取值范围是____.12.(内蒙古乌兰察布模拟)2-5 的倒数是__ __.13.若两个连续整数x ,y 满足x <5 +1<y ,则x +y 的值是 __ __.14.(荆州中考)已知:a =(12 )-1+(-3 )0,b =(3 +2 )(3 -2 ),则a +b =____.15.(青海玉树模拟)计算:(12 -43 )×3 =__ __.16.当x =__ __时,2x -5 有最小值.17.(安徽中考)埃及胡夫金字塔是古代世界建筑奇迹之一,其底面是正方形,侧面是全等的等腰三角形.底面正方形的边长与侧面等腰三角形底边上的高的比值是5 -1,它介于整数n 和n +1之间,则n 的值是__ __. 18.(新疆阿勒泰模拟)若|1 001-a |+a -1 002 =a ,则a -1 0012=__ __ __.三、解答题19.(1)(上海中考)计算:912 +|1-2 |-2-1×8 .(2) (仙桃中考)计算:(3-2 )0×4-(23 -6)+3-8 +12 .20.(宁夏中考)先化简,再求值:(a +1a +2 +1a -2 )÷2a 2-4,其中a =2 .21. (甘肃嘉峪关模拟)已知长方形的长为a ,宽为b ,且a =32 12 ,b =1248 .(1)求长方形的周长;(2)当S 长方形=S 正方形时,求正方形的周长.22.已知a ,b ,c 满足|a -8 |+b -5 +(c -3 2 )2=0.(1)求a ,b ,c 的值.(2)试问以a ,b ,c 为边能否构成三角形?如果能构成,请求出三角形的周长,如果不能,请说明理由.23.(乌鲁木齐模拟)观察、思考、解答:( 2 -1)2=( 2 )2-2×1×2 +12=2-2 2 +1=3-2 2 , 反之3-2 2 =2-2 2 +1=( 2 -1)2. ∴3-2 2 =( 2 -1)2,∴3-2 2 = 2 -1.(1) 仿上例,化简:6-2 5 .(2)若a +2b =m +n ,则m ,n 与a ,b 的关系是什么?并说明理由.(3)已知x =4-12 ,求⎝ ⎛⎭⎪⎫1x -2+1x +2 ·x 2-42(x -1)的值(结果保留根号).第十六章单元复习二次根式一、选择题1.(青海海东模拟)下列的式子一定是二次根式的是(C) A.-x-2B.x C.x2+2D.x2-22.(新疆和田质检)要使x+12有意义,则x的取值范围为(B)A.x>0 B.x≥-1 C.x<0 D.x>-13.(内蒙古包头模拟)下列二次根式中,为最简二次根式的是(B)A.45B.a2+b2C.12D. 3.64.(重庆中考)计算14×7-2的结果是(B)A.7 B.62C.72D.275.(恩施中考)从2,-3,-2这三个实数中任选两数相乘,所有积中小于2的有________个.(C)A.0 B.1 C.2 D.36.(河北中考)与32-22-12结果相同的是(A)A.3-2+1 B.3+2-1 C.3+2+1 D.3-2-17.(甘肃定西模拟)实数a在数轴上的位置如图所示,则(a-5)2+(a-13)2化简后为(A)A.8 B.-8 C.2a-18 D.无法确定8.设a=7+2,则(C)A.2<a<3 B.3<a<4C.4<a<5 D.5<a<69.(宁夏石嘴山模拟)若x为实数,在“(3+1)□x”的“□”中添上一种运算符号(在“+,-,×,÷”中选择)后,其运算的结果为有理数,则x不可能是(C)A.3+1 B.3-1 C.23D.1-310.(兰州模拟)甲、乙两人计算a+1-2a+a2的值,当a=5的时候得到不同的答案,甲的解答是a+1-2a+a2=a+(1-a)2=a+1-a=1;乙的解答是a+1-2a+a2=a+(a-1)2=a+a-1=2a-1=9.下列判断正确的是(D)A.甲、乙都对B.甲、乙都错C.甲对,乙错D.甲错,乙对二、填空题11.(衡阳中考)若二次根式x -3 有意义,则x 的取值范围是__x ≥3__.12.(内蒙古乌兰察布模拟)2-5 的倒数是.13.若两个连续整数x ,y 满足x <5 +1<y ,则x +y 的值是 __7__.14.(荆州中考)已知:a =(12 )-1+(-3 )0,b =(3 +2 )(3 -2 ),则a +b =__2__.15.(青海玉树模拟)计算:(12 -43 )×3 =__4__.16.当x =__52 __时,2x -5 有最小值.17.(安徽中考)埃及胡夫金字塔是古代世界建筑奇迹之一,其底面是正方形,侧面是全等的等腰三角形.底面正方形的边长与侧面等腰三角形底边上的高的比值是5 -1,它介于整数n 和n +1之间,则n 的值是__1__. 18.(新疆阿勒泰模拟)若|1 001-a |+a -1 002 =a ,则a -1 0012=__1__002__.三、解答题19.(1)(上海中考)计算:912 +|1-2 |-2-1×8 .(2)(仙桃中考)计算:(3-2 )0×4-(23 -6)+3-8 +12 .【解析】(1)原式=912 +2 -1-12 ×22 =912 +2 -1-2 =812 .(2)原式=1×4-23 +6-2+23 =4-23 +6-2+23 =8. 20.(宁夏中考)先化简,再求值:(a +1a +2 +1a -2 )÷2a 2-4 ,其中a =2 .【解析】原式=(a +1)(a -2)+a +2a 2-4 ·a 2-42 =a 2-a -2+a +22 =a 22 , 当a =2 时,原式=(2)22=1.21. (甘肃嘉峪关模拟)已知长方形的长为a ,宽为b ,且a =32 12 ,b =12 48 .(1)求长方形的周长;(2)当S 长方形=S 正方形时,求正方形的周长.【解析】(1)∵a =32 12 =3 3 ,b =12 48 =23 ,∴长方形的周长是:2(a +b )=2(3 3 +2 3 )=10 3 . (2)设正方形的边长为x ,则有x 2=ab , ∴x =ab =33×2 3 =18 =3 2 ,∴正方形的周长是4x =12 2 . 22.已知a ,b ,c 满足|a -8 |+b -5 +(c -3 2 )2=0.(1)求a ,b ,c 的值.(2)试问以a ,b ,c 为边能否构成三角形?如果能构成,请求出三角形的周长,如果不能,请说明理由.【解析】(1)根据题意得,a -8 =0,b -5=0,c -3 2 =0, 解得a =2 2 ,b =5,c =3 2 .(2)∵2 2 +3 2 >5,即a +c >b ,∴能构成三角形, ∴C △ABC =2 2 +3 2 +5=5 2 +5. 23.(乌鲁木齐模拟)观察、思考、解答:( 2 -1)2=( 2 )2-2×1×2 +12=2-2 2 +1=3-2 2 , 反之3-2 2 =2-2 2 +1=( 2 -1)2. ∴3-2 2 =( 2 -1)2,∴3-2 2 = 2 -1.(1)仿上例,化简:6-2 5 .(2)若a +2b =m +n ,则m ,n 与a ,b 的关系是什么?并说明理由.(3)已知x =4-12 ,求⎝ ⎛⎭⎪⎫1x -2+1x +2 ·x 2-42(x -1) 的值(结果保留根号).【解析】(1)6-2 5 =5-25+1 =(5-1)2 = 5 -1.(2)a =m +n ,b =mn ,理由:∵a +2 b =m +n , ∴a +2 b =m +2mn +n ,∴a =m +n ,b =mn ;(3)∵x =4-12 =3-23+1 =(3-1)2 = 3 -1,∴⎝ ⎛⎭⎪⎫1x -2+1x +2 ·x 2-42(x -1) =x +2+x -2(x -2)(x +2) ·(x -2)(x +2)2(x -1) =2x (x -2)(x +2) ·(x -2)(x +2)2(x -1) =x x -1. 当x = 3 -1时,原式=3-13-1-1 =3-13-2 =(3-1)(3+2)(3-2)(3+2)=-1- 3 .。
人教版初中八年级数学下册第十六章《二次根式》复习题(含答案解析)(2)

一、选择题1.下列是最简二次根式的是( )A B CD2.已知x+y =﹣5,xy =4,则 ) A .4 B .﹣4 C .2 D .﹣23. ) A .1 B .2 C .3 D .4 4.下列二次根式中是最简二次根式的是( )A BC D 5.下列计算正确的是( ). A .()()22a b a b b a +-=- B .224x y xy +=C .()235a a -=-D .=6.下列计算正确的是( )A 2=±B .22423x x x +=C .()326328a b a b -=-D .()235x x x -=÷ 7.下列算式中,正确的是( )A .3=B =C =D 4= 8.下列各式中,错误的是( )A .2(3=B .3=-C .23=D 3=- 9.下列四个数中,是负数的是( )A .2-B .2(2)-C . D10.已知y 3,则x y 的值为( ). A .43 B .43- C .34D .34- 11.下列各式不是最简二次根式的是( )A B C D12.估计- )A .0到1之间B .1到2之间C .2到3之间D .3到4之间 13.下列二次根式:4、12、50、12中与2是同类二次根式的个数为( ) A .1个 B .2个 C .3个 D .4个14.下列运算正确的是( ) A .628+= B .66-= C .623÷= D .()266-=15.计算-23的结果是( )A .-3B .3C .-9D .9二、填空题16.计算1248⨯的结果是________________.17.若53x =-,则()234x +-的值为__________.18.实数a ,b 在数轴上的位置如图所示,化简:|a +1|﹣22(1)()b a b -+-=_____.19.若224y x x =--,则y x 的平方根是__________.20.)3750a b b >=________.21.2210(15)=_____818+=______.22.已知a 、b 为有理数,m 、n 分别表示5721amn bn +=,则3a b +=_________.23.若最简二次根式132-+b a 与a b -4是同类二次根式,则a+b =___. 24.已知223y x x =--,则()x x y +的值为_________.25.使式子32xx -+有意义的x 的取值范围是______.26.220x y -=,则x y +=________.三、解答题27.先阅读,后回答问题:x ()x x 3-解:要使该二次根式有意义,需x(x-3)≥0,由乘法法则得030? x x ≥⎧⎨-≥⎩或0 30x x ≤⎧⎨-≤⎩,解得x 3≥或x 0≤,即当x 3≥或x 0≤体会解题思想后,解答:x 28.计算: (1)1301(2)(2)53π-⎛⎫+-⨯-+ ⎪⎝⎭;(2)21)-++-.29.计算:20201|1-30.计算(1)2)。
2023-2024人教版八年级数学下册第16章二次根式专题训练 二次根式的运算与化简求值(含答案)

第16章 二次根式 专题训练 二次根式的运算与化简求值类型1 二次根式的加减运算 1.计算:|2-5|+|4-5|= . 2.计算: (1)24+0.5-⎝ ⎛⎭⎪⎫18+6. (2)248-1813+318-818;(3)32-212-418+348. (4)239x +6x 4-2x 1x. (5)a 2b +ab a -b a b-ab 2. (6)-12 046+⎝⎛⎭⎫12-2-|4-12|+(π-3)0-27.类型2 二次根式的乘除运算 3.计算: (1)112×23= ;(2)(-14)×(-112)= ; (3)-0.45-0.5= ; (4)59÷127= . 4.计算:2318÷(-3)×1327.类型3 二次根式的混合运算 5.计算:12⎝ ⎛⎭⎪⎫75+313-48= . 6.计算:(1)50-(-2)+8× 2. (2)12-1+3(3-6)+8. (3)15×3520÷⎝⎛⎭⎫-13 6.(4)(-3)2+18-6×22; (5)⎝ ⎛⎭⎪⎫72-412+32÷8. (6)⎝⎛⎭⎫318+15 50-40.5÷32.类型4 巧用乘法公式计算 7.计算: (1)(5+3)2.(2)(32+12)(18-23). (3)(3+2)2-(3-2)2. (4)(2-3)2024×(2+3)2023;(5)(2+3-5)2-(2-3+5)2; (6)(3+2)2(3-2)-(3-2)2(3+2).类型5 先化简,再求值8.先化简,再求值:(a +2)(a -2)+a (1-a ),其中a =5+4.9.【2023福建】先化简,再求值:÷,其中x =-1.10.先化简,再求值:(x -1-3x +1)÷x -2x 2+x ,其中x =3-2.类型6 巧用二次根式的定义和性质求值 11.若x -3-3-x =(x +y )2,求x -y 的值.12.当x 取何值时,5x -1+4的值最小?最小值是多少?类型7 巧用乘法公式求值13.已知x =2-3,求代数式(7+43)x 2+(2+3)x +3的值.类型8 巧用整体代入法求值14.已知a =3+22,b =3-22,求a 2b -ab 2的值.15.已知x +y =-7,xy =12,求yx y +x yx的值.16.已知x=1-,y=1+,求x2+y2-xy-2x+2y的值.17.【2023长沙南雅中学期末】已知x=3+,y=3-,求下列各式的值.(1)x2-y2;(2)+.参考答案类型1 二次根式的加减运算 1.计算:|2-5|+|4-5|= . 【答案】2 2.计算: (1)24+0.5-⎝⎛⎭⎪⎫18+6. 解:原式=6+14 2. (2)248-1813+318-818;解:原式=83-63+92-2 2 =23+7 2. (3)32-212-418+348. 解:原式=83+2 2. (4)239x +6x 4-2x 1x . 解:原式=3x . (5)a 2b +ab a -ba b-ab 2. 解:原式=a b -b a . (6)-12 046+⎝⎛⎭⎫12-2-|4-12|+(π-3)0-27.解:原式=-1+4-4+23+1-3 3 =- 3.类型2 二次根式的乘除运算 3.计算: (1)112×23= ;(2)(-14)×(-112)= ; (3)-0.45-0.5= ; (4)59÷127= .【答案】1 28 2 31010 15 4.计算:2318÷(-3)×1327.解:原式=⎝⎛⎭⎫-23×1318×13×27=-29×9 2 =-2 2.类型3 二次根式的混合运算 5.计算:12⎝ ⎛⎭⎪⎫75+313-48= . 【答案】12 6.计算:(1)50-(-2)+8× 2. 解:原式=1+2+4=7. (2)12-1+3(3-6)+8. 解:原式=4.(3)15×3520÷⎝⎛⎭⎫-13 6.解:原式=-9 2.(4)(-3)2+18-6×22; 解:原式=3+32-32=3. (5)⎝ ⎛⎭⎪⎫72-412+32÷8. 解:原式=(62-22+42)÷2 2 =82÷2 2 =4.(6)⎝⎛⎭⎫318+15 50-40.5÷32.解:原式=2.类型4 巧用乘法公式计算 7.计算: (1)(5+3)2. 解:原式=8+215. (2)(32+12)(18-23). 解:原式=6.(3)(3+2)2-(3-2)2. 解:原式=4 6. (4)(2-3)2024×(2+3)2023;解:原式=(2-3)2023×(2+3)2023×(2-3)=[(2-3)×(2+3)]2023×(2-3)=-1×(2-3)=-2+3.(5)(2+3-5)2-(2-3+5)2; 解:原式=(2+3-5+2-3+5)× (2+3-5-2+3-5) =22×(23-25) =46-410.(6)(3+2)2(3-2)-(3-2)2(3+2).解:原式=(3+2)(3-2)[](3+2)-(3-2) =(9-2)×2 2 =14 2.类型5 先化简,再求值8.先化简,再求值:(a +2)(a -2)+a (1-a ),其中a =5+4. 解:原式=a 2-4+a -a 2 =a -4.当a =5+4时,原式=5+4-4= 5. 9.【2023福建】先化简,再求值:÷,其中x =-1.【解】原式=·=-·=-.当x =-1时,原式=-=-.10.先化简,再求值:(x -1-3x +1)÷x -2x 2+x ,其中x =3-2.解:原式=x 2-1-3x +1×x (x +1)x -2=(x +2)(x -2)x +1×x (x +1)x -2=x (x +2).把x =3-2代入,原式=(3-2)(3-2+2)=3-2 3. 类型6 巧用二次根式的定义和性质求值 11.若x -3-3-x =(x +y )2,求x -y 的值.解:∵x -3≥0,3-x ≥0, ∴x =3,∴y =-3, ∴x -y =6.12.当x 取何值时,5x -1+4的值最小?最小值是多少? 解:当x =15时,5x -1+4的最小值为4.类型7 巧用乘法公式求值13.已知x =2-3,求代数式(7+43)x 2+(2+3)x +3的值. 解:原式=(7+43)(7-43)+(2+3)(2-3)+ 3 =2+ 3.类型8 巧用整体代入法求值14.已知a =3+22,b =3-22,求a 2b -ab 2的值. 解:原式=ab (a -b ) =4 2.15.已知x +y =-7,xy =12,求y xy +xyx 的值.解:∵x +y <0,xy >0,∴x <0,y <0, ∴原式=y ·xy -y +x ·xy-x=-2xy =-4 3. 16.已知x =1-,y =1+,求x 2+y 2-xy -2x +2y 的值. 【解】∵x =1-,y =1+,∴x -y =(1-)-(1+)=-2, xy =(1-)(1+)=-1.∴x 2+y 2-xy -2x +2y =(x -y )2-2(x -y )+xy =(-2)2-2×(-2)+(-1)=7+4.17.【2023长沙南雅中学期末】已知x =3+,y =3-,求下列各式的值.(1)x 2-y 2; 【解】∵x =3+,y =3-,∴x +y =3++3-=6, x -y =3+-(3-)=2, ∴x 2-y 2=(x +y )(x -y )=6×2=12.(2)+.【解】∵x=3+,y=3-,∴x+y=3++3-=6,xy=(3+)×(3-)=4,∴+=====7.。
人教版数学八年级下册第16章 二次根式 随堂测试题含答案

word 版 学初中数16.1《二次根式》一、选择题1.已知 是二次根式,则 x、y 应满足的条件是()A.x≥0 且 y≥0B.C.x≥0 且 y>0D.2.当 a<3 时,化简的结果是( )A.-1B.1C.2a-7D.7-2a3.化简的结果是( )A.y-2xB.yC.2x-y4.下列根式中属最简二次根式的是( )D.-yA.B.C.D.5.在下列各式中,m 的取值范围不是全体实数的是( )A.B.C.D.6.给出下列各式:;其中成立的是( )A.①③④B.①②④7.下列式子中,二次根式的个数是(C.②③④ )D.①②③⑴ ;⑵ ;⑶;⑷ ;⑸;⑹;⑺.A.2B.3C.4D.58.在根式①,② ,③,④中最简二次根式是( )A.①②B.③④C.①③D.①④9.若 a<0,则的值为( )A.3B.﹣3C.3﹣2aD.2a﹣310.若代数式有意义,则实数 x 的取值范围是( )A.x≥1B.x≥2C.x>1D.x>211.已知, 则 2xy 的值为( )A.-15 12.若 y2+4y+4+A.﹣6B.15C.-7.5=0,则 yx 的值为(B.﹣8C.6D.7.5 )D.81 / 14word 版 学二、填空题 13.若是二次根式,则点 A(x,6)的坐标为_____.14.要使等式成立,则 x=________.15.当____时,式子有意义.16.已知 n 是正整数, 189 n 是整数,则 n 的最小值是.17.如图,数轴上点 A 表示的数为 a,化简:.初中数18.已知,当分别取 1,2,3,……,2020 时,所对应 y 值总和是_______.三、解答题 19.比较大小:与.20.已知互为相反数,求 ab 的值.21.已知:实数 a,b 在数轴上的位置如图所示,化简:﹣|a﹣b|.22.已知:=0,求实数 a,b 的值. 2 / 14word 版 学23.已知 a、b 满足等式.(1)求出 a、b 的值分别是多少?(2)试求的值.初中数24.已知 x,y 为实数,且满足,求 x -y 2020 2020 的值.3 / 14word 版 学初中数1.答案为:D 2.答案为:D 3.答案为:B 4.答案为:A 5.答案为:B 6.答案为:A 7.答案为:C 8.答案为:C 9.答案为:A. 10.答案为:B. 11.答案为:A 12.答案为:B 13.答案为(-3,6). 14.答案为:4. 15.答案为:3≤x<5. 16.答案为:21. 17.答案为:2. 18.答案为:2032.19.解:参考答案.因为所以,所以.20.原式=7 21.解:由数轴上点的位置关系,得﹣1<a<0<b<1.﹣|a﹣b|=a+1+2(1﹣b)﹣(b﹣a) =a+1+2﹣2b﹣b+a =2a﹣3b+3. 22.解:由题意得,3a﹣b=0,a2﹣49=0,a+7≠0,解得,a=7,b=21. 23.解:(1)由题意得,2a﹣6≥0 且 9﹣3a≥0, 解得 a≥3 且 a≤3,所以,a=3,b=﹣9;(2) ﹣ + =﹣+=6﹣9﹣3=﹣6.24.解:∵∴+=0∴1+x=0,1-y=0,解得 x=-1,y=1, X2018-y2018=(-1)2018-12018=1-1=0.人教版八年级下册 16.2 《二次根式的乘除》一.选择题1.将 化简后的结果是( )4 / 14word 版 学A.2B.C.22.计算(﹣ )2 的结果是( )A.﹣6B.6C.±63.下列二次根式中,属于最简二次根式的是( )A.B.C.4.+()2 的值为( )A.0B.2a﹣4C.4﹣2a5.实数 a,b 在数轴上对应点的位置如图所示,则化简D.4 D.36 D.初中数D.2a﹣4 或 4﹣2a 的结果为( )A.b﹣aB.a+bC.ab6.已知 x= +1,y= ﹣1,则 xy 的值为( )A.8B.48C.27.化简的结果是( )A.B.C.二.填空题8.计算:的结果是.9.化简 =.10.将 化成最简二次根式为.11.化简:=.12.计算:• (x>0)=.三.解答题(共 6 小题) 13.把下列二次根式化成最简二次根式(1)(2)D.2a﹣b D.6 D.(3)5 / 14word 版 学14.计算: ×4 ÷ .15.计算:•.16.计算:•(﹣)÷(a>0).17.化简:.18.实数在数轴上的位置如图所示,化简:|a﹣b|﹣ .参考答案 一.选择题 1.解: =故选:C.=2 ,6 / 14初中数word 版 学2.解:(﹣ )2=6,故选:B 3.解:A、. =5,故此选项错误;B、 是最简二次根式,故此选项正确;C、 = ,故此选项错误;D、 =2 故选:B.,故此选项错误;4.解:要使有意义,必须 2﹣a≥0,解得,a≤2,则原式=2﹣a+2﹣a=4﹣2a,故选:C.5.解:由数轴得 a<﹣1,b>0,所以原式=|a|+|b|=﹣a+b.故选:A.6.解:当 x= +1,y= ﹣1 时,xy=( +1)( ﹣1)=( )2﹣12=7﹣1 =6, 故选:D.7.解:∵ >0,∴b<0, b =﹣=﹣ .故选:D. 二.填空题 8.解:原式= × =6 .故答案为:6 .7 / 14初中数word 版 学9.解:原式== =2 ,故答案为:2 . 10.解: = ,故答案为: .11.解:因为 >1,所以= ﹣1故答案为: ﹣1.12.解:•(x>0)===4xy2. 故答案为:4xy2. 三.解答题(共 6 小题)13.解:(1)=;(2) =4 ;(3)==.14.解:原式=2 ×4× ÷4 =8 ÷4 =2.15.解:原式= × ×2= =x2. 16.解:原式==8 / 14初中数word 版 学==.初中数17.解:原式==+.18.解:由数轴可知:a<0,b>0,a﹣b<0 所以|a﹣b|﹣ =|a﹣b|﹣|b|=b﹣a﹣b=﹣a.16.3 二次根式的加减一.选择题1.下列二次根式与 2 可以合并的是(A.3B.2.下列计算中,正确的是( )) C.A. + =B.=﹣3 C. =3.计算: ﹣ =( )D.12 D.3 ﹣ =2A.﹣B.0C.D.4.已知 是整数,则 n 的值不可能是( )A.2B.8C.32D.405.如图,从一个大正方形中裁去面积为 16cm2 和 24cm2 的两个小正方形,则余下的面积为( )A.16 cm2 6.计算 ÷ •B.40 cm2C.8 cm2(a>0,b>0)的结果是( )A.B.C.7.已知 a=2+ A.12,b=2﹣ ,则 a2+b2 的值为( )B.14C.16 9 / 14D.(2 +4)cm2 D.b D.18word 版 学8.计算的结果是( )A.0B.C.9.如果与A.0二.填空题10.化简:11.计算:的和等于 3 ,那么 a 的值是( )B.1C.2的结果为.=.12.计算(5 )( 2)=.三.解答题13.(1)2 ﹣6 ;(2)()﹣( ﹣ ).14.计算. (1) ﹣ + . (2) × ﹣ +( ﹣1)0.(3) ÷ ﹣4 +.(4)( ﹣2)2+( )﹣1﹣( )2.15.已知 a= ﹣ ,b= + ,求值:(1) + ;(2)a2b+ab2.16.已知长方形的长为 a,宽为 b,且 a=,b=.(1)求长方形的周长; (2)当 S 长方形=S 正方形时,求正方形的周长.D. D.3初中数10 / 14word 版 学初中数参考答案一.选择题1.解:A、3 与 2 被开方数不相等,不是同类二次根式,故本选项不符合题意; B、 =2 与 2 被开方数不相等,不是同类二次根式,故本选项不符合题意; C、 与 2 被开方数不相等,不是同类二次根式,故本选项不符合题意; D、12 与 2 被开方数相等,是同类二次根式,故本选项符合题意; 故选:D.2.解:A、 + = +2,无法合并,故此选项错误;B、=3,故此选项错误;C、 =1,故此选项错误;D、3 ﹣ =2 ,正确.故选:D.3.解:原式= ﹣ =0.故选:B.4.解:A、当 n=2 时, =2,是整数;B、当 n=8 时, =4,是整数;C、当 n=32 时, =8,是整数;D、当 n=40 时, = =4 ,不是整数;故选:D.5.解:从一个大正方形中裁去面积为 16cm2 和 24cm2 的两个小正方形,大正方形的边长是 + =4+2 , 留下部分(即阴影部分)的面积是(4+2 )2﹣16﹣24=16+16+24﹣16﹣24=16 (cm2).故选:A .6.解:原式=×=11 / 14word 版 学=.故选:A. 7.解:∵a=2+ ,b=2﹣ ,∴a+b=4,ab=4﹣3=1, ∴a2+b2=(a+b)2﹣2ab=42﹣2×1=14. 故选:B. 8.解:原式===.故选:B.9.解:∵与 =2 的和等于 3 ,∴=3 ﹣2 = ,故 a+1=3,则 a=2.故选:C.二.填空题10.解:原式=3 ﹣4 + =0.故答案为:0.11.解:原式=[( +2)( ﹣2)]2020•( =(3﹣4)2020•( ﹣2)﹣2)= ﹣2.故答案为 ﹣2.12.解:原式=5 +10﹣3﹣2 =7+3 ,故答案为:7+3 . 三.解答题13.解:(1)原式=﹣4 ;12 / 14初中数word 版 学初中数(2)原式=2 + ﹣ +=3 + .14.解:(1)原式= ﹣2 +3=2 ;(2)原式=﹣ +1=2 ﹣ +1 = +1; (3)原式=﹣2 +2=2 ﹣2 +2 =2;(4)原式=5﹣4 +4+5﹣5 =9﹣4 . 15.解:∵a= ﹣ ,b= + , ∴a+b=( ﹣ )+( + )=2 ,ab=( ﹣ )( + )=2,(1) +=====12; (2)a2b+ab2 =ab(a+b) =2×2 =4 .13 / 14word 版 学16.解:(1)∵a== ,b==2 ,∴长方形的周长是:2(a+b)=2( +2 )=;(2)设正方形的边长为 x,则有 x2=ab,∴x= === ,∴正方形的周长是 4x=12 .初中数14 / 14。
人教版八年级数学下册第十六章 二次根式习题(含答案)

第十六章 二次根式一、单选题1.下列二次根式中,属于最简二次根式的是( )A B C D22得( ). A .2 B .44x -+C .-2D .44x -3有意义,a 的取值范围是( ) A .0a ≠B .且0a ≠C .2a >-. 或0a ≠D .2a ≥- 且0a ≠ 4.下列各式属于最简二次根式的有( )A B C D 5.下列运算正确的是( )A B )C =±3D .6( ) A .4至5之间B .5至6之间C .6至7之间D .7至8之间 7.下列运算正确的是( )A 5±B 2=-C =D .8.下列代数式能作为二次根式被开方数的是( )A .3﹣πB .aC .a 2+1D .2x+49.若x ≤0,则化简|1﹣x |﹣ 的结果是( )A .1﹣2xB .2x ﹣1C .﹣1D .110.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a ,b ,c ,则该三角形的面积为S=△ABC 的三边长分别为1,2△ABC 的面积为( )A .1B .2C .3D .4二、填空题11.计算 的结果是_____.122(3)0b +=,则M (a ,b )点的坐标为________.13.若实数m 、n 满足|m ﹣0,且m 、n 恰好是Rt △ABC 的两条边长,则△ABC 的周长是_____.14.分母有理化:=_________.三、解答题15.化简计算:(1(22(1+-.16.已知:实数a ,b ﹣|a ﹣b|.17,等的式子,其实我1==.以上这种化简的步骤叫做分母有理化. (1(249++.答案1.C2.A3.D4.B5.D6.B7.C8.C9.D 10.A 11.12.(1,-3)13.12或14.215.(1)6;(2)+6 16.2a-3b+317.(1(2)3.。
人教版数学八年级下册第十六章二次根式 单元测试卷(含答案解析)

人教版数学八年级下册第十六章二次根式单元测试卷(含答案解析)一、单选题(共12小题,每小题4分,共计48分)1A.4b B.CD2.下列各数中,与的积不含二次根式的是A.B.CD3m为()A.-10B.-40C.-90D.-1604.若a,b-5,则a,b的关系为A.互为相反数B.互为倒数C.积为-1D.绝对值相等5.下列计算正确的是3==6=3=;a b=-.A.1个B.2个C.3个D.4个6合并的是()A B C D7.若6的整数部分为x,小数部分为y,则(2x)y的值是() A.5-B.3C.-5D.-38.如图,a,b,c的结果是()a c+A .2c ﹣bB .﹣bC .bD .﹣2a ﹣b9.估计的值应在( )A .5和6之间B .6和7之间C .7和8之间 D.8和9之间10有意义,那么直角坐标系中点A(a,b)在() A .第一象限 B .第二象限 C .第三象限D .第四象限11.下列计算正确的是AB . CD12.如果,,那么各式:,,,其中正确的是()A .①②③B .①③C .②③D .①②二、填空题(共5小题,每小题4分,共计20分)13.如果表示a 、b 的实数的点在数轴上的位置如图所示,那么化简|a﹣的结果是_____.14.已知a 、b满足(a ﹣1)2=0,则a+b=_____.15有意义,则实数x 的取值范围是_____.16.若a ,b 都是实数,b﹣2,则a b 的值为_____. 17.已知实数,互为倒数,其中__________. ()=3=2==0ab > 0a b +<=1=b =-a b a 2=+三、解答题(共4小题,每小题8分,共计32分)18=b+8.(1)求a 的值;(2)求a 2-b 2的平方根.19.已知实数a 满足|300﹣a =a ,求a ﹣3002的值.20.已知点A(5,a)与点B(5,-3)关于x 轴对称,b 为求(1)的值。
【3套试卷】人教版数学八年级下第16章二次根式单元考试题(有答案)

人教版数学八年级下第16章二次根式单元考试题(有答案)人教版八年级数学下册第十六章二次根式单元检测卷总分:150分,时间:120分钟;姓名:;成绩:;一、选择题(4分×12=48分)1、下列二次根式是最简二次根式的是()C.B.2)A. B.C.3a能够取的值是()A. 0B. 1C. 2D.34有意义的条件是()A.x≥1B.x≤1C.x≠1D.x<15、若135a是整数,则a的最小正整数值是( )A.15 B.45 C.60 D.1356、则实数x的取值范围在数轴上的表示正确的是( )=-)7aA. -B.C. -D.8、已知(5m=n,如果n是整数,则m可能是()A. 5 C. 9、下列计算正确的是( )A. 4B. 1C. 3 210、若a 、b 、c ) A. 2a -2c B. -2c C. 2b D.2a11、已知a ,b a 、b ,则下列表示正确的是( ) A. 0.3ab B. 3ab C. 0.1ab D.0.9ab12、定义:m Δn =(m+n )2,m ※n =mn -2,则[(]Δ)的值是( )C. 5二、填空题(4分×6=24分)13= ;14、已知矩形的长为cm cm ,则矩形的面积为 ;15、当a = 时,16、已知a =,b =,则a 2b+ab 2= ;171x =成立的条件是 ;1822510b b +=,则a+b 的平方根是 ;三、22a 10分×2=20分)19、计算(1)21+( (2)2019+(-1)20、计算:(1)220,0)a a b >>(2)2(0,0)a a b m n ÷>>四、解答题(9分×4=36分)21、用四张一样大小的长方形纸片拼成一个正方形ABCD ,如图所示,它的面积是75,AE=22、化简求值:2(2)(2)(2)(43)a b a b a b b a b +-+--+,其中a 1,b ;23、观察下列各式,通过分母有理化,把不是最简二次根式的化成最简二次根式:121212)12)(12()12(1121-=--=-+-⨯=+ 232323)23)(23()23(1231-=--=-+-⨯=+同理可得:32321-=+从计算结果中找出规律,并利用这一规律计算.......1)的值24、已知a,b,c在数轴上如图所示,化简:+b c五、解答题(10分+12分=22分)25、现有一组有规律的数:1,-1,2,-2,3,-3,1,-1,2,-2,3,-3,…,其中1,-1,2,-2,3,-3这6个数按此规律重复出现.(1)第50个数是什么数?(2)把从第1个数开始的前2018个数相加,结果是多少?(3)从第1个数起,把连续若干个数的平方相加,如果和为520,那么一共是多少个数的平方相加?26、小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+()2.善于思考的小明进行了以下探索:设=()2(其中a、b、m、n均为整数),则有=m2+2n2∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若=()2,用含m、n的式子分别表示a、b,得:a= ,b= ;(2)利用所探索的结论,找一组正整数a、b、m、n填空:+ =(+ )2;(3)若)2,且a 、m 、n 均为正整数,求a 的值?2019年春人教版数学八年级下第16章二次根式单元考试题答案一、选择题CDBDA CABDA AB 二、填空题13、1; 14、2; 15、6; 16、6; 17、x ≥-1; 18、±3三、解答题 19、计算:(1)5; (2)0;20、(1)12a 3b 2;(2)2221a ab a b -+;四、解答题21、22、; 23、2017; 24、-a 五、解答题25、(1)第50个数是-1.(2)从第1个数开始的前2018个数的和是0. (3)一共是261个数的平方相加.26、26、(1)223,2m n mn + (2)16,8,2,2(答案不唯一)(3)7或13.人教版八年级数学下册 第十六章 二次根式 单元测试题(含答案)一、选择题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版八年级数学第16章二次根式复习题
一、选择题(本大题共10道小题)
1. 下列二次根式中,与是可以合并的是()
A.B.C.D.
2. 下列选项中,正确的是( )
A. x-1有意义的条件是x>1
B. 8是最简二次根式
C. (-2)2=-2
D. 32
3-24=- 6
3. 计算:等于()A.B.C.D.
4. 下列计算正确的是( )
A. 12=23
B. 3
2=
3
2
C. -x3=x-x
D. x2=x
5. 下列二次根式中,最简二次根式的个数是().
,,,,,,,.
A.1个
B.2个
C.3个
D.4个
6. 下列根式中式最简二次根式的有()A.2个B.3个C.4个D.5个
7. 下列各式正确的是()
A.B.C.D.
8. 若为非负数,与是可以合并的二次根式,则的值是()A.B.
C.或D.
9. 已知最简根式是同类二次根式,则满足条件的,的值()A.不存在B.有一组C.有二组D.多于二组
10. 已知,,,那么,,的大小关系是().
A. B. C. D.
二、填空题(本大题共8道小题)
11. 若式子x+x-1在实数范围内有意义,则x的取值范围是________.
12. 计算32-8
2
=________.
13. 在下列二次根式
中,最简二次根式有____________________.
14. 若最简二次根式与是可以合并的二次根式,则。
15. 计算:=_________.
16. 计算:_______.
17. 计算:_________.
18. 方程的整数解有组.
三、解答题(本大题共4道小题)
19.
20. 计算:(3-7)(3+7)+2(2-2).
21. 计算:
22. 计算:
人教版 八年级数学 第16章 二次根式 复习题
-答案
一、选择题(本大题共10道小题) 1. 【答案】C
2. 【答案】D
【解析】∵x -1有意义,∴x -1≥0,∴x ≥1,∴选项A 错误;∵8=22,∴不是最简二次根式,∴选项B 错误;∵
(-2)2=4=2≠-2,∴选项C 错误;32
3-
24=
9×2
3-2
6=
6-2
6
=-6,∴选项D 正确.
3. 【答案】B
【解析】,所以选B.
选项 逐项分析
正误 A 12=4×3=2 3 √
B 32=32=62≠32
C ∵-x 3≥0,∴x ≤0,-x3=x2·-x =-x -x ≠x -x
D x2=|x |≠x
5. 【答案】B
【解析】此题的关键是看二次根式的被开方数是否满足最简二次根式的两个条件.
中
是分式,
中
是小数
中的是分数,它们都不满足条件; 中有能开得尽方的因式
,
中有
能开得尽方的因数
,
中含有能开得尽方的因式
,它们都不满足条件2;只有
满足最简二次根式的
两个条件.答:B.
点评:要牢记最简二次根式的两个条件,判断时只须看被开方数,注意当被开方数是多项式时要先分解因式,找一找有没有能开得尽方得因式和因数,特别要分
清中虽有和,但和不是+的因式.
6. 【答案】C.
7. 【答案】D.
8. 【答案】C
9. 【答案】B
【解析】根据同类二次根式定义可知:,解之得.
10. 【答案】
【解析】,,
显然,
所以.
二、填空题(本大题共8道小题)
11. 【答案】x≥1【解析】因为二次根式a中a必须满足a≥0,所以x-1中,x-1≥0,所以x≥1.
12. 【答案】2【解析】32-8
2
=
42-22
2
=
22
2
=2.
13. 【答案】、、、、、.
14. 【答案】4
【解析】∵最简二次根式与是可以合并的二次根式
∴,解得
15. 【答案】14
【解析】原式
16. 【答案】
【解析】根据题目,,,,所以且.如果,则,,
原式
.
当时,原式.所以原式.
另解:.17. 【答案】24
【解析】原式
18. 【答案】4
【解析】∵为同类二次根式,,
∴原方程为:.设,,
∴,∴、的值有四组,即,,,
故原方程的整数解有4组.
三、解答题(本大题共4道小题)
19. 【答案】
【解析】
20. 【答案】
解:原式=9-7+22-2
=2 2.
21. 【答案】
【解析】
22. 【答案】
【解析】。