教案高一数学人教版必修二 2.3.4平面与平面垂直的性质
人教版高中数学必修二2.3.4 平面与平面垂直性质教案

平面与平面垂直的性质教学设计(一)知识与技能让学生理解和掌握面面垂直性质定理,能运用性质定理证明一些简单命题. (二)过程与方法1) 由“直观感知、操作确认、推理证明”理解和掌握面面垂直性质定理; 2) 由证明一些空间位置关系的简单命题,体会性质定理的初步运用. (三)情感、态度与价值观1) 由面面垂直性质定理的引入与证明,发展学生空间想象力,培养学生逻辑推理能力; 2) 由线面垂直和面面垂直的相互转化,体会转化思想在立几中重要性,进一步帮助学生树立辨证统一思想;3) 由实际问题与数学模型间的转化,让学生体会到数学学习的重要性,激发学生数学学习的主观能动性.(一)教学重点平面与平面垂直性质定理 (二)教学难点平面与平面垂直性质定理应用 (三)教学模式,学生自主探究(一)情境创设、引入课题复习回顾 两个平面互相垂直定义、判定定理.生活感知 教室里就有许多平面与平面垂直的例子.问 题1 黑板所在面与地面垂直,能否在黑板上画一条直线与地面垂直? 直观感知 在黑板面内画地面垂线 板书课题 平面与平面垂直的性质 (二)合作探究、形成知识(1)合作探究,证明定理抽象概括 实际问题化归为数学模型 动手操作 小组合作例1 如图,已知平面α⊥平面β,CD αβ=, 直线,AB AB CD α⊂⊥于点B ,求证:AB ⊥β. 展示操作 几何画板演示学生思路,CD B =β.则一个平面内垂直于交线的直线与另一个平面垂直黑板地面βBDACα符号描述 ,,CD AB AB AB CD αβαββα⊥=⎫⇒⊥⎬⊂⊥⎭图形描述(2)小题竞答,夯实基础想一想: 判断下列语句是否正确,并说明理由:①两个平面不垂直,则一个平面内一定不存在直线与另一个平面垂直.( ) ②两个平面垂直,则一个平面内的已知直线必垂直于另一个平面.( )③两个平面垂直,则过一个平面内任意一点作交线的垂线,则此垂线必垂直于另一个平面( ) 展示操作 由几何画板展示命题3的示意图.强调条件 由此我们也认识到,性质定理的成立,必须具备哪几个条件? 习惯引导 我们在学习定义、法则或定理时,要紧扣其关键词.变式引入 现在我们把问题3的条件改变一下,看看又有什么样的结论?(3)类比迁移,发展思维问 题2 面α⊥面β,过一个平面α内任意一点P 作平面β的垂线a ,则直线a 与面α具有板书推论 两个平面垂直,经过第一个平面内的一点垂直于第二个平面的直线,在第一个平面内. (三)小试牛刀、应用巩固过渡引入 性质定理的结论是线面垂直,它还能解决其它空间位置关系问题吗? 问题展示 例2 如图,已知平面α⊥平面β,且l αβ=,直线a ,a βα⊥⊄,试判断直线a 与平面α的位置关系. 逻辑推理 l β=,所以所以//a b 所以//a α. βBDACααalβαalβ变式练习 改变条件,结论如何?如图,已知平面α⊥平面β,且l αβ=,直线//a α,且a l ⊥,试判断直线a 与平面β的位置关系.学生交流 小组合作b γ=,由又因为a l ⊥,所以⊥β,且l αβ=,所以a β⊥,即直线a 与平面激发学习兴趣! 课后延展 作业意图 (四)归纳总结、提升认识1、我们主要学习了:性质定理2、我们还了解了: 转化思想 线线垂直↔线面垂直↔面面垂直(五)布置作业、板书设计 教材P 73页A 组练习第5题,CD AB CDαβ=⎫⎬⊥符号描述。
高一数学教学课件人教A版必修二 平面与平面垂直的性质

二、怎样证线线垂直:
1.利用平面几何中的定理:半圆上的圆周角是
直角、勾股定理的逆定理……
2.利用平移:a⊥b,b∥ca⊥c;
3.利用线面垂直定义:a⊥α,bαa⊥b;
4.利用三垂线定理或其逆定理(以后学);
……
金太阳教育网
品质来自专业 信赖源于诚信
品质来自专业 信赖源于诚信
回顾
2.面面垂直的判定定理:
一个平面过另一个平
面的垂线,则这两个平面 垂直。
a
a a
探究
A1 A
金太阳教育网
面面垂直的性质
D1
品质来自专业 信赖源于诚信
α
F
B1
D
C1
D
E
B
C
β
如果α⊥β
(1) α里的直线都和β垂直吗?
规律小结
一、怎样证线线平行:
1.利用平面几何中的定理:三角形(或
梯形)的中位线与底边平行、平行四边形的 对边平行、利用比例、…… 2.利用公理4; 3.利用线面平行的性质定理; 4.利用面面平行的性质定理; 5.利用线面垂直的性质定理;
金太阳教育网
品质来自专业 信赖源于诚信
金太阳教育网
例 , a , a , 判断a与 位置关系 α 解:设 l
在α内作直线b⊥l
b l a β l b b 又a a // b a // b bl
在γ内过A点作直线 a ⊥n, 在γ内过A点作直线 b⊥m,
l β α
金太阳教育网
品质来自专业 信赖源于诚信
a γ
m b A
n
高中数学人教版必修2 2.3.2 平面与平面垂直的判定 教案(系列四)

平面与平面垂直的判定【教学目标】1.探究平面与平面垂直的判定定理,二面角的定义及应用,培养学生的归纳能力.2.掌握平面与平面垂直的判定定理的应用,培养学生的空间想象能力.3.引导学生总结求二面角的方法,培养学生归纳问题的能力.【重点难点】教学重点:平面与平面垂直判定.教学难点:平面与平面垂直判定和求二面角.【课时安排】1课时【教学过程】复习两平面的位置关系:(1)如果两个平面没有公共点,则两平面平行⇔若α∩β=∅,则α∥β.(2)如果两个平面有一条公共直线,则两平面相交⇔若α∩β=AB,则α与β相交.两平面平行与相交的图形表示如图1.图1导入新课前边举过门和墙所在平面的关系,随着门的开启,其所在平面与墙所在平面的相交程度在变,怎样描述这种变化呢?今天我们一起来探究两个平面所成角问题.推进新课新知探究提出问题①二面角的有关概念、画法及表示方法.②二面角的平面角的概念.③两个平面垂直的定义.④用三种语言描述平面与平面垂直的判定定理,并给出证明.⑤应用面面垂直的判定定理难点在哪里?讨论结果:①二面角的有关概念.二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫二面角的棱,这两个半平面叫二面角的面.二面角常用直立式和平卧式两种画法:如图2(教师和学生共同动手).直立式:平卧式:(1) (2)图2二面角的表示方法:如图3中,棱为AB,面为α、β的二面角,记作二面角α-AB-β.有时为了方便也可在α、β内(棱以外的半平面部分)分别取点P、Q,将这个二面角记作二面角P-AB-Q.图3如果棱为l,则这个二面角记作αlβ或PlQ.②二面角的平面角的概念.如图4,在二面角αlβ的棱上任取点O,以O为垂足,在半平面α和β内分别作垂直于棱的射线OA和OB,则射线OA和OB组成∠AOB.图4再取棱上另一点O′,在α和β内分别作l的垂线O′A′和O′B′,则它们组成角∠A′O′B′.因为OA∥O′A′,OB∥O′B′,所以∠AOB及∠A′O′B′的两边分别平行且方向相同,即∠AOB=∠A′O′B′.从上述结论说明了:按照上述方法作出的角的大小,与角的顶点在棱上的位置无关. 由此结果引出二面角的平面角概念:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角. 图中的∠AOB ,∠A ′O ′B ′都是二面角αlβ的平面角. ③直二面角的定义.二面角的大小可以用它的平面角来度量,二面角的平面角是多少度,就说二面角是多少度.平面角是直角的二面角叫做直二面角.教室的墙面与地面,一个正方体中每相邻的两个面、课桌的侧面与地面都是互相垂直的. 两个平面互相垂直的概念和平面几何里两条直线互相垂直的概念相类似,也是用它们所成的角为直角来定义,二面角既可以为锐角,也可以为钝角,特殊情形又可以为直角. 两个平面互相垂直的定义可表述为:如果两个相交平面所成的二面角为直二面角,那么这两个平面互相垂直. 直二面角的画法:如图5.图5④两个平面垂直的判定定理.如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直. 两个平面垂直的判定定理符号表述为:⎭⎬⎫⊂⊥αβAB AB ⇒α⊥β.两个平面垂直的判定定理图形表述为:如图6.图6证明如下:已知AB ⊥β,AB ∩β=B ,AB ⊂α. 求证:α⊥β.分析:要证α⊥β,需证α和β构成的二面角是直二面角,而要证明一个二面角是直二面角,需找到其中一个平面角,并证明这个二面角的平面角是直角.证明:设α∩β=CD,则由AB⊂α,知AB、CD共面.∵AB⊥β,CD⊂β,∴AB⊥CD,垂足为点B.在平面β内过点B作直线BE⊥CD,则∠ABE是二面角αCDβ的平面角.又AB⊥BE,即二面角αCDβ是直二面角,∴α⊥β.⑤应用面面垂直的判定定理难点在于:在一个平面内找到另一个平面的垂线,即要证面面垂直转化为证线线垂直.应用示例例1如图7,⊙O在平面α内,AB是⊙O的直径,PA⊥α,C为圆周上不同于A、B的任意一点.图7求证:平面PAC⊥平面PBC.证明:设⊙O所在平面为α,由已知条件,PA⊥α,BC⊂α,∴PA⊥BC.∵C为圆周上不同于A、B的任意一点,AB是⊙O的直径,∴BC⊥AC.又∵PA与AC是△PAC所在平面内的两条相交直线,∴BC⊥平面PAC.∵BC⊂平面PBC,∴平面PAC⊥平面PBC.变式训练如图8,把等腰Rt△ABC沿斜边AB旋转至△ABD的位置,使CD=AC,图8(1)求证:平面ABD⊥平面ABC;(2)求二面角CBDA 的余弦值. (1)证明:由题设,知AD =CD =BD ,作DO ⊥平面ABC ,O 为垂足,则OA =OB =OC . ∴O 是△ABC 的外心,即AB 的中点. ∴O ∈AB ,即O ∈平面ABD . ∴OD ⊂平面ABD . ∴平面ABD ⊥平面ABC .(2)解:取BD 的中点E ,连接CE 、OE 、OC , ∵△BCD 为正三角形,∴CE ⊥BD . 又△BOD 为等腰直角三角形,∴OE ⊥BD . ∴∠OEC 为二面角CBDA 的平面角. 同(1)可证OC ⊥平面ABD . ∴OC ⊥OE .∴△COE 为直角三角形. 设BC =a ,则CE =a 23,OE =a 21,∴cos ∠OEC =33=CE OE . 点评:欲证面面垂直关键在于在一个平面内找到另一个平面的垂线.例2 如图9所示,河堤斜面与水平面所成二面角为60°,堤面上有一条直道CD ,它与堤角的水平线AB 的夹角为30°,沿这条直道从堤脚向上行走到10 m 时人升高了多少?(精确到0.1 m )图9解:取CD 上一点E ,设CE =10 m ,过点E 作直线AB 所在的水平面的垂线EG ,垂足为G ,则线段EG 的长就是所求的高度.在河堤斜面内,作EF ⊥AB ,垂足为F ,并连接FG ,则FG ⊥AB ,即∠EFG 就是河堤斜面与水平面ABG 所成二面角的平面角, ∠EFG =60°,由此,得EG =EFsin60°=CEsin30°sin60°=10×2352321=⨯≈4.3(m ). 答:沿直道行走到10 m 时人升高约4.3 m .变式训练已知二面角αABβ等于45°,CD ⊂α,D ∈AB ,∠CDB =45°. 求CD 与平面β所成的角.解:如图10,作CO ⊥β交β于点O ,连接DO ,则∠CDO 为DC 与β所成的角.图10过点O 作OE ⊥AB 于E ,连接CE ,则CE ⊥AB . ∴∠CEO 为二面角αABβ的平面角, 即∠CEO =45°. 设CD =a ,则CE =a 22,∵CO ⊥OE ,OC =OE , ∴CO =a 21.∵CO ⊥DO ,∴sin ∠CDO =21=CD CO . ∴∠CDO =30°,即DC 与β成30°角.点评:二面角是本节的另一个重点,作二面角的平面角最常用的方法是:在一个半平面α内找一点C ,作另一个半平面β的垂线,垂足为O ,然后通过垂足O 作棱AB 的垂线,垂足为E ,连接AE ,则∠CEO 为二面角α-AB -β的平面角.这一过程要求学生熟记. 拓展提升如图11,在四棱锥P —ABCD 中,侧面PAD 是正三角形,且与底面ABCD 垂直,底面ABCD 是边长为2的菱形,∠BAD =60°,N 是PB 中点,过A 、D 、N 三点的平面交PC 于M ,E 为AD 的中点.图11(1)求证:EN ∥平面PCD ; (2)求证:平面PBC ⊥平面ADMN ;(3)求平面PAB 与平面ABCD 所成二面角的正切值.(1)证明:∵AD ∥BC ,BC ⊂面PBC ,AD ⊄面PBC , ∴AD ∥面PBC .又面ADN ∩面PBC =MN , ∴AD ∥MN .∴MN ∥BC . ∴点M 为PC 的中点.∴MN21BC . 又E 为AD 的中点,∴四边形DENM 为平行四边形. ∴EN ∥DM .∴EN ∥面PDC .(2)证明:连接PE 、BE ,∵四边形ABCD 为边长为2的菱形,且∠BAD =60°, ∴BE ⊥AD .又∵PE ⊥AD ,∴AD ⊥面PBE .∴AD ⊥PB . 又∵PA =AB 且N 为PB 的中点, ∴AN ⊥PB .∴PB ⊥面ADMN . ∴平面PBC ⊥平面ADMN .(3)解:作EF ⊥AB ,连接PF ,∵PE ⊥平面ABCD ,∴AB ⊥PF . ∴∠PFE 就是平面PAB 与平面ABCD 所成二面角的平面角. 又在Rt △AEB 中,BE =3,AE =1,AB =2,∴EF =23. 又∵PE =3,∴tan ∠PFE =233=EFPE=2,即平面PAB 与平面ABCD 所成的二面角的正切值为2. 课堂小结知识总结:利用面面垂直的判定定理找出平面的垂线,然后解决证明垂直问题、平行问题、求角问题、求距离问题等.思想方法总结:转化思想,即把面面关系转化为线面关系,把空间问题转化为平面问题. 作业课本习题2.3 A 组1、2、3.。
高中数学必修二教案:2.3.4 平面与平面垂直的性质

集体备课电子教案高一年级数学备课组(总第课时)主备人:时间:年月日的底面是矩形,侧面VAB⊥底面ABCD中,底面ABCD是边长为a为正三角形,其所在的平面垂直于底面ABCD 的底面是直角梯形,∠ABC=∠BCD=90°精美句子1、善思则能“从无字句处读书”。
读沙漠,读出了它坦荡豪放的胸怀;读太阳,读出了它普照万物的无私;读春雨,读出了它润物无声的柔情。
读大海,读出了它气势磅礴的豪情。
读石灰,读出了它粉身碎骨不变色的清白。
2、幸福幸福是“临行密密缝,意恐迟迟归”的牵挂;幸福是“春种一粒粟,秋收千颗子”的收获. 幸福是“采菊东篱下,悠然见南山”的闲适;幸福是“奇闻共欣赏,疑义相与析”的愉悦。
幸福是“随风潜入夜,润物细无声”的奉献;幸福是“夜来风雨声,花落知多少”的恬淡。
幸福是“零落成泥碾作尘,只有香如故”的圣洁。
幸福是“壮志饥餐胡虏肉,笑谈渴饮匈奴血”的豪壮。
幸福是“先天下之忧而忧,后天下之乐而乐”的胸怀。
幸福是“人生自古谁无死,留取丹心照汗青”的气节。
3、大自然的语言丰富多彩:从秋叶的飘零中,我们读出了季节的变换;从归雁的行列中,我读出了集体的力量;从冰雪的消融中,我们读出了春天的脚步;从穿石的滴水中,我们读出了坚持的可贵;从蜂蜜的浓香中,我们读出了勤劳的甜美。
4、成功与失败种子,如果害怕埋没,那它永远不能发芽。
鲜花,如果害怕凋谢,那它永远不能开放。
矿石,如果害怕焚烧(熔炉),那它永远不能成钢(炼成金子)。
蜡烛,如果害怕熄灭(燃烧),那它永远不能发光。
航船,如果害怕风浪,那它永远不能到达彼岸。
5、墙角的花,当你孤芳自赏时,天地便小了。
井底的蛙,当你自我欢唱时,视野便窄了。
笼中的鸟,当你安于供养时,自由便没了。
山中的石!当你背靠群峰时,意志就坚了。
水中的萍!当你随波逐流后,根基就没了。
空中的鸟!当你展翅蓝天中,宇宙就大了。
空中的雁!当你离开队伍时,危险就大了。
地下的煤!你燃烧自己后,贡献就大了6、朋友是什么?朋友是快乐日子里的一把吉它,尽情地为你弹奏生活的愉悦;朋友是忧伤日子里的一股春风,轻轻地为你拂去心中的愁云。
高中数学两平面垂直教案

高中数学两平面垂直教案
教学内容:高中数学
教学目标:
1. 理解两平面垂直概念;
2. 掌握两平面垂直的判定方法;
3. 能够应用两平面垂直的性质解决实际问题。
教学重点和难点:
重点:两平面垂直的判定方法;
难点:应用两平面垂直性质解决实际问题。
教学准备:
1. 教材《高中数学》;
2. 教学投影仪;
3. 教具:黑板、粉笔、尺子、直角三角尺。
教学流程:
一、引入
通过一个实际问题引入两平面垂直概念,引导学生思考两平面垂直的条件。
二、讲解
1. 通过示意图和几何常识解释两平面垂直的定义;
2. 分别介绍两平面垂直的判定方法:法向量垂直法和两平面交线平行法。
三、练习
1. 给学生几道简单的题目,让他们应用两平面垂直的判定方法来判断两平面是否垂直;
2. 给学生提供应用题,让他们应用两平面垂直性质解决实际问题。
四、拓展
引导学生思考两平面垂直概念在现实生活中的应用,并提出相关问题进行讨论。
五、总结
对本节课所学内容进行总结,强调两平面垂直的重要性和应用价值。
六、作业
布置相关练习题目,巩固学生对两平面垂直概念的理解和掌握。
教学反思:
通过本节课的教学,学生应该能够清楚地理解两平面垂直的概念、掌握两平面垂直的判定方法,并能够灵活应用这些知识解决实际问题。
在教学中,可以通过更多的实例和练习来加深学生的理解,并引导他们思考两平面垂直的应用场景,以提高他们的综合能力。
人教版高一数学《2.3.4平面与平面垂直的性质》课件

D1 A1
D
A
C1 B1
C B
平面与平面垂直的性质定理
1. 两视个察平实面验垂直,则一
个平面视内察垂两直垂于直交平线面的直
线中与,另一个一平个面平内面的垂直直线.
l
与符另号一表个示平:面的有哪
例1 如下图所示,P是四边形ABCD所在平面外的一点,
ABCD是∠DAB=60°且边长为a
的菱形.侧面PAD为正三角形,
其所在平面垂直于底面ABCD.
(1)若G为AD边的中点,求证: BG⊥平面PAD; (2)求证:AD⊥PB.
分析:①ABCD是边长为a的菱形;
②面PAD⊥面ABCD.
解答本题可先由面⊥面得线⊥面,再进一步得出线⊥线.
面面垂直
性质定理 判定定理
线面垂直
巩固提升:
1. 如图,已知平面 , , ,直线a满足
a , a ,试判断直线a与平面 的位置关系。
解:在 内作垂直于 与 交线的直线b,
因为 ,所以 b .
因为 a ,所以 a // b . 又因为 a ,所以a // .
a
b
即直线a与平面 平行
变式1 如图所示,α⊥β,CD⊂β,CD⊥AB, CE、EF⊂α,∠FEC=90°.
求证:面EFD⊥面DCE.
证明:∵α⊥β,CD⊂β, CD⊥AB,α∩β=AB,∴CD⊥α. 又∵EF⊂α,∴CD⊥EF. 又∠FEC=90°,∴EF⊥EC. 又EC∩CD=C,∴EF⊥面DCE. 又EF⊂面EFD,∴面EFD⊥面 DCE.
(2) 当 F 为 PC 的 中 点 时 , 满 足 平 面 DEF⊥ 平 面 ABCD.取PC的中点F,连接DE、EF、DF,
人教版高一数学教案-直线与平面垂直性质及应用

教案(2)如图,已知直线a ,b 和平面α. 如果a ⊥α, b ⊥α,那么直线a 与b 一定平行吗?直观观察,这两个问题中的直线都是相互平行.不失一般性,我们以问题(2)为例加以证明. 由于无法把两条直线a ,b 归入到一个平面内,所以无法应用平行直线的判定知识,也无法应用基本事实4(即平行于同一条直线的两条直线平行),在这种情况下我们采用一种特殊的证明方法,叫做“反证法”. 证明:如图,假设b 与a 不平行,且b ∩α于点O .显然点O 不在直线a 上,所以点O 与直线a 可以确定一个平面, 在该平面内过点O 做直线//b a ',则直线b 与b ' 是相交于点O 的两条不同直线, 所以直线 b 与 b ' 可以确定一个平面β. 设αβ=c ,则点O 在直线c 上. 因为a ⊥α,b ⊥α, 所以a ⊥c ,b ⊥c.又因为//b a ',所以 b c '⊥.这样在平面 β 内,经过直线c 上同一点O 就有两条直线b ,b '与c 垂直,这显然不可能.所以假设不成立,因此b // a . 证明完毕.上述证明过程就是反证法,它的基本证明流程是:首先假设命题不成立,然后推导出矛盾,说明假设不成立,进而得出命题成立.反证法是间接论证的方法之一,也称为“逆证”. 它是一种有效的解释方法,特别是在进行正面的直接论证比较困难时,用反证法会收到更好的效果.同学们,你们还有不同的证明方法吗?让我们看一看,从另一个角度如何证明:方法2 如图,假设b 与a 不平行,且b ∩α于点O ,显然点O 不在直线a 上, 所以点O 与直线a 可以确定一个平面β, 在β内过点O 做直线//b a ',则b α'⊥,因为b ⊥α,且直线b '与b 相交于点O , 这与过一点垂直于已知平面的直线有且只有一条矛盾. 所以假设不成立,因此b // a. 证明完毕. 通过问题(2)的证明,同学们,你能否总结一下,垂直于同一个平面的两条直线,具有怎样的位置关系呢? 直线与平面垂直的性质定理: 垂直于同一个平面的两条直线平行. 同学们,你能用图形语言和符号语言,表示定理的内容吗? 图形表示和符号表示: //.a a b b αα⊥⎫⇒⎬⊥⎭ 直线与平面垂直的性质定理告诉我们,可以由两条 直线与一个平面垂直,判定这两条直线互相平行. 它揭 示了“平行”与“垂直”之间的内在联系.巩固练习(一):1、直线l1,l2互相平行的一个充分条件是()(A)l1,l2都平行于同一个平面;(B)l1,l2与同一个平面所成的角相等;(C)l1,l2都垂直于同一个平面;(D)l1平行于l2所在的平面.2、两条异面直线与同一平面所成的角,不可能是()(A)两个角均为锐角(B)一个角为0°,一个角为90°(C)两个角均为0°(D)两个角均为90°3、如图,四棱锥P-ABCD中,PD⊥平面ABCD,EF⊥平面ABCD,且EF=12PD,G,H分别为PC,DC中点. 求证:FG//平面ABCD.请同学们回忆一下,空间中直线与平面的位置关系有哪些呢?三种位置关系:直线在平面内,直线与平面相交,直线与平面平行.思考:在aα⊥的条件下,如果平面α外的直线b与直线a垂直,你能得到什么结论呢?证明:因为直线b在平面α外,所以假设b与α相交.若b⊥α ,因a⊥α,由线面垂直性质定理,则有a // b,这与已知a ⊥b 矛盾;若b 与α不垂直,设b A α= 取直线b 上一点P ,作PO ⊥α ,垂足为O .连接AO ,则有PO //a ,且PO ⊥AO .又因为a ⊥b ,所以PO 垂直b ,显然不成立. 综上,假设不成立,所以b // α.我们可以把结论这样描述:已知a ⊥α ,若b ⊄α ,且b ⊥a ,则b //α. 这样我们又得到一个判断直线与平面平行的方法.如果平面β与平面α平行,你又能得到什么结论呢?证明:在平面α内任取两条相交直线m ,n .⊥α//β,⊥m //β,n //β. 由线面平行性质,⊥在平面β内存在两条相交直线m n '',,分别与m ,n 平行.⊥a ⊥α,⊥a ⊥m 且a ⊥n .⊥a m a n ''⊥⊥,.又 m n '',是平面β内两条相交直线, ⊥a ⊥β.我们可以把结论这样描述:已知a ⊥α ,若β//α ,则a ⊥β.这样我们又得到一个判断直线与平面垂直的方法.上述两个问题,不仅呈现出线面垂直的性质,而且还体现了,“平行”与“垂直”之间可以进行相互转化,同学们要认真思考,可以尝试着提出更多的问题,发现更多的结论.例题: 如图,直线 l 平行于平面α,求证:直线l 上各点到平面α的距离相等.分析:要证明直线l 上各点到平面α的距离都相等,只需证明直线l 上任意两个点,到平面α的距离相等,具体证明如下:证明:过直线l 上任意两点A ,B 分别作平面α的垂线AA 1,BB 1,垂足分别为A 1,B 1.11,AA BB αα⊥⊥,11//AA BB ∴,于是直线AA 1,BB 1确定一个平面. 设直线AA 1,BB 1确定的平面为11,A B ββα=11//,//l l A B α∴ ,所以四边形AA 1B 1B 是矩形. 11AA BB ∴= 由A ,B 是直线l 上任取的两点,可知直线l 上各点到平面α的距离相等.当一条直线与一个平面平行时,直线上所有点到平面的距离都相等,此时,我们把这条直线上任意一点到这个平面的距离,叫做这条直线到这个平面的距离.当两个平面平行时,那么其中一个平面内的任意一点到另一个平面的距离都相等,我们把它叫做这两个平行平面间的距离.随堂检测:如图,已知长方体ABCD -A 1B 1C 1D 1中,AB =2,BC=CC 1=1.(1)直线A 1B 1到平面ABCD 的距离为多少? (2)直线A 1A 到平面BCC 1B 1的距离为多少? (3)直线CC 1到平面BDD 1B 1的距离为多少?(4)若E 为A 1B 1中点,判断直线A 1C 与平面BEC 1是否平行,若平行,求出直线A 1C 到平面BEC 1的距离;若不平行,请说明理由. 通过这几个题目,我们不难看出,在研究直线到平面的距离时,一般都转化成求点到平面的距离. 同学们在解题时要有这种转化意识. 同学们请想一想,前面我们学习过棱柱、棱台,在它们的体积公式中,哪个量代表着上、下底面间的距离呢? 棱柱、棱台的高是它们上、下底面间的距离. 例题 推导棱台的体积公式: 1().3V h S S S S ''=++棱台其中S ',S 分别是棱台的上、下底面面积,h 是高. 棱台可看作由某个棱锥截得,所以我们先计算“截得棱台的棱锥的体积”,再减“去掉的棱锥的体积”,进而得到棱台的体积. 具体过程如下: 如图,延长棱台各侧棱交于点P ,得到截得棱台的棱锥.过点P 作棱台的下底面的垂线,分别与棱台的上、4、如图,正方体ABCD-A1B1C1D1中,M是AB上一点,N是A1C中点,MN⊥平面A1DC. 求证:MN//AD1.证明直线与直线平行,常用的几种方法:(1)平行公理;(2)线面平行性质定理;(3)线面垂直性质定理;(4)面面平行性质定理;5、如图,已知平面α∩平面β=l,EA⊥α ,垂足为A,EB⊥ β ,直线a β ,a⊥AB. 求证:a//l.小结:作业1如图,EA和DC都垂直于平面ABC,且EA=2DC,F是EB的中点,求证:DF//平面ABC.作业2我们已经研究了空间直线与直线、直线与平面的垂直问题,接下来你还想研究什么问题?怎样去研究呢?【课后作业参考答案】证明:取AB中点G,连接FG,CG.∵F是EB的中点,∴FG//AE,且FG=12 EA.∵EA和DC都垂直于平面ABC,由线面垂直性质定理∴EA//DC,且EA=2DC.∴FG//DC,且FG=DC.∴四边形CDFG为平行四边形.∴DF//CG.又∵DF⊄平面ABC,CG⊂平面ABC,∴DF//平面ABC.。
高一数学必修二2.3.3直线与平面垂直的性质2.3.4平面与平面垂直的性质导学案(解析版)

2.3.3直线与平面垂直的性质2.3.4平面与平面垂直的性质一、课标解读1.掌握直线和平面垂直的性质定理和推论的内容、推导和简单应用。
2.掌握等价转化思想在解决问题中的运用.3.使学生掌握直线与平面垂直,平面与平面垂直的性质定理.4.能运用性质定理解决一些简单问题.了解直线与平面、平面与平面垂直的判定定理和性质定理间的相互联系.二、自学导引问题1:如图,长方体ABCD —A ′B ′C ′D ′中,棱A A ′、B B ′、C C ′、D D ′所在直线都垂直于平面ABCD ,它们之间具有什么位置关系?问题2:已知:a α⊥,b α⊥。
求证:b ∥a直线和平面垂直的性质定理: 垂直于同一个平面的两条直线平行。
符号语言作用:a b问题3:黑板所在平面与地面所在平面垂直,你们能否在黑板上画一条直线与地面垂直呢?问题4:如图,长方体ABCD-A'B'C'D中,平面A'ADD’与平面ABCD垂直,直线A'A垂直于其交线AD,平面A'ADD’内的直线A'A与平面ABCD垂直吗?问题5:设α⊥β,α∩β=CD,A B α,AB⊥CD,AB∩CD=B,研究直线AB与平面β的位置关系。
归纳得到平面与平面垂直的性质定理:定理两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。
想一想:用符号语言如何表述这个定理?三、典例精析例1 如图所示,正方体1111ABCD A B C D -中,D A AC EF 1及与异面直线都垂直相交. 求证:EF ∥1BD变式训练1 如图所示,已知SA 垂直于ABCD 所在平面,过A 且垂直于SC 的平面分别交 .,,,,G F E SD SC SB 于求证:SB AE ⊥例2 如图所示,平面⊥⊥PAC ABC PAB 平面平面,平面ABC ,⊥AE 平面PBC ,E 为垂足.(1) 求证:ABC PA 平面⊥(2) 当E 为PBC ∆的垂心时,求证:ABC ∆是直角三角形变式训练2 如图所示,是所在平面外一点,是四边形ABCD ABCD P60=∠DAB 且 边长ABCD PAD a 面垂直于底面为正三角形,其所在平的菱形,侧面. (1) 若PAD BG AD G 平面边的中点,求证:为⊥ (2) 求证:PB AD ⊥四、自主反馈 1.两异面直线在平面α内的射影( )A .相交直线B .平行直线C .一条直线—个点D .以上三种情况均有可能2.若两直线a 与b 异面,则过a 且与b 垂直的平面( )A .有且只有—个B .可能存在也可能不存在C .有无数多个D .—定不存在3.在空间,下列哪些命题是正确的( )①平行于同一条直线的两条直线互相平行;②垂直于同一条直线的两条直线互相平行;③平行于同一个平面的两条直线互相平行;④垂直于同—个平面的两条直线互相平行.A .仅②不正确B .仅①、④正确C .仅①正确D .四个命题都正确4.若平面α的斜线l 在α上的射影为l ′,直线b ∥α,且b ⊥l ′,则b 与l ( )A .必相交B .必为异面直线C .垂直D .无法确定5.下列命题①平面的每条斜线都垂直于这个平面内的无数条直线;②若一条直线垂直于平面的斜线,则此直线必垂直于斜线在此平面内的射影; ③若平面的两条斜线段相等,则它们在同一平面内的射影也相等;④若一条线段在平面外并且不垂直于这个平面,则它的射影长一定小于线段的长. 其中,正确的命题有( )A .1个B .2个C .3个 n 4个6.在下列四个命题中,假命题为( )A .如果一条直线垂直于平面内的无数条直线,那么这条直线和这个平面垂直B .垂直于三角形两边的直线必垂直于第三边C .过点A 垂直于直线a 的所有直线都在过点A 垂直于a 的平面内D .如果三条共点直线两两垂直,那么其中一条直线垂直于另两条直线确定的平面7.已知P 是四边形ABCD 所在平面外一点且P 在平面ABCD 内的射影在四边形ABCD 内,若P 到这四边形各边的距离相等,那么这个四边形是( )A .圆内接四边形B .矩形C .圆外切四边形D .平行四边形8.在△ABC 中,AB =AC =5,BC =6,P A ⊥平面ABC ,P A =8,则P 到BC 的距离等于( )A .5B .52C .35D .45答案2.3.3 直线与平面垂直的性质2.3.4 平面与平面垂直的性质例1 证明:连接BD C B AB ,,11ABCD AC ABCD DD 平面平面⊂⊥,1D DD BD BD AC AC DD =⊥⊥∴11,, 又111,BD AC B BDD AC ⊥∴⊥∴平面C AB BD C B BD 1111,平面同理可证⊥∴⊥C BD A AD EF AC EF 11//,,又⊥⊥C AB EF C B EF 11,平面⊥∴⊥∴1//BD EF ∴例2 证明(1)在平面F AC DF D ABC 于作内取一点⊥,AC ABC PAC 且交线为平面平面,⊥AP DF PAC PA PAC DF ⊥∴⊂⊥∴,,平面平面AP DG G AB DG ⊥⊥同理可证于作,D DF DG ABC DF DG = 内,且都在平面,ABC PA 平面⊥∴(2)连接H PC BE 于并延长交BE PC PBC E ⊥∴∆的垂心,是又已知AE PC PBC AE ⊥∴的垂线,是平面AB PC ABE PC ⊥∴⊥∴,平面PAC AB AB PA ABC PA 平面平面又⊥∴⊥∴⊥,, 是直角三角形即ABC AC AB ∆⊥∴,变式训练1.SA BC ABCD BC ABCD SA ⊥∴⊂⊥,平面,平面证明:SAB SA SAB AB A SA AB AB BC 平面平面⊂⊂=⊥,,, BC AE SAB AE SAB BC ⊥∴⊂⊥∴,,平面平面 SC AE AEFG AE AEFG SC ⊥∴⊂⊥,,平面平面 SBC BC SBC SC C BC SC 平面平面又⊂⊂=,, SB AE SBC SB SBC AE ⊥∴⊂⊥∴,,平面平面2.略自主反馈1.D 2.B 3.B 4.C 5.A 6.A 7.C 8.D。