补码一位乘法

合集下载

计算机组成原理第三章运算方法与运算器(含答案)

计算机组成原理第三章运算方法与运算器(含答案)

第三章运算方法与运算器3.1定点数运算及溢出检测随堂测验1、定点运算器可直接进行的运算是() (单选)A、十进制数加法运算B、定点数运算C、浮点数运算D、定点数和浮点数运算2、设计计算机字长为8位,两个十进制数X = -97 ,Y = 63, [x]补- [y]补的结果为()(单选)A、01100000B、11011110C、负溢出D、正溢出3、下列关于定点运算溢出的描述中,正确的是( ) (多选)A、补码数据表时,同号数相加可能发生溢出B、补码数据表时,异号数相减可能发生溢出C、参加运算的两个数,当作为有符号数和无符号数进行加法运算时,不可能两者都溢出D、溢出检测既可用硬件实现,也可用软件实现4、设X为被加(减)数,Y为加(减)数,S为运算结果,均采用补码数据表示,下列关于溢出电路设计的描述中,正确的是()(多选)A、采用单符号位时,直接用X、Y和S的符号位就可设计溢出监测电路B、采用双符号位时,可直接用S的双符号位设计溢出检测电路C、采用单符号位时,可直接用X、Y最高有效数据位运算后的进位位和S的进位设计溢出监测电路D、对无符号数的加/减运算,可利用运算器的进位信号设计溢出检测电路3.2 定点数补码加、减运算器设计随堂测验1、如图所示为基于FA的运算器:为了利用一位全加器FA并配合使用控制信号P,当P= 0/1时实现A、B两个数的加法/减法运算,图中空白方框处电路的逻辑功能应该是()(单选)A、与门B、或门C、异或门D、非门2、如图所示为带溢出检测功能的运算器该电路完成的溢出检测功能是()(多选)A、带符号数的加法溢出检测B、带符号数的加法溢出检测C、无符号数的加法溢出检测D、无符号数减法的溢出检测3、下列关于并行进位的描述中,正确的是()(多选)A、并行进位可以提高运算速度B、并行进位模式下,各进位位采用不同电路各自产生,相互间不再有依存关系C、采用先行进位部件和ALU模块可构建长度可变的并行进位运算器D、并行进位只对加法有效,而对减法无效4、四位并行ALU中有两个特殊的输出端,分别是:G =A3B3+(A3+B3)(A2B2+(A2+B2)(A1B 1+ (A1+B1) A 0B0)) 为进位产生函数,P=(B3+A3) (B2+A2)( A1+B1 ) (A0+B0)为进位传递函数下列关于P、G的描述中,正确的是()(多选)A、设计P和G的目的是为了构建位数更长的并行ALUB、P和G对算术运算和逻辑运算都有意义C、P的作用是将本片ALU的最低进位输入位传递到本片ALU的最高进位输出端D、G的作用是根据参与运算的两个数据产生本片ALU的最高进位输出3.3 原码一位乘法随堂测验1、设计算机字长为8位,X = - 19,对该分别执行算术左移和逻辑左移一位后的结果分别为()(单选)A、11011010 ,11011010B、11110010 ,11110010C、11011000 ,11011000D、11110000 ,111100002、设计算机字长为8位,X = - 19,对该分别执行算术右移和逻辑右移一位后的结果分别为()(单选)A、11111001,11111001B、11111001,01111001C、11110110,01110110D、11110110,111101103、关于原码一位乘法的下列描述中,正确的是()(多选)A、数据取绝对值参加运算B、符号位单独处理C、乘法执行过程中的所有移位都是算术移位D、最后的结果由部分积寄存器和乘数寄存器共同保存4、计算机字长为n位, 下列关于原码一位乘法操作过程的描述中,正确的是() (多选)A、乘法过程中共执行n 次算术右移和n 次加法运算B、乘法过程中共执行n -1次算术右移和n-1 次加法运算C、乘法过程中,部分积加0 还是加x的绝对值,取决于此时的YnD、乘法过程中右移部分积是为了使部分积与下次的加数按位对齐3.4 补码一位乘法随堂测验1、16位补码0X 8FA0扩展为32位的结果是() (单选)A、0X 0000 8FA0B、0X FFFF 8FA0C、0X FFFF FFA0D、0X8000 8FA02、计算机字长为n位, 下列关于补码一位乘法操作过程的描述中,正确的是() (多选)A、乘法过程中共执行n 次加法和n-1 部分积右移B、乘法过程中共执行n -1次算术右移和n-1 次加法运算C、乘法过程中,部分积加0 、[x]补还是[-x]补,取决于此时的Yn+1 与Yn的差D、乘法过程中右移部分积的目的是为了使部分积与下次的加数对齐3、关于补码码一位乘法的下列描述中,正确的是()(多选)A、符号位和数据位一起参加运算B、运算开始前,需要在乘数寄存器Y后面补上Yn+1且其初值为0C、乘法执行过程中的对部分积的移位是算术右移D、最后的结果由部分积寄存器和乘数寄存器共同保存3.5 乘法运算器设计随堂测验1、下图为原码一位乘法器原理图正确的是()(单选)A、A: 部分积寄存器B:乘数寄存器C: |X| D: YnB、A: 部分积寄存器B:乘数寄存器C: |X| D: Yn+1C、A: 被乘数寄存器B:乘数寄存器C: |X| D: YnD、A: 被乘数寄存器B:乘数寄存器C: |X| D: Yn+12、下图为补码一位乘法原理图正确的是() (单选)。

补码一位乘法器logisim实验步骤

补码一位乘法器logisim实验步骤

补码一位乘法器logisim实验步骤补码一位乘法器的实验步骤如下:步骤1:打开Logisim并创建新电路。

选择"文件"->"新建",然后选择"干净的电路"。

步骤2:从左侧的元件面板中选择所需的元件,在本实验中我们需要的元件有:- 输入端口(选择位数适当的位宽)- 与门- 异或门- 输出端口(选择位数适当的位宽)步骤3:连接输入端口和与门。

将与门拖动到电路编辑区域,并连接到输入端口。

步骤4:连接异或门和输出端口。

将异或门拖动到电路编辑区域,并连接到输出端口。

步骤5:添加中间变量。

我们需要两个中间变量a和b来存储输入的两个操作数。

从左侧的元件面板选择一个“双输入线”元件,并将其拖动到电路编辑区域。

重复此步骤来添加第二个中间变量。

步骤6:连接中间变量和与门。

将中间变量a和b连接到与门的两个输入端口处。

步骤7:添加补码转换电路。

我们需要一个电路来将输入的补码转换为二进制表示形式。

从左侧的元件面板选择一个“4位补码转换”元件(这里的位数根据实验要求选择),然后将其拖动到电路编辑区域。

将中间变量a和b连接到补码转换电路的输入端口处。

步骤8:连接补码转换电路和异或门。

将补码转换电路的输出连接到异或门的两个输入端口处。

步骤9:添加输入变量。

我们需要一个变量来控制乘法器是否进行计算。

从左侧的元件面板选择一个“输入”元件,并将其拖动到电路编辑区域。

步骤10:连接输入变量和与门。

将输入变量连接到与门的两个输入端口处。

步骤11:完成连接。

确保所有元件都正确连接,没有无效或断开的连接。

步骤12:设置输入变量的值。

右键单击输入变量并选择“编辑”来设置其值。

步骤13:运行仿真。

点击Logisim的“模拟”按钮,然后选择“仿真”。

步骤14:观察输出结果。

在仿真窗口中查看输出结果,确认乘法器是否按预期工作。

步骤15:保存电路。

选择“文件”->“保存”来保存电路。

Verilog实现补码一位乘法课程设计

Verilog实现补码一位乘法课程设计

计算机科学与工程学院课程设计报告题目全称:Verilog实现补码一位乘法课程名称:计算机组成原理指导老师:文泉职称:指导老师评语:指导签字:课程设计成绩:目录第 1 章序言 (1)1.1 课程设计目的 (1)1.2 课程设计作用 (2)1.3 课程设计需求 (2)1.3.1Xilinx设计软件 (2)1.3.2 在xilinx ISE集成开发环境下,使用Verilog HDL (2)第 2 章正文 (4)2.1 实现补码一位乘法的原理 (4)2.2 比较补码一位乘法方法 (6)2.2.1 分步乘法 (6)2.2.2 运算规则 (7)2.2.3 运算实例 (7)2.2.4算法流程图 (8)2.2.5 比较法(Booth算法) (8)2.3课程设计实验代码(概要设计) (10)2.4课程设计详细设计方案 (12)2.4.1顶层方案图的设计与实现 (13)2.4.2 功能模块的设计与实现 (14)2.4.3 仿真调试 (13)第 3 章结论 (16)3.1课程设计总结 (16)摘要本定点补码一位乘法器,具有良好的可移植性。

本文介绍了定点补码一位乘法的概念已及定点补码一位乘法的的原理和方法,分析了定点补码一位乘法器的设计,并详细介绍了使用EDA环境,Xilinx设计软件,在XCV200实验板的XCV200可编程逻辑芯片中上进行定点补码一位乘法器的移植。

通过测试,系统移植成功。

关键词:定点补码;EDA;一位乘法器;设计第1 章序言当今时代是一个信息的时代,我们的生活与信息紧密相连。

伴随着计算机的生活化,我们更近一步接触到信息技术的发展。

如今,计算机技术迅猛发展,它的发展不仅仅表现在软件领域取得辉煌的成就,同时也在硬件方面也取得了长足的发展。

因此,很多功能已经可以通过硬件来实现。

但是通常对嵌入式软件的基本要求是体积小、指令速度快、具有较好的裁减性和可移植性,目前这方面的设计已经很多也很优异,但是基于补码一位乘法器的实现,克服了定点补码乘法器的缺点,实现更加方便有效。

b o o t h 算 法

b o o t h 算 法

计算机中的原码一位乘和补码一位乘原码1位乘法在定点计算机中,两个原码表示的数相乘的运算规则是:乘积的符号位由两数的符号按异或运算得到,而乘积的数值部分则是两个正数相乘之积。

设n位被乘数和乘数用定点小数表示(定点整数也同样适用) 被乘数?[x]原?=?xf?.x0?x1?x2?…?xn?乘数?[y]原?=?yf?.y0?y1?y2?…?yn乘积?[?z?]原?= (?xf⊕yf?). (0.?x0?x1?x2?…xn)(0 .?y1?y2?…yn)式中,xf为被乘数符号,yf为乘数符号。

乘积符号的运算法则是:同号相乘为正,异号相乘为负。

由于被乘数和乘数和符号组合只有四种情况(xf?yf?= 00,01,10,11),因此积的符号可按“异或”(按位加)运算得到。

数值部分的运算方法与普通的十进制小数乘法相类似,不过对于用二进制表达的数来说,其乘法规则更为简单一些:从乘法y的最低位开始,若这一位为“1”,则将被乘数x写下;若这一位为“0”,则写下全0。

然后再对乘数y的高一位进行的乘法运算,其规则同上,不过这一位乘数的权与最低位乘数的权不一样,因此被乘数x要左移一位。

依次类推,直到乘数各位乘完为止,最后将它们统统加起来,便得到最后乘积z?。

?设?x?= 0.1011,y?= 0.1101,让我们先用习惯方法求其乘积,其过程如下:如果被乘数和乘数用定点整数表示,我们也会得到同样的结果。

但是,但是人们习惯的算法对机器并不完全适用。

原因之一,机器通常只有n位长,两个n位数相乘,乘积可能为2n位。

原因之二,只有两个操作数相加的加法器,难以胜任将n个位积一次相加起来的运算。

为了简化结构,机器通常只有n位长,并且只有两个操作数相加的加法器。

为此,必须修改上述乘法的实现方法,将?x?·?y?改写成适于如下定点机的形式:一般而言,设被乘数?x?、乘数?y?都是小于?1?的?n?位定点正数:x= 0 .x1x2…xn;y= 0 .y1y2…yn其乘积为x·y=x·( 0.y1y2…yn)=x·(y12-1?+?y2?2?-2?+?…?+?yn?2?-n)= 2-1(y1x+ 2-1(y2x+ 2-1?(…?+ 2-1?(?yn-1?x?+ )…))令?zi?表示第?i?次部分积,则上式可写成如下递推公式:z1= 2-1(ynx+z0)zi= 2-1(yn-i+1x+zi-1) ?(2.3.2)zn=x·y= 2-1(?y1x?+?zn-1)显然,欲求x·y,则需设置一个保存部分积的累加器。

补码一位乘法浮点运算器--课程设计报告

补码一位乘法浮点运算器--课程设计报告

目录
第一章引言 .................................................................. 4 1.1 课题背景............................................................................................................................ 4 1.1.1 应用领域................................................................................................................ 4 1.1.2 国内外研究现状 .................................................................................................... 4 1.2 课题意义及价值................................................................................................................ 5 1.3 理论依据........................................................................................................................... 5 1.3.1 浮点运算原理 ...........................................................................

定点补码一位乘法的实现算法 用[x]补×[y]补直接求[x×y]补

定点补码一位乘法的实现算法 用[x]补×[y]补直接求[x×y]补

定点补码一位乘法的实现算法
用此法计算乘积,需要乘数寄存器的最低一位之后再补充一位 Yn+1,并使其初值为0,再增加对Yn和Yn+1两位进行译码的线路, 以区分出Yn+1-Yn 4种不同的差值。对N位的数(不含符号位) 相乘,要计算N+1次部分积,并且不对最后一次部分积执行右移 操作。此时的加法器最好采用双符号位方案。
定点补码一位除法的实现算法
运算规则如下: (1)如果被除数与除数同号,开始求商时,用被除数减去除数, 若二数异号,则用被除数加上除数的办法处理。 (2)若余数与除数同号,上商1,左移一位后下次用余数减除数操 作求商,若余数与除数异号,上商0,左移一位后下次用余数加除 数操作求商。 (3)商的符号,是在第一次求商试算时求出的,若定点除不溢出, 得到的就是正确的符号位的值。 (4)商的修正问题。在对精度要求不高时,将商的最低一位恒置1。 最大误差为|2-n|。 若对商的精度要求较高,可对N位数求商N+1次,按得到的不同结 果对商进行修正。当商为负数时,要在商的最低一位加1,从反码 的结果得到商的正确的补码值。
定点双位乘法的实现方案
阵列乘法器 跳0 跳1法 (1)如果R≥0,且R的高K个数位均为0,则本次直接得商1后 跟K-1个0,R左移K位后,减出除数D,得新余数。 (2)如果R<0,且R的高K个数位均为1,则本次直接得商0 后跟K-1个1,R左移K位后,加上除数D,得新余数。 用快速乘法器实现快速除法运算
定点补码一位乘法的实现算法
用[X]补×[Y]补直接求[X×Y]补 讨论当相乘的两个数中有一个或二个为负数的情况 在讨论补码乘法运算时,对被乘数或部分积的处理上与原码乘 法有某些类似,差别仅表现在被乘数和部分积的符号位要和数 值一起参加运算。 若[Y]补=Y0Y1Y2…Yn 当Y0为1时,则有

计算机组成原理第3章 运算器和运算方法

计算机组成原理第3章 运算器和运算方法

第三章运算方法和运算器3.1补码的移位运算1、左移运算:各位依次左移,末位补0对于算术左移,若没有改变符号位,左移相当于乘以2。

2、右移运算:算术右移:符号位不变,各位(包括符号位)依次右移。

(相当于除以2)逻辑右移:最高位补0,其余各位依次右移例1:已知X=0.1011 ,Y=-0.0101 求 [0.5X]补;[0.25X]补;[-X]补;2[-X]补;[0.5Y]补;[0.25Y]补; [-Y]补;2[-Y]补[X]补=0.1011 [Y]补=1.1011[0.5X]补=0.01011 [0.5Y]补=1.11011[0.25X]补=0.001011 [0.25Y]补=1.111011[-X]补=1.0101 [-Y]补=0.01012[-X]补=0.1010 (溢出) 2[-Y]补=0.10103.2定点加减法运算及其实现3.2.1 补码加减法运算方法由于计算机中的进行定点数的加减运算大都是采用补码。

(1)公式:[X+Y]补=[X]补+[Y]补[X-Y]补=[X]补+[-Y]补(证明过程见教材P38)例1 X=0.001010 Y=-0.100011 求[X-Y]补,[X+Y]补解:[X]补=0.001010 [-Y]补=0.100011则 [X-Y]补=[X]补+[-Y]补=0.001010 + 0.100011=0.101101 [X]补=0.001010 [Y]补=1.011101则 [X+Y]补=[X]补+[Y]补=0.001010 + 1.011101=1.100111例2:已知X=+0.25,Y=-0.625,求X+Y; X-Y写出计算的过程.例3:已知X=25,Y=-9,求X+Y; X-Y写出计算的过程.例4:已知X=-25,Y=-9,求X+Y; X-Y写出计算的过程.解: (8位二进制表示)例2: X=0.0100000 Y=-0.1010000[X]补=0.0100000 [Y]补=1.0110000则 [X+Y]补=[X]补+[Y]补=0.0100000 + 1.0110000=1.1010000[X+Y]原=-0.0110000=(-0.375)D[X]补=0.0100000 ,[-Y]补=0.1010000则 [X-Y]补 = [X]补+[-Y]补 = 0.0100000+0.1010000=0.1110000[X+Y]原 = 0.1110000 =(0.875)D例3: X=+0011001 Y=-0001001[X]补=00011001,[Y]补=11110111则 [X+Y]补 = [X]补+[Y]补= 00011001 + 11110111= 00010000[X+Y]原 =+0010000=(+16)D[X]补= 00011001 ,[-Y]补= 00001001则 [X-Y]补 = [X]补+[-Y]补= 00011001 + 00001001= 00100010[X+Y]原 = +0100010 =(34)D例4: X=-0011001 Y=-0001001[X]补=11100111,[Y]补=11110111则 [X+Y]补 = [X]补+[Y]补= 11100111 + 11110111[X+Y]原 =-00100010=(-34)D[X]补= 11100111 ,[-Y]补= 00001001则 [X-Y]补 = [X]补+[-Y]补= 11100111 + 00001001= 11110000[X+Y]原 = -0010000 =(-16)D3.2.2 定点加减法运算中的溢出问题溢出:运算结果大于机器所能表示的最大正数或者小于机器所能表示的最小负数.溢出只是针对带符号数的运算.比如:[X]补=0.1010,[Y]补=0.1001,那么[X]补+[Y]补=1.0011(溢出)溢出是一种错误,计算机中运算时必须能够发现这个现象,并加以处理判断溢出的方法:1、采用变形补码法[X+Y] 变补=[X] 变补+[Y] 变补[X-Y] 变补=[X] 变补+[-Y] 变补例1 X=0.1011 Y=0.0011 求[X+Y]补解: [X]变补 = 00.1011, [Y]变补 = 00.0011[X+Y]变补 = 00.1011 + 00.0011 = 00.1110所以 [X+Y]补 = 0.1110例2 X=0.1011 Y=0.1001 求[X+Y]补解: [X]变补 = 00.1011 [Y]变补 = 00.1001[X+Y]变补 = 00.1011 + 00.1001 = 01.0100运算结果的两符号位是01,不相同,发生溢出,因第一符号位是0,代表正数,所以称这种溢出为“正溢出”。

计算机组成原理实验报告

计算机组成原理实验报告
5.综上所述,如果把原码看成无符号整数,则真值到原码的转换规则是:
当x≥0时,[x]原=x;当x≤0时,[x]原=2^(n-1)-x或2^(n-Hale Waihona Puke )+|x|,“^”表示指数。
B反码
1.如果真值是正数,反码的最高位为“0”,其余各位与真值的对应位相同;
2.如果真值是负数,反码的最高位为“1”,其余各位将真值的各位取反;
2.按等于号即可得到计算结果。
3.由于本例采用四位二进制数表示的补码,可表示的整数范围为-8~+7,如果
操作数或运算结果超出该范围,运算将出错。
4.如果加数为负数,就相当于被加数减去该数的绝对值,因此相当于做减法。反过来说,做减法,实际上就是被减数的补码加上减数的相反数的补码。而求一个数的相反数的补码的规则是将该数的补码连同符号位按位取反,末位加1。
3.如果真值是“0”,反码有两种表示法,即000…0或111…1,分别表示+0或-0;
4.综上所述,如果把反码看成无符号整数,则真值到反码的转换规则是:
当x≥0时,[x]反=x;当x≤0时,[x]反=2^(n)+x-1(模2^n),“^”表示指数。
C补码
1.如果真值是正数,补码的最高位为“0”,其余各位与真值的对应位相同;
⑶ 给存储器的 00地址单元中写入数据 11,具体操作步骤如下:
如果要对其它地址单元写入内容,方法同上,只是输入的地址和内容不同。
⑷ 读出刚才写入 00地址单元的内容,观察内容是否与写入的一致。具体操作步骤如下
3、调试过程
三.结果
完成实验内容,按照要求验证了实验数据
四.总结
在这次的实验中我们首次用到了试验箱,这要求我们学会连线,在众多接口中找到需要的接口就要求我们有足够的耐心,也更要细心。实验的内容虽然不多,但是在过程中我加深了对静态存储的理解。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算机组成原理
第三章 运算方法与运算器
3.4 补码一位乘法
第三章 3.4 补码一位乘法
1
补码一位乘法的基本方法
设[X]补 = X0X1X2X3…Xn [Y]补 = Y0Y1Y2Y3…Yn
可证明: [XY]补 = [X]补•( 0.Y1Y2Y3…Yn ) –Y0• [X]补
进一步展开合并后可得:
n
[x•y]补=[x] 补• (yi+1 - yi)2-i ( 符号位参加运算 ) i=0
部分积
乘数
说明
000000
010110
Yn+1 < Yn 部分积 +[–X]补
+
110011
110011
111001
101011
结果右移一位, Yn+1 = Yn 部分积 +0
+
000000
111001
111100
110101
结果右移一位, Yn+1 > Yn 部分积 +[X]补
+
001101
001001
yn+1= 0
(2) yn+1 是哪个寄存器? 在乘数寄存器Y后增加的一位
(3)算术右移的对象有哪些? 部分积和乘数寄存器均右移
第三章 3.4 补码一位乘法
2
补码一位乘法的举例
Hale Waihona Puke 例1 已知X= +1101 Y=+1011 用补码一位乘法求 XY
解: [X]补=01101 [Y]补=01011 [– X]补=10011
包括一位符号位,所得乘积为2n+1位,其中n为数据位位数.
第三章 3.4 补码一位乘法
1
补码一位乘法的基本方法
设[X]补 = X0X1X2X3…Xn [Y]补 = Y0Y1Y2Y3…Yn
[x•y] 补=[x] 补• (yi+1 - yi)2-i ( 符号位参加运算 )
几个特殊问题的处理
(1) i=n时 ,yn+1= ?
第三章 3.4 补码一位乘法
1
补码一位乘法的基本方法
[x•y] 补=[x] 补• (yi+1 - yi)2-i ( 符号位参加运算)
补码一位乘法的运算规则如下: (1)如果yn+1=yn,部分积加0,部分积算术右移1位; (2)如果yn+1yn=10,部分积加[x]补,部分积算术右移1位; (3)如果yn+1yn=01,部分积加[-x]补,部分积算术右移1位. 重复进行n+1步,但最后一步不移位。
第三章 3.4 补码一位乘法
2
补码一位乘法的举例
部分积 000100 + 110011
110111 111011 + 001101
001000
乘数 111010
说明 将结果右移一位, Yn+1 < Yn 部分积 +[–X]补
111101
将结果右移一位, Yn+1 > Yn 部分积 +[X]补
[X Y]补=010001111 X Y= 010001111
相关文档
最新文档