电子元器件封装作用
电子元器件封装介绍

电子元器件封装介绍电子元器件封装介绍电阻:RES1,RES2,RES3,RES4;封装属性为AXIAL系列无极性电容:CAP;封装属性为RAD-0.1到RAD-0.4电解电容:ELECTROI;封装属性为RB.2/.4到RB.5/1.0电位器:POT1,POT2;封装属性为VR-1到VR-5二极管:封装属性为DIODE-0.4(小功率)DIODE-0.7(大功率)三极管:常见的封装属性为TO-18(普通三极管)TO-22(大功率三极管)TO-3(大功率达林顿管)电源稳压块有78和79系列;78系列如7805,7812,7820等79系列有7905,7912,7920等常见的封装属性有TO126H和TO126V整流桥:BRIDGE1,BRIDGE2:封装属性为D系列(D-44,D-37,D-46)电阻:AXIAL0.3-AXIAL0.7其中0.3-0.7指电阻的长度,一般用AXIAL0.3瓷片电容:RAD0.1-RAD0.3。
其中0.1-0.3指电容大小,一般用RAD0.1电解电容:RB.1/.2-RB.4/.8其中.1/.2-.4/.8指电容大小。
一般<100uF用RB.1/.2,100uF-470uF 用RB.2/.4,>470uF用RB.3/.6二极管:DIODE0.4-DIODE0.7其中0.4-0.7指二极管长短,一般用DIODE0.4发光二极管:RB.1/.2集成块:DIP8-DIP40,其中8-40指有多少脚,8脚的就是DIP8贴片电阻0603表示的是封装尺寸与具体阻值没有关系,但封装尺寸与功率有关通常来说如下:02011/20W04021/16W06031/10W08051/8W12061/4W电容电阻外形尺寸与封装的对应关系是:0402=1.0mmx0.5mm0603=1.6mmx0.8mm0805=2.0mmx1.2mm1206=3.2mmx1.6mm1210=3.2mmx2.5mm1812=4.5mmx3.2mm2225=5.6mmx6.5mm零件封装是指实际零件焊接到电路板时所指示的外观和焊点的位置。
电子元器件的封装技术和特点

电子元器件的封装技术和特点现代电子元器件的封装技术得到了快速的发展,为电子行业的发展带来了极大的便利。
电子元器件的封装技术主要是指将电子元器件通过一定方式进行封装的技术手段。
在电子产品的研发与生产过程中,所采用的封装技术有直接焊接、间接焊接、贴片等多种方式,每种方式各有特点,以下将分别进行介绍。
直接焊接封装是比较古老的一种封装技术,使用范围较为广泛。
直接焊接封装通常采用套管封装,可根据元器件结构和排列形式进行封装。
其主要特点是可靠性高、成本低、使用范围广、组装容易,但没有隔离功能,因此不适合用于高电压工作。
间接焊接封装是一种在直接焊接封装的基础上发展而来的封装技术。
在元器件的引脚与电路板接触处增加了焊锡球,通过热处理加熔于焊垫和引脚之间实现连接。
间接焊接封装可分为球、碰和毛细三种形式。
该技术具有较好的自动化性和可靠性,适用于高集成度芯片的封装。
其特点是封装体积小,重量轻,散热性能好,防腐能力强,但也存在一些缺点,如容易引起元器件排列混乱,制造成本相对较高等。
贴片封装是在间接焊接封装的基础上进一步发展而来的封装技术,是一种目前比较流行的封装方式。
该技术有三种封装方式:SMT、CSP和BGA。
其中,SMT封装是表面粘贴技术,将小型的电子元器件按照一定的排列方式贴在电路板表面上,其特点是封装体积小、重量轻、节省材料和空间,适用于小型高密度电路的封装;CSP封装是直接与芯片级成品焊接封装,用于高集成度芯片的封装,具有超薄、高度灵活以及可降低元器件排列面积等优点;BGA封装是球形网格阵列封装技术,具有连接密度高,信号传输能力强,抗震性能好等特点。
但是,贴片封装的技术相对复杂,制造成本较高,故不适用于大批量生产的需求。
总的来说,电子元器件的封装技术在现代电子行业中具有重要的意义。
随着信息技术的不断提高和电子产品的不断普及,封装技术也不断发展,向更加高效、便捷和智能化的方向发展。
开发新的封装技术并应用到实际生产中,对于满足产业的需求、促进产业的发展势在必行。
电子封装技术专业

电子封装技术专业电子封装技术专业简介电子封装技术是一种较为新兴的技术,它主要指封装和封装辅助技术,在电子元器件制造和装配中起到十分重要的作用。
电子封装技术是一项综合的、技术含量高的技术,由于电子封装技术对于电子元器件的性能、可靠性和应用范围都有明显的影响,因此,它受到了广泛的关注和重视。
电子封装技术的主要作用是将电子元器件封装成一个完整的结构,以便于使用和维护。
电子封装技术的主要目的是在保证电子元器件性能的前提下,增强元器件的强度和可靠性。
其技术内容主要包括封装和封装辅助技术两个方面。
1、电子封装技术的封装技术封装技术是电子封装技术中的核心技术,它是将电子元器件包装成一个结构的过程。
封装技术的主要作用是保护元器件、维护元器件性能和延长元器件的寿命。
封装技术的核心就是电子元器件的包装,这是保证元器件长期运行的重要一环。
电子封装技术的封装技术主要包括以下几种封装方式:1.1、引出式封装技术:引出式封装技术是将电子元件用金属引线连结到铅框、金属盖或其他载体上,以完成引出电流的操作。
这种技术被广泛应用在电子元器件制造和装配中,如集成电路、二极管、三极管等元器件。
1.2、表面贴装封装技术:表面贴装封装技术是一种现代的元器件封装技术,它是将电子元器件(如集成电路)直接安装在PCB板上的一种技术,以便于与其他元器件连接。
表面贴装技术具有体积小、重量轻、高密度、速度快等特点。
1.3、立式封装技术:立式封装技术是一种将电子元器件安装在直插式孔内的技术,主要适用于一些大功率元器件。
1.4、球格型阵列封装技术:球格型阵列封装技术又称为BGA封装技术,是一种高密度的表面贴装封装技术。
它采用的是大球格器件,能够实现高密度封装,在高速运行的电路系统中非常准确和可靠。
2、电子封装技术的封装辅助技术封装辅助技术是电子封装技术中对封装技术提供的辅助技术。
这种技术的主要作用是提高封装技术的效率,改善电子元器件的性能和可靠性。
封装辅助技术包含以下几个方面。
电子元器件封装介绍

电子元器件封装介绍电阻:RES1,RES2,RES3,RES4;封装属性为AXIAL系列无极性电容:CAP;封装属性为RAD-0.1到RAD-0.4电解电容:ELECTROI;封装属性为RB.2/.4到RB.5/1.0电位器:POT1,POT2;封装属性为VR-1到VR-5二极管:封装属性为DIODE-0.4(小功率)DIODE-0.7(大功率)三极管:常见的封装属性为TO-18(普通三极管)TO-22(大功率三极管)TO-3(大功率达林顿管)电源稳压块有78和79系列;78系列如7805,7812,7820等79系列有7905,7912,7920等常见的封装属性有TO126H和TO126V整流桥:BRIDGE1,BRIDGE2: 封装属性为D系列(D-44,D-37,D-46)电阻:AXIAL0.3-AXIAL0.7 其中0.3-0.7指电阻的长度,一般用AXIAL0.3瓷片电容:RAD0.1-RAD0.3。
其中0.1-0.3指电容大小,一般用RAD0.1电解电容:RB.1/.2-RB.4/.8 其中.1/.2-.4/.8指电容大小。
一般<100uF用RB.1/.2,100uF-470uF用RB.2/.4,>470uF用RB.3/.6二极管:DIODE0.4-DIODE0.7 其中0.4-0.7指二极管长短,一般用DIODE0.4发光二极管:RB.1/.2集成块:DIP8-DIP40, 其中8-40指有多少脚,8脚的就是DIP8贴片电阻0603表示的是封装尺寸与具体阻值没有关系,但封装尺寸与功率有关通常来说如下:0201 1/20W0402 1/16W0603 1/10W0805 1/8W1206 1/4W电容电阻外形尺寸与封装的对应关系是:0402=1.0mmx0.5mm0603=1.6mmx0.8mm0805=2.0mmx1.2mm1206=3.2mmx1.6mm1210=3.2mmx2.5mm1812=4.5mmx3.2mm2225=5.6mmx6.5mm零件封装是指实际零件焊接到电路板时所指示的外观和焊点的位置。
0603元件标准封装的含义和用途

0603元件标准封装的含义和用途一、0603元件标准封装的含义0603元件标准封装是一种常见的电子元件封装形式,其尺寸符合JEDEC(电子设备工程联合委员会)的标准。
具体来说,0603元件标准封装的长度为0.6英寸,宽度为0.3英寸,是一种非常紧凑的封装形式。
这种封装常用于贴片式电阻器、电容器、二极管等电子元件,是现代电子制造中不可或缺的一部分。
二、0603元件标准封装的特点1.尺寸小巧:0603元件标准封装具有较小的体积,可以有效地减少电路板的占用空间,方便实现小型化和轻量化设计。
2.集成度高:由于封装尺寸较小,可以在相对较小的区域内集成更多的电子元件,从而提高电路的性能和稳定性。
3.可靠性高:0603元件标准封装采用了可靠的焊接技术和封装材料,可以保证电子元件在各种环境条件下稳定工作。
4.成本效益高:这种封装形式制造成本较低,能够满足大规模生产的需求,有利于降低电子产品整体成本。
三、0603元件标准封装的优势1.高性能:0603元件标准封装能够提供较高的电气性能,有利于实现高速、高精度的电子信号传输。
2.灵活性:这种封装形式适用于各种不同的电子元件,可以根据不同的应用需求进行定制化设计。
3.兼容性强:0603元件标准封装与各种不同的电路板和焊接技术兼容,可以方便地与其他电子元器件配合使用。
4.长寿命:由于其采用的焊接技术和封装材料具有良好的耐久性,因此可以保证电子元件在使用期间内具有较长的使用寿命。
四、0603元件标准封装的应用领域1.消费电子产品:在智能手机、平板电脑、笔记本电脑等消费电子产品中,0603元件标准封装被广泛应用于各种小型化、高性能的电路板制造中。
2.通信设备:在无线通信设备、基站、路由器等通信设备中,由于需要实现高速信号传输和处理,0603元件标准封装成为重要的组成部分。
3.汽车电子:在汽车电子领域中,由于汽车对可靠性和安全性的要求较高,0603元件标准封装以其高可靠性和长寿命等特点而被广泛应用于各种车载电子系统中。
电子元器件的封装

电子元器件的封装1947年晶体管出现之后,其封装的设计随之展开,最早的一批晶体管封装的型号是以TO开头的。
曾经有过一种有着特定的工业或军事应用的金属壳多极管封装TO-39(见图5),有现在最常见的塑料三极管封装TO-92(见图6),还有电子爱好者常用的直插式稳压芯片LM7805所使用的TO-220封装(见图7),还有直引脚贴片式封装的TO—89(见图8),TO 系列封装几乎一统天下了。
1958年美国德州仪器公司(TI)工程师杰克.基尔比发明了集成电路,一些集成电路芯片还仍然使用TO系列封装,但随着集成电路晶片面积越来越大、引脚越来越多,TO封装已经吃不消了。
于是20世纪70年代出现了新的封装设计——双列直插封装(DP)(见图9),我花了好长时间搜索DIP封装的发明者或研发它的公司,可是什么也没找到就连DIP封装发明的准确日期也没找到。
乍看DIP封装好像是一只多脚虫,引脚间距为2.54mm,引脚数量可以从6个到64个,一般用“DIP”字样加上引脚数量表达封装形式,如“DP20”就是有20个引脚的DIP封装。
安装在带有过孔的PCB板上。
从下面这张DIP封装的图片上可以看到;封装中间是集成电路晶片,晶片周围用很细的金属导线把晶片上的接口电极导到封装外的引脚上。
DIP封装有陶瓷和塑料两种封装材料;DP封装坚固可靠,英特尔公司最早生产的4004、8008处理器均采用了DIP封装。
DIP封装一出现几乎就统治了市场,几乎所有的直插式芯片都有DIP封装的产品,直到现在我们还在使用着,你手边的40脚的51单片机就是DIP40封装的。
另外还有一种不常用的芯片封装叫SIP,意思是单列直插封装,现在几乎看不到了,大家知道一下就行了。
DIP封装好是好,可就是太大了,当用于小型手持设备时,DIP封装就显得笨拙了,于是飞利浦公司开发出了SOP小外型封装。
SOP封装(见图10)引脚间距为1.27mm,引脚数在8~44脚,SOP属于表面贴装元器件,无需过孔,可以直接焊在印制电路板表面。
电子封装的功能及类型

一、电子封装的功能及类型半导体微电子技术为现代科技、军事、国民经济和人们的日常工作与生活开创了前所未有的发展基础和条件,一直保持着良好的发展势头,半导体工业的年产值一般均以10以上的速度逐年递增。
电子封装伴随着电路、器件和元件的产生而产生,伴随其发展而发展,最终发展成当今的封装行业。
在电子技术日新月异的变化潮流下,集成电路正向着超大规模、超高速、高密度、大功率、高精度、多功能的方向迅速发展,因而对集成电路的封装也提出了愈来愈高的要求。
中国环氧树脂行业协会专家说,而集成电路封装技术的进步又极大地促进了集成电路水平的提高,深刻地影响着集成电路前进的步伐。
半导体芯片只是一个相对独立的个体,为完成它的电路功能,必须与其他芯片、外引线连接起来。
由于现代电子技术的发展,集成度迅猛增加,一个芯片上引出线高达千条以上,信号传输时间、信号完整性成为十分重要的问题。
集成度的增加使芯片上能量急剧增加,每个芯片上每秒产生的热量高达10J 以上,因而如何及时散热使电路在正常温度下工作,成为一个重要问题。
有些电路在恶劣的环境水汽、化学介质、辐射、振动下工作,这就需要对电路进行特殊的保护。
由此可见要充分发挥半导体芯片的功能,对半导体集成电路和器件的封装是必不可少的。
电子封装的四大功能为:①为半导体芯片提供信号的输入和输出通路;②提供热通路,散逸半导体芯片产生的热量;③接通半导体芯片的电流通路;④提供机械支撑和环境保护。
可以说,电子封装直接影响着集成电路和器件的电、热、光、力学等性能,还影响其可靠性和成本。
同时,电子封装对系统的小型化常起到非常关键的作用。
中国环氧树脂行业协会专家认为,集成电路和器件要求电子封装具有优良的电性能、热性能、力学性能和光性能,同时还必须具有高的可靠性和低的成本。
可以说,无论在军用电子元器件中,还是在民用消费类电路中,电子封装都有着举足轻重的地位,概括起来即基础地位、先行地位和制约地位。
集成电路越发展越显示出电子封装的重要作用。
半导体制造之封装技术

封装发展的阶段
第二阶段:20世纪80年代中期(表面贴装时代)。 表面贴装封装的主要特点是引线代替针脚,引线为翼形或丁形,两边或四边引出,节距为 1.27到0.4mm,适合于3-300条引线,表面贴装技术改变了传统的PTH插装形式,通过细微 的引线将集成电路贴装到PCB板上。主要形式为SOP(小外型封装)、PLCC(塑料有引线片 式载体)、PQFP(塑料四边引线扁平封装)、J型引线QFJ和SOJ、LCCC(无引线陶瓷芯片载 体)等。 它们的主要优点是引线细、短,间距小,封装密度提高;电气性能提高;体积小,重 量轻;易于自动化生产。它们所存在的不足之处是在封装密度、I/O数以及电路频率方面还 是难以满足ASIC、微处理器发展的需要。
封装发展的阶段
半导体行业对芯片封装技术水平的划分存在不同的标准,目前国内比较通行 的标准是采取封装芯片与基板的连接方式来划分,总体来讲,集成电路封装封装 技术的发展可分为四个阶段: 第一阶段:20世纪80年代以前(插孔原件时代)。 封装的主要技术是针脚插装(PTH),其特点是插孔安装到PCB上,主要形式有 SIP、DIP、PGA,它们的不足之处是密度、频率难以提高,难以满足高效自动化 生产的要求。
封装的性能要求
封装
电源分配信号分配散热 Nhomakorabea道机械支撑
环境保护
封装的技术层次
三级封装 母板 第四层次:将数个子系统组装成为一个完整电子产品的工艺过程。
二级封装
PWB或卡
第三层次:将数个第二层次完成的封装组成的电路卡组合成在一个主电路版上使之成为一个部 件或子系统的工艺。
一级封装
多芯片组件
第二层次:将数个第一层次完成的封装与其他电子元器件组成一个电子卡的工艺。
PCB置于传送链上,经某一特定的角度以及一定的进入深度穿过焊料波峰而实现焊点的焊接过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
随着光电、微电制造工艺技术的飞速发展,电子产品始终在朝着更小、更轻、更便宜的方向发展,因此芯片元件的封装形式也不断得到改进。
芯片的封装技术多种多样,有DIP、POFP、TSOP、BGA、QFP、CSP等等,种类不下三十种,经历了从DIP、TSOP到BGA的发展历程。
芯片的封装技术已经历了几代的变革,性能日益先进,芯片面积与封装面积之比越来越接近,适用频率越来越高,耐温性能越来越好,以及引脚数增多,引脚间距减小,重量减小,可靠性提高,使用更加方便。
DIP封装
上个世纪的70年代,芯片封装基本都采用DIP(Dual ln-line Package,双列直插式封装)封装,此封装形式在当时具有适合PCB(印刷电路板)穿孔安装,布线和操作较为方便等特点。
DIP封装的结构形式多种多样,包括多层陶瓷双列直插式DIP,单层陶瓷双列直插式DIP,引线框架式DIP等。
但DIP封装形式封装效率是很低的,其芯片面积和封装面积之比为1:1.86,这样封装产品的面积较大,理想状态下芯片面积和封装面积之比为1:1将是最好的,但这是无法实现的,除非不进行封装,但随着封装技术的发展,这个比值日益接近,现在已经有了1:1.14的封装技术。
TSOP封装
到了上个世纪80年代,芯片的封装技术TSOP出现,得到了业界广泛的认可。
TSOP是“Thin Small Outline Package”的缩写,意思是薄型小尺寸封装。
采用SMT技术(表面安装技术)直接附着在PCB板的表面。
TSOP封装外形尺寸时,寄生参数(电流大幅度变化时,引起输出电压扰动) 减小,适合高频应用,操作比较方便,可靠性也比较高。
同时TSOP封装具有成品率高,价格便宜等优点,因此得到了极为广泛的应用。
BGA封装
20世纪90年代随着技术的进步,芯片集成度不断提高,I/O引脚数急剧增加,功耗也随之增大,对集成电路封装的要求也更加严格。
为了满足发展的需要,BGA封装开始被应用于生产。
BGA是英文Ball Grid Array Package的缩写,即球栅阵列封装。
BGA封装的I/O端子以圆形或柱状焊点按阵列形式分布在封装下面,BGA技术的优点是I/O引脚数虽然增加了,但引脚间距并没有减小反而增加了,从而提高了组装成品率;虽然它的功耗增加,但BGA能用可控塌陷芯片法焊接,从而可以改善它的电热性能;厚度和重量都较以前的封装技术有所减少;寄生参数减小,信号传输延迟小,使用频率大大提高;组装可用共面焊接,可靠性高。
CSP封装
CSP(Chip Scale Package),是芯片级封装的意思。
CSP封装最新一代的芯片封装技术,其技术性能又有了新的提升。
CSP封装可以让芯片面积与封装
面积之比超过1:1.14,已经相当接近1:1的理想情况,绝对尺寸也仅有32平方毫米,约为普通的BGA的1/3,仅仅相当于TSOP内存芯片面积的1/6。
与BGA 封装相比,同等空间下CSP封装可以将存储容量提高三倍。
CSP封装片的中心引脚形式有效地缩短了信号的传导距离,其衰减随之减少,芯片的抗干扰、抗噪性能也能得到大幅提升。
在CSP的封装方式中,芯片是通过一个个锡球焊接在PCB板上,由于焊点和PCB板的接触面积较大,所以芯片在运行中所产生的热量可以很容易地传导到PCB板上并散发出去。
CSP封装可以从背面散热,且热效率良好,CSP的热阻为35℃/W,而TSOP热阻40℃/W。