大学物理刚体的转动量的研究实验报告

合集下载

刚体转动实验报告

刚体转动实验报告

,
相关系数 r=0.99986
3.
相关系数 r=0.99991 即
满足线性关系,平行轴定理成立。
思考题
1. 本实验所满足的实验条件:
,摩擦力矩保持不变。
通过控制摩擦力矩和 m 不要太大使 ,通过锁死固定螺丝、采用同样的绕线方
法等使力矩近似相同。
4. 通过多测几组时间,并且认为测量结果之间相互之差小于 0.2s 时认为该组数据合
轮的绕线半径. 当略去滑轮及绳子质量并认为绳长不变时, m 以匀加速度 a 下落. 并 有:
T = m(g − a) 其中 g 为重力加速度, 砝码 m 由静止开始下落高度 h 所用时间 t, 则:
h = at2/2 又因为
a = rβ 所以
在实验过程中保持 , 则有

, 略去 , 则有:
不能忽略,保持 r, h 以及 的位置不变, 改变 m, 测出相应的下落时间 t, 并保 持 不变, 则有:
(s)
6.44 7.31 8.56 10.00 11.50
(s)
6.50 7.34 8.46 10.10 11.63
数据处理
(s)
6.41 7.31 8.59 10.03 11.56
(s)
6.45 7.32 8.54 10.04 11.56
由 最小二乘法处理,得
1.
, 2.
相关系数 r=0.998
实验原理根据刚体转动定律当刚体绕固定轴转动时有刚体所受外力距为绳子给予的力矩tr和摩擦力矩为塔轮的绕线半径22又因为所以在实验过程中保持则有
刚体转动实验
实验目的 1.测定刚体的转动惯量用实验方法检验刚体的转动定理和平行轴定理 2.观测刚体的转动惯量随其质量分布及转动轴线不同而改变的状况 3.用作图法和最小二乘法处理数据——曲线改直

刚体转动惯量的测定实验报告

刚体转动惯量的测定实验报告

刚体转动惯量的测定实验报告实验目的:1.了解刚体转动惯量的概念和定义;2.学习利用旋转法测量刚体转动惯量;3.掌握利用平衡法测量刚体转动惯量的方法。

实验仪器:1.旋转法实验装置:圆盘、转轴、杠杆、螺旋测微器、质量砝码等;2.平衡法实验装置:平衡木、质量砝码、支撑点等。

实验原理:1.旋转法实验原理:设刚体的转动惯量为I,当刚体在转轴上匀加速转动时,在力矩M作用下,刚体产生角加速度α。

根据牛顿第二运动定律和角动量定理可得到:M=Iα(1)在角加速度恒定的情况下,转动惯量I与力矩M成正比。

2.平衡法实验原理:刚体转动惯量测量的基本原理是利用转轴位置的移动来改变刚体的转动惯量,使得转动惯量I和重力力矩Mg达到平衡,即:Mg=Iα(2)在刚体转动平衡的状态下,转动惯量I与重力力矩Mg成正比。

实验步骤:1.旋转法实验步骤:(1)将圆盘固定在转轴上,并将转轴竖直插入转台中央的孔中。

(2)将杠杆固定在圆盘上,使得杠杆能够自由转动。

(3)在杠杆上加上一定的质量砝码,使得圆盘开始匀加速转动。

(4)测量转轴上的螺旋测微器的读数,记录下圆盘旋转一定角度时的螺旋测微器的读数。

(5)记录下圆盘质量与加速度的数值,计算出实验测得的转动惯量。

2.平衡法实验步骤:(1)将平衡木放置在支撑点上,使得平衡木可以自由转动。

(2)在平衡木上加上一定的质量砝码,使得平衡木保持平衡。

(3)移动转轴的位置,直到平衡木重新平衡。

(4)记录下转轴位置与加在平衡木上的质量的数值,计算出实验测得的转动惯量。

实验数据处理:1.旋转法实验数据处理:(1)根据螺旋测微器的读数,计算出圆盘旋转的角度。

(2)根据实验测得的圆盘质量和加速度的数值,计算出实验测得的转动惯量。

2.平衡法实验数据处理:(1)根据转轴位置的变化,计算出实验测得的转动惯量。

实验结果分析:根据实验测得的数据,通过旋转法和平衡法两种方法测得的刚体转动惯量进行比较和分析。

分析实验数据的偏差和不确定度,讨论实验结果的可靠性。

工作报告之转动惯量测量实验报告

工作报告之转动惯量测量实验报告

转动惯量测量实验报告【篇一:大学物理实验报告测量刚体的转动惯量】测量刚体的转动惯量实验目的:1.用实验方法验证刚体转动定律,并求其转动惯量;2.观察刚体的转动惯量与质量分布的关系3.学习作图的曲线改直法,并由作图法处理实验数据。

二.实验原理:1.刚体的转动定律利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。

2.应用转动定律求转动惯量如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。

刚体将在砝码的拖动下绕竖直轴转动。

22m(g - a)r - mf = 2hi/rt (2)mf与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有ag,所以可得到近似表达式:2mgr = 2hi/ rt (3)式中r、h、t可直接测量到,m是试验中任意选定的。

因此可根据(3)用实验的方法求得转动惯量i。

3.验证转动定律,求转动惯量从(3)出发,考虑用以下两种方法:2a.作m – 1/t图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r和砝码下落高度h,(3)式变为:2m = k1/ t (4)2式中k1 = 2hi/ gr为常量。

上式表明:所用砝码的质量与下落时间t的平方成反比。

实验中选用一系列的砝码质量,可测得一组m与1/t的数据,将其在直角坐标系上作图,应是直线。

即若所作的图是直线,便验证了转动定律。

222从m – 1/t图中测得斜率k1,并用已知的h、r、g值,由k1 = 2hi/ gr求得刚体的i。

b.作r – 1/t图法:配重物的位置不变,即选定一个刚体,取砝码m和下落高度h为固定值。

将式(3)写为:r = k2/ t (5)式中k2 = (2hi/ mg)是常量。

上式表明r与1/t成正比关系。

实验中换用不同的塔轮半径r,测得同一质量的砝码下落时间t,用所得一组数据作r-1/t图,应是直线。

即若所作图是直线,便验证了转动定律。

1/21/2从r-1/t图上测得斜率,并用已知的m、h、g值,由k2 = (2hi/ mg)求出刚体的i.三.实验仪器刚体转动仪,滑轮,秒表,砝码。

刚体转动惯量的测定实验报告

刚体转动惯量的测定实验报告

刚体转动惯量的测定物本1001班张胜东(201009110024)李春雷(201009110059)郑云婌(201009110019)刚体转动惯量的测定实验报告【实验目的】1.熟悉扭摆的构造、使用方法和转动惯量测试仪的使用。

2.用扭摆测定弹簧的扭转常数K和几种不同形状的物体的转动惯量,并与理论值进行比较。

3.验证转动定理和平行轴定理。

【实验仪器】(1)扭摆(转动惯量测定仪)。

(2)实心塑料圆柱体、空心金属圆桶、细金属杆和两个金属块及支架。

(3)天平。

(4)游标卡尺。

(5)HLD-TH-II转动惯量测试仪(计时精度0.001ms)。

【实验原理】1.扭摆扭摆的构造如图所示,在垂直轴1 上装有一根薄片状的螺旋弹簧2,用以产生恢复力矩。

在轴的上方可以装上各种待测物体。

垂直轴与支座间装有轴承,以降低磨擦力矩。

3 为水平仪,用来调整系统平衡。

将物体在水平面内转过一角度θ 后,在弹簧的恢复力矩作用下物体就开始绕垂直轴作往返扭转运将物体在水平面内转过一角度θ后,在弹簧的恢复力矩作用下物体就开始绕垂直轴作往返扭转运动。

根据虎克定律,弹簧受扭转而产生的恢复力矩M与所转过的角度θ成正比,即b M =-K θ (1) 式中,K 为弹簧的扭转常数,根据转动定律 M =I β式中,I 为物体绕转轴的转动惯量,β为角加速度,由上式得 IM =β (2)令 LK=2ω ,忽略轴承的磨擦阻力矩,由(1)、(2)得 θωθθβ222-=-==I K dtd (3) 上述方程表示扭摆运动具有角简谐振动的特性,角加速度与角位移成正比,且方向相反。

此方程的解为:θ=Acos(ωt +φ) (4)式中,A 为谐振动的角振幅,φ为初相位角,ω为角速度,此谐振动的周期为KIT πωπ22==(5)由(5)可知,只要实验测得物体扭摆的摆动周期,并在I 和K 中任何一个量已知时即可计算出另一个量。

本实验用一个几何形状规则的物体,它的转动惯量可以根据它的质量和几何尺寸用理论公式直接计算得到,再算出本仪器弹簧的K 值。

刚体转动实验报告

刚体转动实验报告

一、实验目的1. 验证刚体转动定律。

2. 测定刚体的转动惯量。

3. 探讨刚体转动惯量与质量分布的关系。

4. 学习作图的曲线改直法,并由作图法处理实验数据。

二、实验原理1. 刚体转动定律:具有确定转轴的刚体,在外力矩的作用下,将获得角加速度,其值与外力矩成正比,与刚体的转动惯量成反比。

即:\[ M = I \alpha \]其中,\( M \) 为外力矩,\( I \) 为刚体的转动惯量,\( \alpha \) 为角加速度。

2. 转动惯量:刚体对某一轴的转动惯量,等于刚体上各质点对该轴的转动惯量之和。

其数值为:\[ I = \sum_{i=1}^{n} m_i r_i^2 \]其中,\( m_i \) 表示刚体的某个质点的质量,\( r_i \) 表示该质点到转轴的垂直距离。

3. 应用转动定律求转动惯量:待测刚体由塔轮、伸杆及杆上的配重物组成。

刚体将在砝码的拖动下绕竖直轴转动。

设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度 \( a \) 下落,其运动方程为:\[ mg - T = ma \]在 \( t \) 时间内下落的高度为 \( h \),则有:\[ h = \frac{1}{2} a t^2 \]刚体受到张力的力矩为 \( T r \) 和轴摩擦力力矩 \( M_f \)。

由转动定律可得到刚体的转动运动方程:\[ T r - M_f = I \alpha \]绳与塔轮间无相对滑动时有 \( a r = \frac{mg - T}{m} \),上述四个方程联立可得:\[ M_f = \frac{m r}{2} g - T r \]因此,转动惯量 \( I \) 可表示为:\[ I = \frac{m r}{2} g - \frac{T r}{\alpha} \]由于 \( M_f \) 与张力矩相比可以忽略,砝码质量 \( m \) 比刚体的质量小的多时有 \( a \ll g \),所以可得到近似表达式:\[ I \approx \frac{m r}{2} g \]三、实验仪器1. 刚体转动仪2. 滑轮3. 秒表4. 砝码5. 测量尺四、实验内容1. 调节实验装置:调节转轴垂直于水平面,调节滑轮高度,使拉线与塔轮接触良好。

测量刚体的转动惯量实验报告及数据处理

测量刚体的转动惯量实验报告及数据处理

实验讲义补充:1.刚体概念:刚体是指在运动中和受力作用后,形状和大小不变,而且内部各点的相对位置不变的物体;2.转动惯量概念:转动惯量是刚体转动中惯性大小的量度;它取决于刚体的总质量,质量分布、形状大小和转轴位置3.转动定律:合外力矩=转动惯量×角加速度4.转动惯量叠加:空盘:1阻力矩2阻力矩+砝码外力→J1空盘+被测物体:1阻力矩2阻力矩+砝码外力→J2被测物体:J3=J2-J15.转动惯量理论公式:圆盘&圆环J=0.5mr2,J=0.5m(r12+r12)6.转动惯量实验仪器:水准仪;线水平;线与孔不产生摩擦;塔轮选小的半径;至少3个塔轮半径,3组砝码质量7.计数器:遮光板半圈π;单电门,多脉冲;空盘15圈,20个值;加上被测物体,8个值;8.泡沫垫板9.重力加速度:s^210.质量:1次读数,包括砝码,圆盘,圆环,以及两圆柱体;11.游标卡尺:6次读数,包括圆盘半径,圆环内外半径,塔轮半径,转盘上孔的内外半径求平均值12.实验目的:测量值与理论值对比实验计算补充说明:1.有效数字:质量,故有效数字为3位2.游标卡尺:,读数最后一位肯定为偶数;3.误差&不确定度:(1)理论公式计算的误差:圆盘:J=0.5mR2注意:直接测量的是直径质量m=±;保留4位有效数字um=100%=%半径R=±若测6次,x1,x2,x3,x4,x5,x6,i=6,计算x平均值,取n=6时的,我们处理为0C=,仪器允差,δB=总误差:,ux= m,u rx==%R=±urx=%计算转动惯量的结果表示:J=0.5mR2,总误差:uJ=√[(0.5R2u m)2+(mRu R)2],相对不确定=uJ/J 圆环:J=0.5m(R12+R22),同上.(2)实验测量计算的误差:J=mR(g−Rβ2)β2−β1根据,,对R塔轮半径,m砝码质量,β2和β1求导,J m=R(g−Rβ2)β2−β1J R=mg−2Rβ2β2−β1J β2=−mR2(β2−β1)−mR(g−Rβ2)(β2−β1)^2Jβ1=mR(g−Rβ2)(β2−β1)^2。

刚体转动惯量的测定实验报告

刚体转动惯量的测定实验报告
未来可以进一步研究非均质刚体(如内部质 量分布不均的物体)的转动惯量,探讨其测 量方法和影响因素。
拓展应用领域
将刚体转动惯量的测定方法应用于工程领域,如机 械设计、航空航天等领域,为实际问题的解决提供 理论支持。
发展新的测量技术
随着科技的不断发展,可以探索更为精确、 高效的刚体转动惯量测量新技术,提高实验 测量的准确性和效率。
提供实验依据
本实验为刚体转动惯量的研究提供了可靠的实验数据和依据。
验证理论模型
通过实验验证理论模型的正确性,为刚体转动惯量的理论 研究提供有力支持。
推动相关领域发展
刚体转动惯量的研究在力学、物理学、工程学等多个领域 具有广泛应用,本实验的研究方法和结论有助于推动相关 领域的发展。
THANKS FOR WATCHING
得出结论
根据实验数据和误差分析结果,得出不同形 状刚体转动惯量的测量值和实验结论。
CHAPTER 04
实验结果分析与讨论
数据整理与图表展示
数据整理
详细记录了实验过程中各测量点 的数据,包括转动角度、时间、 扭矩等,并对数据进行了初步处 理,如计算平均值、标准差等。
图表展示
根据整理后的数据,绘制了相应 的图表,如转动角度-时间曲线、 扭矩-时间曲线等,以便更直观地 展示实验结果。
设备操作注意事项
实验前应检查实验台是否 水平、稳固,确保实验过 程中刚体不会晃动或倾斜。
调整光电传感器时应确保 其与刚体转动平面垂直,
且光线能够准确照射到刚 体表面。
ABCD
安装刚体及附件时应确保 连接牢固、稳定,避免实 验过程中发生脱落或移位。
实验过程中应保持环境安 静、避免干扰,确保数据 采集的准确性和可靠性。
掌握数据处理方法

转动惯量测量实验报告(共7篇)

转动惯量测量实验报告(共7篇)

篇一:大学物理实验报告测量刚体的转动惯量测量刚体的转动惯量实验目的:1.用实验方法验证刚体转动定律,并求其转动惯量;2.观察刚体的转动惯量与质量分布的关系3.学习作图的曲线改直法,并由作图法处理实验数据。

二.实验原理:1.刚体的转动定律具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律:m = iβ (1)利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。

2.应用转动定律求转动惯量图片已关闭显示,点此查看如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。

刚体将在砝码的拖动下绕竖直轴转动。

设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a下落,其运动方程为mg – t=ma,在t时间内下落的高度为h=at/2。

刚体受到张力的力矩为tr和轴摩擦力力矩mf。

由转动定律可得到刚体的转动运动方程:tr - mf = iβ。

绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到:22m(g - a)r - mf = 2hi/rt (2)mf与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<<g,所以可得到近似表达式:2mgr = 2hi/ rt (3)式中r、h、t可直接测量到,m是试验中任意选定的。

因此可根据(3)用实验的方法求得转动惯量i。

3.验证转动定律,求转动惯量从(3)出发,考虑用以下两种方法:2a.作m – 1/t图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r和砝码下落高度h,(3)式变为:2m = k1/ t (4)2式中k1 = 2hi/ gr为常量。

上式表明:所用砝码的质量与下落时间t的平方成反比。

实验中选用一系列的砝码质量,可测得一组m与1/t的数据,将其在直角坐标系上作图,应是直线。

即若所作的图是直线,便验证了转动定律。

222从m – 1/t图中测得斜率k1,并用已知的h、r、g值,由k1 = 2hi/ gr求得刚体的i。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大学物理仿真实验报告
电子3班
实验名称:刚体的转动惯量的研究
实验简介
在研究摆的重心升降问题时,惠更斯发现了物体系的重心与后来欧勒称之为转动惯量的量。

转动惯量是表征刚体转动惯性大小的物理量,它与刚体的质量、质量相对于转轴的分布有关。

本实验将学习测量刚体转动惯量的基本方法,目的如下:
1.用实验方法验证刚体转动定律,并求其转动惯量;
2.观察刚体的转动惯量与质量分布的关系
3.学习作图的曲线改直法,并由作图法处理实验数据。

实验原理
1.刚体的转动定律
具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律:
M = Iβ (1)
利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。

2.应用转动定律求转动惯量
如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。

刚体将在砝码的拖动下绕竖直轴转动。

设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a下落,其运动方程为mg – t=ma,在t时间内下落的高度为h=at2/2。

刚体受到张力的力矩为T r和轴摩擦力力矩M f。

由转动定律可得到刚体的转动运动方程:T r - M f = Iβ。

绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到:
m(g - a)r - M f = 2hI/rt2 (2)
M f与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<<g,
所以可得到近似表达式:
mgr = 2hI/ rt2 (3)
式中r、h、t可直接测量到,m是试验中任意选定的。

因此可根据(3)用实验的方法求得转动惯量I。

3.验证转动定律,求转动惯量
从(3)出发,考虑用以下两种方法:
A.作m –1/t2图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r和砝码下落高度h,(3)式变为:
M = K1/ t2 (4)
式中K1 = 2hI/ gr2为常量。

上式表明:所用砝码的质量与下落时间t的平方成反比。

实验中选用一系列的砝码质量,可测得一组m与1/t2的数据,将其在直角坐标系上作图,应是直线。

即若所作的图是直线,便验证了转动定律。

从m – 1/t2图中测得斜率K1,并用已知的h、r、g值,由K1 = 2hI/ gr2求得刚体的I。

B.作r – 1/t图法:配重物的位置不变,即选定一个刚体,取砝码m和下落高度h为固定值。

将式(3)写为:
r = K2/ t (5)
式中K2 = (2hI/ mg)1/2是常量。

上式表明r与1/t成正比关系。

实验中换用不同的塔轮半径r,测得同一质量的砝码下落时间t,用所得一组数据作r-1/t图,应是直线。

即若所作图是直线,便验证了转动定律。

从r-1/t图上测得斜率,并用已知的m、h、g值,由K2 = (2hI/ mg)1/2求出刚体的I。

实验内容
1.调节实验装置:调节转轴垂直于水平面
调节滑轮高度,使拉线与塔轮轴垂直,并与滑轮面共面。

选定砝码下落起点到地面的高度h,并保持不变。

2.观察刚体质量分布对转动惯量的影响
取塔轮半径为3.00cm,砝码质量为20g,保持高度h不变,将配重物逐次取三种不同的位置,分别测量砝码下落的时间,分析下落时间与转动惯量的关系。

本项实验只作定性说明,不作数据计算。

3.测量质量与下落时间关系:
测量的基本内容是:更换不同质量的砝码,测量其下落时间t。

用游标卡尺测量塔轮半径,用钢尺测量高度,砝码质量按已给定数为每个5.0g;用秒表记录下落时间。

将两个配重物放在横杆上固定位置,选用塔轮半径为某一固定值。

将拉线平行缠绕在轮上。

逐次选用不同质量的砝码,用秒表分别测量砝码从静止状态开始下落到达地面的时
间。

对每种质量的砝码,测量三次下落时间,取平均值。

砝码质量从5g开始,每次增加5g,直到35g止。

用所测数据作图,从图中求出直线的斜率,从而计算转动惯量。

4.测量半径与下落时间关系
测量的基本内容是:对同一质量的砝码,更换不同的塔轮半径,测量不同的下落时间。

将两个配重物选在横杆上固定位置,用固定质量砝码施力,逐次选用不同的塔轮半径,测砝码落地所用时间。

对每一塔轮半径,测三次砝码落地之间,取其平均值。

注意,在更换半径是要相应的调节滑轮高度,并使绕过滑轮的拉线与塔轮平面共面。

由测得的数据作图,从图上求出斜率,并计算转动惯量。

实验仪器
刚体转动仪,滑轮,秒表,砝码
刚体转动仪:
包括:
A.、塔轮,由五个不同半径的圆盘组成。

上面绕有挂小砝码的细线,由它对刚体施加外力矩。

B、对称形的细长伸杆,上有圆柱形配重物,调节其在杆上位置即可改变转动惯量。

与A 和配重物构成一个刚体。

C.、底座调节螺钉,用于调节底座水平,使转动轴垂直于水平面。

此外还有转向定滑轮,起始点标志,滑轮高度调节螺钉等部分
双击刚体转动仪底座下方的旋钮,会弹出底座放大窗口和底座调节窗口,在底座调节窗口的旋钮上点击鼠标左、右键,可以调整底座水平。

在底座放大窗口上单击右键可以转换视角。

滑轮
双击滑轮支架上的旋钮,会弹出滑轮高度调节窗口,在滑轮高度调节窗口的旋钮上点击鼠标左、右键,可以调整滑轮高度。

秒表
实验数据记录和处理
六、实验结论与讨论:
1.物体落时间平方的倒数1/(t)^2与质量m下成线性关系
测量值为
2.物体下落时间的倒数1/t与转动半径成线性关系
测量值为
七:问答题
课后思考题
(1)由实验数据所作的m-(1/t)2图中,如何解释在m轴上存在截距?(2)定性分析实验中的随机误差和可能的系统误差。

1.由于细线质量和相对摩擦不可忽略,所有在m为零时,真实质量不为0
2.随机误差在于时间的测量,和系统的调平可能存在问题
系统误差来源于本身的细线质量不可忽略等等。

相关文档
最新文档