八年级数学学业水平考试测试

合集下载

2024届湖南省长沙市周南实验中学八年级数学第二学期期末学业水平测试试题含解析

2024届湖南省长沙市周南实验中学八年级数学第二学期期末学业水平测试试题含解析

2024届湖南省长沙市周南实验中学八年级数学第二学期期末学业水平测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(每小题3分,共30分) 1.下列计算:()()()()()()()()()222122;222;32312;423231=-=-=+-=-,其中结果正确的个数为( ) A .1 B .2C .3D .42.公式表示当重力为P 时的物体作用在弹簧上时弹簧的长度.表示弹簧的初始长度,用厘米(cm)表示,K 表示单位重力物体作用在弹簧上时弹簧的长度,用厘米(cm)表示.下面给出的四个公式中,表明这是一个短而硬的弹簧的是( ) A .L=10+0.5PB .L=10+5PC .L=80+0.5PD .L=80+5P3.已知关于x 的分式方程329133x mxx x--+=---无解,则m 的值为( ) A .1m = B .4m =C .3m =D .1m =或4m =4.如图,在ABCD 中,DE ,BF 分别是∠ADC 和∠ABC 的平分线,添加一个条件,仍无法判断四边形BFDE 为菱形的是( )A .∠A=60˚B .DE=DFC .EF ⊥BD D .BD 是∠EDF 的平分线5.已知△ABC 是腰长为1的等腰直角三角形,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三个等腰Rt △ADE ,…,依此类推,第n 个等腰直角三角形的面积是( )A .2n ﹣2B .2n ﹣1C .2nD .2n+16.甲、乙、丙、丁四位选手各射击10次,每人的平均成绩都是9.3环,方差如表:选手甲 乙 丙 丁 方差(环2)0.0350.0160.0220.025则这四个人种成绩发挥最稳定的是( ) A .甲B .乙C .丙D .丁7.一鞋店试销一种新款女鞋,试销期间卖出情况如表: 型号220 225 230 235 240 245 250 数量(双)351015832对于这个鞋店的经理来说最关心哪种型号的鞋畅销,则下列统计量对鞋店经理来说最有意义的是( ) A .平均数B .众数C .中位数D .方差8.如图,在直角坐标系中,正方形OABC 的顶点O 与原点重合,顶点A 、C 分别在x 轴、y 轴上,反比例函数y =kx(k ≠0,x >0)的图象与正方形的两边AB 、BC 分别交于点E 、F ,FD ⊥x 轴,垂足为D ,连接OE 、OF 、EF ,FD 与OE 相交于点G .下列结论:①OF =OE ;②∠EOF =60°;③四边形AEGD 与△FOG 面积相等;④EF =CF +AE ;⑤若∠EOF =45°,EF =4,则直线FE 的函数解析式为422y x =-++.其中正确结论的个数是( )A .2B .3C .4D .59.如果等腰三角形两边长是6和3,那么它的周长是( ) A .15或12B .9C .12D .1510.对于函数y =﹣2x +1,下列结论正确的是( ) A .它的图象必经过点(﹣1,3) B .它的图象经过第一、二、三象限 C .当12x >时,y >0 D .y 值随x 值的增大而增大二、填空题(每小题3分,共24分)11.根据指令[,](0,0180)S S αα≥<<,机器人在平面上能完成下列动作:先原地逆时针旋转角度α,再朝其面对的方向沿直线行走距离S ,现机器人在平面直角坐标系的坐标原点,且面对x 轴正方向.请你给机器人下一个指令__________,使其移动到点()3,3-.12.如图,在己知的ABC ∆中,按以一下步骤作图:①分别以,B C 为圆心,大于12BC 的长为半径作弧,相交于两点,M N ;②作直线MN 交AB 于点D ,连接CD .若CD AC =,50A ∠=︒,则ACB ∠的度数为___________.13.如图,将正方形ABCD 沿BE 对折,使点A 落在对角线BD 上的A′处,连接A′C ,则∠BA′C=________度.14. “等边对等角”的逆命题是 .15.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的就用了这种分割方法,若BD=2,AE=3,则正方形ODCE 的边长等于________.16.在某次射击训练中,教练员统计了甲、乙两位运动员10次射击成绩,两人的平均成绩都是8.8环,且方差分别是1.8环2,1.3环2,则射击成绩较稳定的运动员是______(填“甲”或“乙”). 17.若m 2﹣n 2=6,且m ﹣n=2,则m+n=_________18.如图,Rt △ABC 中,∠C =90°,AC =BC ,∠BAC 的平分线AD 交BC 于点D ,分别过点A 作AE ∥BC ,过点B 作BE ∥AD ,AE 与BE 相交于点E .若CD =2,则四边形ADBE 的面积是_____.三、解答题(共66分)19.(10分)如图1,点C 、D 是线段AB 同侧两点,且AC =BD ,∠CAB =∠DBA ,连接BC ,AD 交于点 E . (1)求证:AE =BE ;(2)如图2,△ABF 与△ABD 关于直线AB 对称,连接EF . ①判断四边形ACBF 的形状,并说明理由;②若∠DAB =30°,AE =5,DE =3,求线段EF 的长.20.(6分)如图,△ABC 三个顶点的坐标分别为A(1,1),B(4,2),C(3,4). (1)请画出将△ABC 向左平移4个单位长度后得到的图形△A 1B 1C 1; (2)请画出△ABC 关于原点O 成中心对称的图形△A 2B 2C 2;(3)在x 轴上找一点P ,使PA +PB 的值最小,请直接写出点P 的坐标.21.(6分)解方程:x 2﹣6x+8=1. 22.(8分)请阅读,并完成填空与证明:初二(8)、(9)班数学兴趣小组展示了他们小组探究发现的结果,内容为:图1,正三角形ABC 中,在AB ,AC 边上分别取M ,N ,使BMAN =,连接BN ,CM ,发现利用“SAS ”证明ABN ∆≌BCM ∆,可得到BN CM =,ABN BCM ∠=∠,再利用三角形的外角定理,可求得60NOC ∠=(1)图2正方形ABCD 中,在AB ,AC 边上分别取M ,N ,使AM BN =,连接AN ,DM ,那么AN = ,且NOD ∠= 度,请证明你的结论.(2)图3正五边形ABCDE 中,在AB ,AC 边上分别取M ,N ,使AM BN =,连接AN ,EM ,那么AN = ,且NOE ∠= 度;(3)请你大胆猜测在正n 边形中的结论:23.(8分)如图,在菱形ABCD 中,∠ABC =60°,过点A 作AE ⊥CD 于点E ,交对角线BD 于点F ,过点F 作FG ⊥AD 于点G .(1)若AB =2,求四边形ABFG 的面积; (2)求证:BF =AE +FG .24.(8分)某公司为了了解员工每人所创年利润情况,公司从各部抽取部分员工对每年所创利润进行统计,并绘制如图1,图2统计图.(1)将图2补充完整;(2)本次共抽取员工 人,每人所创年利润的众数是 万元,平均数是 万元,中位数是 万元; (3)若每人创造年利润10万元及(含10万元)以上为优秀员工,在公司1200员工中有多少可以评为优秀员工? 25.(10分)如图,在ABCD 中,点,E F 对角线AC 上,且AE CF =,连接DE EB BF FD 、、、。

2024届山西省运城中学校八年级数学第一学期期末学业水平测试试题含解析

2024届山西省运城中学校八年级数学第一学期期末学业水平测试试题含解析

2024届山西省运城中学校八年级数学第一学期期末学业水平测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.下面计算正确的是( )A 3=B .3=C 35=D .2=-2.在式子1a ,2xy π ,2334a b c ,56x +,7x +8y ,9 x +10y ,中,分式的个数是( ) A .5 B .4 C .3 D .23.PM2.5是指大气中直径小于或等于0.000 002 5米的颗粒物,将0.000 002 5用科学记数法表示为( ) A .0.25×10-5 B .2.5×10-5 B .2.5×10-6 C .2.5×10-74.变量x 与y 之间的关系是y =2x+1,当y =5时,自变量x 的值是( )A .13B .5C .2D .3.5 5.分式方程3121x x =-的解为( ) A .1x = B .2x = C .3x = D .4x =6.已知锐角∠AOB 如图,(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作PQ ,交射线OB 于点D ,连接CD ;(2)分别以点C ,D 为圆心,CD 长为半径作弧,交PQ 于点M ,N ;(3)连接OM ,MN .根据以上作图过程及所作图形,下列结论中错误的是( )A .∠COM=∠CODB .若OM=MN ,则∠AOB=20°C .MN ∥CD D .MN=3CD7. “厉害了,中国华为!”2019年1月7日,华为宣布推出业界最高性能ARM-based 处理器—鲲鹏1.据了解,该处理器采用7纳米制造工艺.已知1纳米=0.000000001米,则7纳米用科学记数法表示为( )A .9710-⨯米B .8710-⨯米C .8710⨯米D .80.710-⨯米8.若三角形两边长分别是4、5,则周长c 的范围是( )A .1<c <9B .9<c <14C .10<c <18D .无法确定9.小王家距上班地点18千米,他用乘公交车的方式平均每小时行驶的路程比他用自驾车的方式平均每小时行驶的路程的2倍还多9千米.他从家出发到达上班地点,乘公交车方式所用时间是自驾车方式所用时间的37.小王用自驾车方式上班平均每小时行驶( ) A .26千米 B .27千米 C .28千米 D .30千米 10.如图汽车标志中不是中心对称图形的是( )A .B .C .D .11.若分式32x x -+的值为0,则x 为( ) A .-2 B .-2或3 C .3 D .-312.下列关于幂的运算正确的是( )A .22()a a -=-B .00(0)a a =≠C .11(0)a a a-=≠ D .329()a a -= 二、填空题(每题4分,共24分)13.某汽车厂改进生产工艺后,每天生产的汽车比原来每天生产的汽车多6辆,那么现在15天的产量就超过了原来20天的产量,设原来每天生产汽车x 辆,则列出的不等式为________.14.下面是一个按某种规律排列的数表:第1行 1 第2行 2 3 2第3行 5 6 7 22 3第4行 10 11 23 13 14 15 4…… 那么第n (1n >,且n 是整数)行的第2个数是________.(用含n 的代数式表示)15.已知函数2y x =与k y x=的图像的一个交点坐标是(1,2),则它们的图像的另一个交点的坐标是____. 16.如图,在正方形网格中有两个小正方形被涂黑,再涂黑一个图中其余的小正方形,使得整个被涂黑的图案构成一个轴对称图形,那么涂法共有_____种.17.如图,在平面直角坐标系中,Rt △OAB 的顶点A 在x 轴的正半轴上.顶点B 的坐标为(3,3),点C 的坐标为(1,0),且∠AOB=30°点P 为斜边OB 上的一个动点,则PA+PC 的最小值为_________.18.已知点,点是直线上的一个动点,当以为顶点的三角形面积是3时,点的坐标为_____________.三、解答题(共78分)19.(8分)老师在黑板上书写了一个代数式的正确计算结果,随后用字母A 代替了原代数式的一部分,如下:22112111x x x A x x x x ⎛⎫-+-÷= ⎪-++-⎝⎭(1)求代数式A,并将其化简;吗?请说明理由.(2)原代数式的值能等于120.(8分)平面内的两条直线有相交和平行两种位置关系(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B﹣∠D.将点P移到AB、CD内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD、∠B、∠D、∠BQD 之间有何数量关系?(不需证明)(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.21.(8分)甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.甲公司方案:每月的养护费用y(元)与绿化面积x(平方米)是一次函数关系,如图所示.乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500 元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元.(1)求如图所示的y与x的函数解析式:(不要求写出定义域);(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.22.(10分)某玩具店用2000元购进一批玩具,面市后,供不应求,于是店主又购进同样的玩具,所购的数量是第一批数量的3倍,但每件进价贵了4元,结果购进第二批玩具共用了6300元.若两批玩具的售价都是每件120元,且两批玩具全部售完.(1)第一次购进了多少件玩具?(2)求该玩具店销售这两批玩具共盈利多少元?23.(10分)已知函数y =|3|2x k -+,且当x =1时y =2; 请对该函数及其图象进行如下探究:(1)根据给定的条件,可以确定出该函数的解析式为 ;(2)根据解折式,求出如表的m ,n 的值;x… ﹣1 0 1 2 3 4 5 6 7 … y … 3 2.5 2 1.5 0 m n 2.5 3 …m = ,n = .(3)根据表中数据.在如图所示的平面直角坐标系中描点并画出函数图象;(4)写出函数图象一条性质 ;(5)请根据函数图象写出当|3|2x k -+>x+1时,x 的取值范围.24.(10分)先仔细阅读材料,再尝试解决问题:我们在求代数式223x x -+的最大或最小值时,通过利用公式222)2(a ab b a b ±+=±对式子作如下变形:22223212(1)2x x x x x -+=-++=-+,因为2(1)0x -≥,所以2(1)22x -+≥,因此2(1)2x -+有最小值2,所以,当1x =时,2(1)22x -+=,223x x -+的最小值为2.同理,可以求出243x x --+的最大值为7.通过上面阅读,解决下列问题:(1)填空:代数式245x x ++的最小值为______________;代数式2227x x -++的最大值为______________; (2)求代数式28245x x ++的最大或最小值,并写出对应的x 的取值; (3)求代数式222x mx m x m ++--的最大或最小值,并写出对应的x 、m 的值.25.(12分)解答下列各题(1)如图1,方格纸中的每个小方格都是边长为1个单位长的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上,点C 的坐标为(4,﹣1).①作出△ABC 关于x 轴对称的△A 1B 1C 1;②如果P 点的纵坐标为3,且P 点到直线AA ₁的距离为5,请直接写出点P 的坐标.(2)我国是世界上严重缺水的国家之一为了倡导“节约用水,从我做起”,小丽同学在她家所在小区的200住户中,随机调查了10个家庭在2019年的月均用水量(单位:t ),并将调查结果绘成了如下的条形统计图2①求这10个样本数据的平均数;②以上面的样本平均数为依据,自来水公司按2019年该小区户月均用水量下达了2020年的用水计划(超计划要执行阶梯式标准收费)请计算该小区2020年的计划用水量.26.先化简221(1)11x x x ÷+--,再从-2<x<3中选一个合适的整数代入求值.参考答案一、选择题(每题4分,共48分)1、A【分析】根据二次根式的乘、除法公式和同类二次根式的定义逐一判断即可.【题目详解】解:A.3===,故本选项正确;B.3不是同类二次根据,不能合并,故本选项错误;C.236=,故本选项错误;D.224=⨯=,故本选项错误.故选A.【题目点拨】此题考查的是二次根式的运算,掌握二次根式的乘、除法公式和同类二次根式的定义是解决此题的关键.2、C【题目详解】2xyπ、2334a b c、7x+8y分母中均不含有字母,因此它们是整式,而不是分式,1a、56x+、9x +10y分母中含有字母,因此是分式.故选C3、C【解题分析】试题分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.所以:0.0000025=2.5×10-6;故选C.【考点】科学记数法—表示较小的数.4、C【分析】直接把y=5代入y=2x+1,解方程即可.【题目详解】解:当y=5时,5=2x+1,解得:x=2,故选:C.【题目点拨】此题主要考查了函数值,关键是掌握已知函数解析式,给出函数值时,求相应的自变量的值就是解方程.5、C【解题分析】两边同乘2x(x-1),得1(x-1)=2x,整理、解得:x=1.检验:将x=1代入2x(x-1)≠0,∴方程的解为x=1.故选C6、D【分析】由作图知CM=CD=DN,再利用圆周角定理、圆心角定理逐一判断可得.【题目详解】解:由作图知CM=CD=DN,∴∠COM=∠COD,故A选项正确;∵OM=ON=MN,∴△OMN是等边三角形,∴∠MON=60°,∵CM=CD=DN,∴∠MOA=∠AOB=∠BON=13∠MON=20°,故B选项正确;∵∠MOA=∠AOB=∠BON,∴∠OCD=∠OCM=180-COD2︒∠,∴∠MCD=180-COD︒∠,又∠CMN=12∠AON=∠COD,∴∠MCD+∠CMN=180°,∴MN∥CD,故C选项正确;∵MC+CD+DN >MN ,且CM=CD=DN ,∴3CD >MN ,故D 选项错误;故选D .【题目点拨】本题主要考查作图-复杂作图,解题的关键是掌握圆心角定理和圆周角定理等知识点.7、A【分析】先将7纳米写成0.000000007,然后再将其写成a×10n (1<| a |<10,n 为整数)即可解答. 【题目详解】解:∵1纳米90.00000000110-==米,∴7纳米=0.000000007米9710-=⨯米.故答案为A .【题目点拨】本题主要考查了科学记数法,将原数写成a×10n (1<| a |<10,n 为整数),确定a 和n 的值成为解答本题的关键.8、C【解题分析】根据三角形的任意两边之和大于第三边,任意两边之差小于第三边,∴5-4<第三边<5+4,∴10<c <18.故选C.9、B【分析】设小王用自驾车方式上班平均每小时行驶x 千米,根据已知小王家距上班地点18千米.他用乘公交车的方式平均每小时行驶的路程比他自用驾车的方式平均每小时行驶的路程的2倍还多9千米,他从家出发到达上班地点,乘公交车方式所用时间是自驾车方式所用时间的37,可列方程求解. 【题目详解】∵小王家距上班地点18千米,设小王用自驾车方式上班平均每小时行驶x 千米,∴小王从家到上班地点所需时间t=18x小时; ∵他用乘公交车的方式平均每小时行驶的路程比他自用驾车的方式平均每小时行驶的路程的2倍还多9千米,∴他乘公交车从家到上班地点所需时间t=1829x +, ∵乘公交车方式所用时间是自驾车方式所用时间的37, ∴1829x +=37×18x , 解得x=27,经检验x=27是原方程的解,且符合题意.即:小王用自驾车方式上班平均每小时行驶27千米.故答案选:B.【题目点拨】本题考查了分式方程的应用,解题的关键是熟练的掌握分式方程的应用.10、B【分析】中心对称图形,是把一个图形绕一个点旋转180°后能和原来的图形重合.【题目详解】A、C、D中的汽车标志都满足中心对称图形的定义,都属于中心对称图形,而选项B中的汽车标志绕其圆心旋转180°后,不能和原来的图形重合,所以不是中心对称图形.故选B.【题目点拨】考核知识点:中心对称图形的识别.11、C【分析】根据题意直接利用分式的值为零则分子为零,分母不为零,进而分析得出答案.【题目详解】解:∵分式32xx-+的值为0,∴x-1=0且x+2≠0,解得:x=1.故选:C.【题目点拨】本题考查分式的值为零的条件.注意掌握若分式的值为零,需同时具备两个条件即分子为0以及分母不为0,这两个条件缺一不可.12、C【分析】根据积的乘方等于乘方的积,非零的零次幂等于1,负整数指数幂与正整数指数幂互为倒数,幂的乘方底数不变指数相乘,可得答案.【题目详解】解:A、(-a)2=a2,故A错误;B、非零的零次幂等于1,故B错误;C、负整数指数幂与正整数指数幂互为倒数,故C正确;D、幂的乘方底数不变指数相乘,故D错误;故选:C.【题目点拨】本题考查了负整数指数幂,熟记法则并根据法则计算是解题关键,注意负整数指数幂的底数不能为零.二、填空题(每题4分,共24分)13、()15620x x +>【分析】首先根据题意可得改进生产工艺后,每天生产汽车(x+6)辆,根据关键描述语:现在15天的产量就超过了原来20天的产量列出不等式即可.【题目详解】解:设原来每天最多能生产x 辆,由题意得:15(x+6)>20x ,故答案为:()15620x x +>【题目点拨】此题主要考查了由实际问题抽象出一元一次不等式,关键是正确理解题意,抓住关键描述语.14【分析】根据每一行的最后一个数的被开方数是所在的行数的平方,写出第()1n -行的最后一个数的平方是()21n -,据此可写出答案.【题目详解】第22=,第33=,第44=,第()1n -1n =-,第n第n【题目点拨】本题考查了规律型-数字变化,解题的关键是确定每一行最后一个数字.15、(-1,-2)【分析】反比例函数的图象是中心对称图形,则与经过原点的直线的两个交点一定关于原点对称.【题目详解】∵函数2y x =与k y x=的图像都是中心对称图形, ∴函数2y x =与k y x=的图像的一个交点坐标是(1,2)关于原点对称的点是(-1,-2),∴它们的图像的另一个交点的坐标是(-1,-2).故答案是:(-1,-2).【题目点拨】本题主要考查了反比例函数图象的中心对称性.关于原点对称的两个点的横、纵坐标分别互为相反数.16、1【分析】直接利用轴对称图形的性质得出符合题意的答案.【题目详解】解:如图所示:所标数字处都可以使得整个被涂黑的图案构成一个轴对称图形,共1种涂法.故答案为:1.【题目点拨】本题主要考查了利用轴对称设计图案,正确掌握轴对称图形的性质是解题关键.177【题目详解】解:作A关于OB的对称点D,连接CD交OB于P,连接AP,过D作DN⊥OA于N,则此时PA+PC 的值最小.∵DP=PA,∴PA+PC=PD+PC=CD.∵B(13),∴3OA=1,∠B=60°.由勾股定理得:3由三角形面积公式得:12×OA×AB=12×OB×AM,∴AM=32.∴AD=2×32=1.∵∠AMB=90°,∠B=60°,∴∠BAM=10°.∵∠BAO=90°,∴∠OAM=60°.∵DN⊥OA,∴∠NDA=10°.∴AN=12AD=32.由勾股定理得:33∵C(1,0),∴CN=1-1-3122 =.在Rt△DNC中,由勾股定理得:221337 22⎛⎫⎛⎫+=⎪ ⎪⎝⎭⎝⎭∴PA+PC7.18、(4,3)或(-4,-3)【解题分析】依据点P 是直线y=x 上的一个动点,可设P (x ,x ),再根据以A ,O ,P 为顶点的三角形面积是3,即可得到x 的值,进而得出点P 的坐标.【题目详解】∵点P 是直线y=x 上的一个动点,∴可设P (x ,x ),∵以A ,O ,P 为顶点的三角形面积是3, ∴ ×AO×|x|=3, 即×2×|x|=3, 解得x=±4, ∴P (4,3)或(-4,-3),故答案是:(4,3)或(-4,-3).【题目点拨】考查了一次函数图象上点的坐标特征,解题时注意:直线上任意一点的坐标都满足函数关系式y=kx+b .三、解答题(共78分)19、(1)A =211x x +-;(2)不能,理由见解析. 【解题分析】(1)根据题意得出A 的表达式,再根据分式混合运算的法则进行计算即可;(2)令原代数式的值为-1,求出x 的值,代入代数式中的式子进行验证即可.【题目详解】(1)22112111x x x A x x x x ⎛⎫-+-÷= ⎪-++-⎝⎭, 2211,1121x x x A x x x x +-=⋅+-+-+()()()2111,111x x x x x x x +-+=⋅+-+- 1,11x x x x +=+-- 21.1x x +=- (2)不能, 理由:若能使原代数式的值能等于﹣1,则111x x +=--,即x =0, 但是,当x =0时,原代数式中的除数01x x =+,原代数式无意义. 所以原代数式的值不能等于﹣1.【题目点拨】考查分式的化简求值,掌握分式的运算法则是解题的关键.20、(1)不成立.结论是∠BPD =∠B+∠D ,证明见解析;(2)BPD BQD B D ∠=∠+∠+∠;(3)360°.【分析】(1)延长BP 交CD 于E ,根据两直线平行,内错角相等,求出∠PED=∠B ,再利用三角形的一个外角等于和它不相邻的两个内角的和即可说明不成立,应为∠BPD=∠B+∠D ;(2)作射线QP ,根据三角形的外角性质可得;(3)根据四边形的内角和以及(2)的结论求解即可.【题目详解】解:(1)不成立.结论是∠BPD =∠B+∠D延长BP 交CD 于点E ,∵AB ∥CD∴∠B =∠BED又∵∠BPD =∠BED+∠D ,∴∠BPD =∠B+∠D .(2)结论:∠BPD =∠BQD+∠B+∠D .作射线QP ,∵∠BPE 是△BPQ 的外角,∠DPE 是△PDQ 的外角,∴∠BPE=∠B+∠BQE ,∠DPE=∠D+∠DQP ,∴∠BPE+∠DPE=∠B+∠D+∠BQE+∠DQP ,即∠BPD=∠BQD+∠B+∠D ;(3)在四边形CDFG 中,∠CGF+∠C+∠D+∠F=360°,又∵∠AGB =∠CGF ,∴∠AGB +∠C+∠D+∠F=360°,由(2)知,∠AGB=∠B+∠A+∠E,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.【题目点拨】本题考查的是平行线的性质,三角形的内角,三角形外角的性质,以及多边形的内角和,根据题意作出辅助线,构造出三角形,利用三角形外角的性质求解是解答此题的关键.21、(1)y=5x+1.(2)乙.【解题分析】试题分析:(1)利用待定系数法即可解决问题;(2)绿化面积是1200平方米时,求出两家的费用即可判断;试题解析:(1)设y=kx+b,则有400100900bk b=⎧⎨+=⎩,解得5400kb=⎧⎨=⎩,∴y=5x+1.(2)绿化面积是1200平方米时,甲公司的费用为61元,乙公司的费用为5500+4×200=6300元,∵6300<61∴选择乙公司的服务,每月的绿化养护费用较少.22、(1)第一次购进了25件玩具;(2)该玩具店销售这两批玩具共盈利3700元.【分析】(1)设第一次购进x件玩具,第二次购进3x件玩具,列出方程解出即可.(2)用总售价减去总进价即可算出.【题目详解】(1)设第一次购进了x件玩具,则第二次购进了3x件玩具,根据题意得:630020004 3x x-=,解得:25x=,经检验,25x=是原分式方程的解, 答:第一次购进了25件玩具.(2)()25253120200063003700+⨯⨯--=(元)答:该玩具店销售这两批玩具共盈利3700元.【题目点拨】本题考查分式方程的应用,关键在于理解题意找到等量关系.23、(1)y =322x -+;(2)32,2;(3)见解析;(4)当x <3时,y 随x 的增大而减小,当x >3时,y 随x 的增大而增大;(5)x <1.【分析】(1)把x =1,y =2代入y =|3|2x k -+, 即可得到结论; (2)求当x =4时,当x =5时的函数值即可得到结论;(3)根据题意画出函数的图象即可;(4)根据函数的图象即可得到结论;(5)根据函数的图象即可得到结论.【题目详解】解:(1)把x =1,y =2代入y =|3|2x k -+ 得:2=|13|2k -+, 解得:k =2, ∴函数的解析式为:322x y -+=, 故答案为:y =322x -+; (2)当x =4时,m =|43|22-+=32, 当x =5时,n =|53|22-+=2; 故答案为:32,2; (3)如图所示;描点并作图,同时在同一坐标系内画1y x =+的图像,(4)当x <3时,y 随x 的增大而减小,当x >3时,y 随x 的增大而增大;故答案为:当x <3时,y 随x 的增大而减小,当x >3时,y 随x 的增大而增大;(5)由图象知,当|3|2x k -+>x+1时,x <1. 【题目点拨】本题考查的是画函数的图像,以及根据图像确定函数的性质,掌握以上知识是解题的关键.24、(2)2,152;(2)1x =-,最小值83;(2)当1m =,0x =,时,222x mx m x m ++--有最小值-2. 【分析】(2)依照阅读材料,把原式写成完全平方公式加一个常数的形式,然后根据完全平方公式前系数正负得出答案;(2)先讨论2245x x ++取得最大值,因为在分母上,所以28245x x ++取得最小值,再根据配方法求解即可; (2)同样配方成完全平方公式加上一个常数的形式.【题目详解】解:(2)()224521x x x ++=++,因为2(2)0x +≥,所以2(2)11x ++≥,因此2(2)1x ++有最小值2,所以245x x ++的最小值为2; ()22211522727222x x x x x ⎛⎫-++=--+=--+ ⎪⎝⎭, 因为21202x ⎛⎫--≤ ⎪⎝⎭,所以2115152222x ⎛⎫--+≤ ⎪⎝⎭, 所以2115222x ⎛⎫--+ ⎪⎝⎭有最大值152, 所以2227x x -++的最大值为152; 故答案为:2,152; (2)∵()222245221152(1)3x x x x x ++=++-+=++,因为2(1)0x +≥, 所以22(1)33x ++≥,当1x =-时,22(1)33x ++=,因此22(1)3x ++有最小值2,即2245x x ++的最小值为2. 所以28245x x ++有最大值为83; (2)222x mx m x m ++--22(1)2x m x m m =+-+-22(1)(1)1x m x m =+-+--2213(1)124m x m -⎛⎫=++-- ⎪⎝⎭, 所以当1m =时,102m x -=-=, 所以当1m =,0x =时,222x mx m x m ++--有最小值-2.【题目点拨】本题是阅读理解题,主要考查了完全平方式、配方的应用和代数式偶次方的非负性等知识,正确理解题意、熟练掌握配方的方法是解题的关键.25、(1)①详见解析;②点P 的坐标为(﹣4,3)或(6,3);(2)①6.8t ;②该小区2020年的计划用水量应为16320t .【分析】(1)①由轴对称的性质先确定点A 1,B 1,C 1的坐标,再描点,连线即可;②由P 点到直线AA ₁的距离为5,可知点P 的横坐标为﹣4或6,由其纵坐标为3,即可写出点P 坐标;(2)①根据加权平均数的计算方法求解即可;②可将①中所求10个样本数据的平均数乘以12个月,再乘以200户即可.【题目详解】解:(1)①如图1,△A 1B 1C 1即为所求;②如图1,点P 的坐标为(﹣4,3)或(6,3);(2)①(6×2+6.5×4+7×1+7.5×2+8×1)÷10=6.8t , ∴这10个样本数据的平均数为6.8t ;②6.8×12×200=16320t , ∴该小区2020年的计划用水量应为16320t .【题目点拨】本题考查了轴对称的性质,加权平均数的计算,样本估计总体等,解题关键是会认条形统计图以及在计算小区全年计划用水量时注意要乘以12个月.26、1x x +,当x=2时,原式=23【解题分析】试题分析:先根据分式混合运算的法则把原式进行化简,再选出合适的x 的值代入进行计算即可. 试题解析:原式=211(1)(1)1x x x x x -+÷+-- =21(1)(1)x x x x x-⨯+- = x x 1+ ∵x≠—1,0,1,∴当x=2时,2原式=3。

吉林省长春市九台市2024届八年级数学第二学期期末学业水平测试试题含解析

吉林省长春市九台市2024届八年级数学第二学期期末学业水平测试试题含解析

吉林省长春市九台市2024届八年级数学第二学期期末学业水平测试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题(每小题3分,共30分) 1.下列分解因式,正确的是( ) A .()()2x 1x 1x 1+-=+B .()()29y 3y y 3-+=+-C .()2x 2x l x x 21++=++D .()()22x 4y x 4y x 4y -=+-2.下列事件中是必然事件的是( )A .明天太阳从东边升起;B .明天下雨;C .明天的气温比今天高;D .明天买彩票中奖.3.如图所示,小华从A 点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,……,照这样走下去,他第一次回到出发地A 点时,一共走的路程是( )A .140米B .150米C .160米D .240米4.下列各组数据中的是三个数作为三角形的边长,其中能构成直角三角形的是( ) A .1,,B .C .5,6,7D .7,8,95.我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田面积有多大?题中“里”是我国市制长度单位,1里=500米,则该沙田的面积为( ) A .7.5平方千米B .15平方千米C .75平方千米D .750平方千米6.如图,已知直角坐标系中的点A 、B 的坐标分别为A (2,4)、B (4,0),且P 为AB 的中点.若将线段AB 向右平移3个单位后,与点P 对应的点为Q ,则点Q 的坐标是( )A .(3,2)B .(6,2)C .(6,4)D .(3,5)7.某星期六上午,小明从家出发跑步去公园,在公园停留了一会儿打车回家.图中折线表示小明离开家的路程y(米)和所用时间x(分)之间的函数关系,则下列说法中错误的是()A.小明在公园休息了5分钟B.小明乘出租车用了17分C.小明跑步的速度为180米/分D.出租车的平均速度是900米/分8.下列几红数中,是勾股数的有().①5、12、13;②13、14、15;③3k、4k、5k(k为正整数);④23、2、73.A.1组B.2组C.3组D.4组9.甲安装队为 A小区安装66台空调,乙安装队为 B小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台,设乙队每天安装x 台,根据题意,下面所列方程中正确的是()A.66602x x=-B.66602x x=-C.66602x x=+D.66602x x=+10.某校八年级甲、乙两班学生在一学期里的多次检测中,其数学成绩的平均分相等,但两班成绩的方差不等,那么能够正确评价他们的数学学习情况的是()A.学一样B.成绩虽然一样,但方差大的班里学生学习潜力大C.虽然平均成绩一样,但方差小的班学习成绩稳定D.方差较小的班学习成绩不稳定,忽高忽低二、填空题(每小题3分,共24分)11.某校规定:学生的数学期未总计成须由卷面成绩、研究性学习成绩、平时成绩三部分构成,各部分所占比例如图所示.小明本学期数学学科的卷面成绩、研究性学习成绩、平时成绩得分依次为分、分、分,则小明的数学期末总评成绩为________分.12.如图,在△ABC 中,点D ,E ,F 分别是△ABC 的边AB ,BC ,AC 上的点,且DE ∥AC ,EF ∥AB ,要使四边形ADEF 是正方形,还需添加条件:__________________.13.若方程2322m x x +=--的解是正数,则m 的取值范围_____. 14.如图,长方形ABCD 中,AB =3,AD =1,AB 在数轴上,若以点A 为圆心,AC 的长为半径作弧交数轴于点M ,则点M 表示的数为__________.15.若分式||33x x-+的值是0,则x 的值为________. 16.不等式组211841x x x x ->+⎧⎨+≥-⎩的解集为_____.17.如图,如果要使ABCD 成为一个菱形,需要添加一个条件,那么你添加的条件是________.18.已知关于x 的方程()200ax bx c a --=≠的系数满足420a b c --=,且0c a b --=,则该方程的根是______.三、解答题(共66分)19.(10分)如图,在ABC 中,O 为边AC 的中点,过点A 作AD BC ∥,与BO 的延长线相交于点D ,E 为AD 延长上的任一点,联结CE 、CD .(1)求证:四边形ABCD 是平行四边形;(2)当D 为边AE 的中点,且2CE CO =时,求证:四边形ABCD 为矩形.20.(6分)如图,在平行四边形ABCD 的对角线BD 上存在P ,Q 两个点,且BP DQ =,试探究AP 与CQ 的关系.21.(6分)如图,在Rt ABC ∆中,090BAC ∠=,D 是BC 的中点,E 是AD 的中点,过点A 作//BC AF 交BE 的延长线于点F(1)求证:四边形ADCF 是菱形(2)若4,5AC AB ==,求菱形ADCF 的面积22.(8分)(1)在某次考试中,现有甲、乙、丙3名同学,共四科测试实际成绩如下表:(单位:分) 语文 数学 英语 科学 甲 95 95 80 150 乙 105 90 90 139 丙10010085139若欲从中表扬2人,请你从平均数的角度分析,那两人将被表扬?(2)为了提现科学差异,参与测试的语文、数学、英语、科学实际成绩须以2:3:2:3的比例计入折合平均数,请你从折合平均数的角度分析,哪两人将被表扬?23.(8分)在平面直角坐标系中,直线AB 经过()1,1、()3,5-两点. (1)求直线AB 所对应的函数解析式: (2)若点(),2P a -在直线AB 上,求a 的值. 24.(8分)阅读材料:分解因式:x 2+2x-3解:原式=x 2+2x+1-4=(x+1)2-4 =(x+1+2)(x+1-2)=(x+3)(x-1)此种方法抓住了二次项和一次项的特点,然后加一项,使这三项成为完全平方式,我们把这种分解因式的方法叫配方法.请仔细体会配方法的特点,然后尝试用配方法解决下列问题: (1)分解因式x 2-2x-3=_______;a 2-4ab-5b 2=_______;(2)无论m 取何值,代数式m 2+6m+13总有一个最小值,请你尝试用配方法求出它的最小值;25.(10分)已知:如图,在△ABC 中,AB =AC =4cm ,将△ABC 沿CA 方向平移4cm 得到△EFA ,连接BE ,BF ;BE 与AF 交于点G(1)判断BE 与AF 的位置关系,并说明理由; (2)若∠BEC =15°,求四边形BCEF 的面积.26.(10分)如图分别是64 的网格,网格中每个小正方形的边长均为1,线段AB 的端点在小正方形的顶点上,请在以下图中各画一个图形,所画图形各顶点必须在小正方形的顶点上,并且分别满足以下要求: (1)在下图中画一个以线段AB 为一边的直角ABC △,且ABC △的面积为2;(2)在下图中画一个以线段AB 为一边的四边形ABDE ,使四边形ABDE 是中心对称图形且四边形ABDE 的面积为1.连接AD ,请直接写出线段AD 的长.线段AD 的长是________参考答案一、选择题(每小题3分,共30分)1、B【解题分析】把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式.据此作答.【题目详解】A. 和因式分解正好相反,故不是分解因式;B. 是分解因式;C. 结果中含有和的形式,故不是分解因式;D. x2−4y2=(x+2y)(x−2y),解答错误.故选B.【题目点拨】本题考查的知识点是因式分解定义和十字相乘法分解因式,解题关键是注意:(1)因式分解的是多项式,分解的结果是积的形式.(2)因式分解一定要彻底,直到不能再分解为止.2、A【解题分析】【分析】根据必然事件和随机事件的定义进行分析.【题目详解】A. 明天太阳从东边升起,是必然事件,故可以选;B. 明天下雨,是随机事件,故不能选;C. 明天的气温比今天高,是随机事件,故不能选;D. 明天买彩票中奖,是随机事件,故不能选.故选:A【题目点拨】本题考核知识点:必然事件和随机事件.解题关键点:理解必然事件和随机事件的定义.3、B【解题分析】由题意可知小华走出了一个正多边形,根据正多边形的外角和公式可求解.【题目详解】已知多边形的外角和为360°,而每一个外角为24°,可得多边形的边数为360°÷24°=15,所以小明一共走了:15×10=150米.故答案选B.【题目点拨】本题考查多边形内角与外角,熟记公式是关键.4、A【解题分析】根据勾股定理的逆定理逐项分析即可.【题目详解】解:A、∵12+()2=()2,∴能构成直角三角形;B、()2+()2≠()2,∴不能构成直角三角形;C、52+62≠72,∴不能构成直角三角形;D、∵72+82≠92,∴不能构成直角三角形.故选:A.【题目点拨】本题考查了勾股定理逆定理,如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形,在一个三角形中,即如果用a,b,c表示三角形的三条边,如果a2+b2=c2,那么这个三角形是直角三角形.5、A【解题分析】分析:直接利用勾股定理的逆定理进而结合直角三角形面积求法得出答案.详解:∵52+122=132,∴三条边长分别为5里,12里,13里,构成了直角三角形,∴这块沙田面积为:12×5×500×12×500=7500000(平方米)=7.5(平方千米).故选:A.点睛:此题主要考查了勾股定理的应用,正确得出三角形的形状是解题关键.6、B【解题分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减. 【题目详解】根据中点坐标的求法可知点P坐标为()3,2,因为左右平移点的纵坐标不变,由题意向右平移3个单位,则各点的横坐标加3,所以点Q的坐标是()6,2.故选:B.【题目点拨】本题考查图形的平移变换,关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变,平移变换是中考的常考点.7、B【解题分析】试题解析:A、在公园停留的时间为15-10=5分钟,也就是在公园休息了5分钟,此选项正确,不合题意;B、小明乘出租车的时间是17-15=2分钟,此选项错误,符合题意;C、小明1800米用了10分钟,跑步的速度为180米/分,此选项正确,不合题意;D、出租车1800米用了2分钟,速度为900米/分,此选项正确,不合题意.故选B.考点:函数的图象.8、B【解题分析】勾股数是满足a2+b2=c2的三个正整数,据此进行判断即可.【题目详解】解:∵满足a2+b2=c2的三个正整数,称为勾股数,∴是勾股数的有①5、12、13;③3k、4k、5k(k为正整数).故选:B.【题目点拨】本题主要考查了勾股定理的逆定理,一组勾股数扩大相同的整数倍得到三个数仍是一组勾股数.9、D【解题分析】根据两队同时开工且恰好同时完工可得两队所用时间相等.由题意得甲队每天安装(x+2)台,所以甲安装66台所有时间为662x+,乙队所用时间为60x,利用时间相等建立方程.【题目详解】乙队用的天数为:60x,甲队用的天数为:662x+,则所列方程为:662x+=60x故选D.10、C【解题分析】分析:由题意知数学成绩的平均分相等,但他们成绩的方差不等,数学的平均成绩一样,说明甲和乙的平均水平基本持平,方差较小的同学,数学成绩比较稳定,选择学生参加考试时,还要选方差较小的学生.解答:解:∵数学成绩的平均分相等,但他们成绩的方差不等, 数学的平均成绩一样,说明甲和乙的平均水平基本持平, 方差较小的同学,数学成绩比较稳定, 故选C .二、填空题(每小题3分,共24分) 11、1 【解题分析】按统计图中各部分所占比例算出小明的期末数学总评成绩即可. 【题目详解】解:小明的期末数学总评成绩=90×60%+80×20%+85×20%=1(分). 故答案为1.12、∠A=90°,AD =AF(答案不唯一) 【解题分析】试题解析:要证明四边形ADEF 为正方形,则要求其四边相等,AB=AC ,点D 、E 、F 分别是△ABC 的边AB 、BC 、AC 的中点, 则得其为平行四边形, 且有一角为直角,则在平行四边形的基础上得到正方形.故答案为△ABC 为等腰直角三角形,且AB=AC ,∠A=90°(此题答案不唯一). 13、m >-2且m≠0 【解题分析】分析:本题解出分式方程的解,根据题意解为正数并且解不能等于2,列出关于m 的取值范围. 解析:解方程()()222,242,2,x m x x m x x m -+=---=-=+ 解为正数,∴20, 2.20,2,2m m x x m +>>--≠∴≠∴>- 且m≠0.故答案为m >-2且m≠0141 【解题分析】根据勾股定理,可得AC 的长,根据圆的性质,可得答案. 【题目详解】由题意得AC =故可得3AM BM AM AB ==-=, 又∵点B 的坐标为2 ∴M1,1. 【题目点拨】此题考查勾股定理,解题关键在于结合实数与数轴解决问题. 15、3 【解题分析】根据分式为0的条件解答即可, 【题目详解】 因为分式|x |33x-+的值为0, 所以∣x ∣-3=0且3+x ≠0, ∣x ∣-3=0,即x=±3, 3+x ≠0,即x ≠-3, 所以x=3, 故答案为:3 【题目点拨】本题考查分式值为0的条件:分式的分子为0,且分母不为0,熟练掌握分式值为0的条件是解题关键. 16、1<x≤2 【解题分析】解:211841x x x x -+⎧⎨+≥-⎩>①②, 解不等式①,得x >1. 解不等式②,得x≤2, 故不等式组的解集为1<x≤2. 故答案为1<x≤2. 17、A B =BC (答案不唯一) 【解题分析】试题解析:因为一组邻边相等的平行四边形是菱形,对角线互相垂直平分的四边形是菱形,那么可添加的条件是:AB=BC 或AC ⊥BD .18、1-和1.【解题分析】把x=1,和x=-1代入方程正好得出等式4a-1b-c=0和c-a-b=0,即可得出方程的解是x=1,x=-1,即可得出答案.【题目详解】∵ax 1-bx-c=0(a≠0),把x=1代入得:4a-1b-c=0,即方程的一个解是x=1,把x=-1代入得:c-a-b=0,即方程的一个解是x=-1,故答案为:-1和1.【题目点拨】本题考查了一元二次方程的解的应用,主要是考查学生的理解能力.三、解答题(共66分)19、(1)见解析;(2)见解析.【解题分析】(1)首先利用平行线的性质和中点证明AOD COB ≅,则有AD BC =,然后利用一组对边平行且相等即可证明四边形ABCD 是平行四边形;(2)首先利用平行四边形的性质得出12AO CO AC ==,进而可得出CE CA =,然后利用等腰三角形三线合一得出90ADC ∠=︒,则可证明平行四边形ABCD 是矩形.【题目详解】(1)//AD BC ,DAO BCO ∴∠=∠,ADO CBO ∠=∠. O 是AC 的中点,AO CO ∴=.在AOD △与COB △中ADO CBO DAO BCO AO CO ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AOD COB AAS ∴≅,AD BC ∴=.又//AD BC∴四边形ABCD 是平行四边形.(2)四边形ABCD 是平行四边形12AO CO AC ∴==. 2CE CO =,CE CA ∴=又D 是AE 中点,CD AE ∴⊥.即90ADC ∠=︒. 又四边形ABCD 是平行四边形.∴四边形ABCD 是矩形.【题目点拨】本题主要考查平行四边形的判定与性质,矩形的判定,掌握全等三角形的判定及性质,平行线的性质,等腰三角形的性质是解题的关键.20、见解析.【解题分析】由BP DQ =,得到BQ=DP,再根据平行四边形性质可得AD=BC ,AD ∥BC ,可证△ADP ≌△CBQ (SAS ),即可得:AP=CQ ,∠APD=∠CQB .可得∠APB=∠DQC ,结论可证.【题目详解】解:AP=CQ ,AP ∥CQ ;理由:∵四边形ABCD 是平行四边形,∴AD=BC ,AD ∥BC∴∠ADP=∠CBQ ,∵BP=DQ ,∴DP=BQ∴△ADP ≌△CBQ (SAS ),∴AP=CQ ,∠APD=∠CQB .∵∠APB=180°-∠APD ,∠DQC=180°-∠CQB ∴∠APB=∠DQC∴AP ∥CQ .∴AP=CQ ,AP ∥CQ【题目点拨】本题考查了平行四边形的性质和全等三角形的判定和性质,能利用平行四边形找到证明全等的条件是解答此题的关键.21、(1)见解析(2)10【解题分析】(1)先证明AFE DBE ∆≅∆,得到AF DB =,AF CD =,再证明四边形ADCF 是平行四边形,再根据“直角三角形斜边上的中线等于斜边的一半”得到12AD DC BC ==,即可证明四边形ADCF 是菱形。

浙江省湖州市吴兴区十学校2024届数学八年级第二学期期末学业水平测试试题含解析

浙江省湖州市吴兴区十学校2024届数学八年级第二学期期末学业水平测试试题含解析

浙江省湖州市吴兴区十学校2024届数学八年级第二学期期末学业水平测试试题 考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题(每题4分,共48分)1.某班30名学生的身高情况如下表:身高()m 1.65 1.58 1.70 1.72 1.76 1.80人数 3 4 6 7 6 4则这30名学生身高的众数和中位数分别是( )A .7,1.71m mB .1.72,1.70m mC .1.72,1.71m mD .1.72,1.72m m2.京津冀都市圈是指以北京、天津两座直辖市以及河北省的保定、廊坊、唐山、邯郸、邢台、秦皇岛、沧州、衡水、承德、张家口和石家庄为中心的区域.若“数对”(190,43°) 表示图中承德的位置,“数对”(160,238°) 表示图中保定的位置,则与图中张家口的位置对应的“数对”为A .(176,145°)B .(176,35°)C .(100,145°)D .(100,35°)3.在同一平面直角坐标系中,函数y =ax 2+bx 与y =﹣bx +a 的图象可能是( )A .B .C .D .4.如图,在▱ABCD 中,AB =6,BC =8,∠BCD 的平分线交AD 于点E ,交BA 的延长线于点F ,则AE +AF 的值等于( )A .2B .3C .4D .65.如图,在菱形ABCD 中,对角线,AC BD 交于点O ,3,33==AO BO ,则菱形ABCD 的面积是( )A .18B .183C .36D .3636.如图,△ABC 中,D 、E 分别是AB 、AC 上点,DE∥BC,AD=2,DB=1,AE=3,则EC 长( )A .23 B .1 C .32 D .67.已知ABC ∆,如图,4AC =,5AB =,90C ∠=︒,AC 的垂直平分DE 交AB 于点E ,则DE 的长为()A .3B .2.5C .2D .1.58.直线与轴、轴所围成的直角三角形的面积为( )A .B .C .D .9.把函数y x =与2y x =的图象画在同一个直角坐标系中,正确的是( )A .B .C .D .10.满足下列条件的三角形中,不是直角三角形的是( )A .三内角的度数之比为1∶2∶3B .三内角的度数之比为3∶4∶5C .三边长之比为3∶4∶5D .三边长的平方之比为1∶2∶311.在三角形纸片ABC 中,AB=8,BC=4,AC=6,按下列方法沿虚线剪下,能使阴影部分的三角形与△ABC 相似的是( ) A . B . C . D .12.如图,过点A 的一次函数的图象与正比例函数2y x =的图象相交于点,B 则这个一次函数的解析式是( )A . 3y x =-+B .23y x =-+C .23y x =-D .3y x =--二、填空题(每题4分,共24分)13.在▱ABCD 中,如果∠A+∠C=140°,那么∠B= 度.14.在□ABCD 中,∠A =105º,则∠D =__________.15. “赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a ,较短直角边长为b ,若ab=8,大正方形的面积为25,则小正方形的边长为_____.16.若112a b-=,则422a ab ba ab b+---的值是________17.若直角三角形的两边分别为1分米和2分米,则斜边上的中线长为_________.18.使21x-有意义的x的取值范围是______.三、解答题(共78分)19.(8分)如图,长方形ABCD中,点P沿着边按B C D A→→→.方向运动,开始以每秒m个单位匀速运动、a 秒后变为每秒2个单位匀速运动,b秒后恢复原速匀速运动,在运动过程中,ABP∆的面积S与运动时间t的函数关系如图所示.(1)直接写出长方形的长和宽;(2)求m,a,b的值;(3)当P点在AD边上时,直接写出S与t的函数解析式.20.(8分)如图,正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫格点,以格点为顶点按下列要求画图:(1)在图①中画一条线段AB,使AB=5;(2)在图②中画一个以格点为顶点,面积为2的正方形ABCD.21.(8分)如图,平面直角坐标系中,一次函数142y x =-+的图象1l 分别与x ,y 轴交于A ,B 两点,正比例函数的图象2l 与1l 交于点()3C m ,. (1)求m 的值及2l 的解析式;(2)求AOC BOC S S -的值;(3)一次函数1y kx =+的图象为3l ,且1l ,2l ,3l 不能围成三角形,直接写出k 的值.22.(10分)某校260名学生参加植树活动,要求每人植4~7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A :4棵;B :5棵;C :6棵;D :7棵.将各类的人数绘制成扇形图(如图1)和条形图(如图2),经确认扇形图是正确的,而条形图尚有一处错误.回答下列问题:(1)写出条形图中存在的错误,并说明理由;(2)写出这20名学生每人植树量的众数、中位数;(3)在求这20名学生每人植树量的平均数时,小宇是这样分析的:① 小宇的分析是从哪一步开始出现错误的?② 请你帮他计算出正确的平均数,并估计这260名学生共植树多少棵.23.(10分)化简:(1)22414a a ++- (2)222222x y x xy x xy y x y ⎛⎫-÷- ⎪+++⎝⎭ 24.(10分)今年5月19日为第29个“全国助残日”我市某中学组织了献爱心捐款活动,该校数学课外活动小组对本次捐款活动做了一次抽样调查,并绘制了如下不完整的频数分布表和频数分布直方图(每组含前一个边界,不含后一个边界). 捐款额(元) 频数百分比 510x < 37.5% 1015x <7 17.5% 1520x < ab 2025x < 1025% 2530x < 615% 总计100% (1)填空:a =________,b =________.(2)补全频数分布直方图.(3)该校有2000名学生估计这次活动中爱心捐款额在1525x <的学生人数.25.(12分)如图,直线y =kx +b (k ≠0)与两坐标轴分别交于点B 、C ,点A 的坐标为(﹣2,0),点D 的坐标为(1,0).(1)求直线BC 的函数解析式.(2)若P (x ,y )是直线BC 在第一象限内的一个动点,试求出△ADP 的面积S 与x 的函数关系式,并写出自变量x 的取值范围.(3)在直线BC 上是否存在一点P ,使得△ADP 的面积为3?若存在,请直接写出此时点P 的坐标,若不存在,请说明理由.26.如图,已知直线AB 的函数解析式为28y x =-+,直线与x 轴交于点A,与y 轴交于点B .(1)求A 、B 两点的坐标;(2)若点P(m ,n)为线段AB 上的一个动点(与A 、B 不重合),过点P 作PE ⊥x 轴于点E ,PF ⊥y 轴于点F ,连接EF ; ①若△PAO 的面积为S ,求S 关于m 的函数关系式,并写出m 的取值范围;②是否存在点P ,使EF 的值最小?若存在,求出EF 的最小值;若不存在,请说明理由.参考答案一、选择题(每题4分,共48分)1、D【解题分析】根据众数和中位数的定义求解即可.一组数据中,出现次数最多的数就叫这组数据的众数.把一组数据按从小到大的顺序排列,中间的一个数字(或两个数字的平均数)叫做这组数据的中位数.【题目详解】解:由图可得出这组数据中1.72m 出现的次数最多,因此,这30名学生身高的众数是1.72m ;把这一组数据按从小到大的顺序排列,中间的两个数字是1.72m、1.72m,因此,这30名学生身高的中位数是1.72m.故选:D.【题目点拨】本题考查的知识点是众数以及中位数,掌握众数以及中位数的定义是解此题的关键.2、A【解题分析】根据题意,画出坐标系,再根据题中信息进行解答即可得.【题目详解】建立坐标系如图所示,∵“数对”(190,43°) 表示图中承德的位置,“数对”(160,238°) 表示图中保定的位置,∴张家口的位置对应的“数对”为(176,145°),故选A.【题目点拨】本题考查了坐标位置的确定,解题的关键是明确题意,画出相应的坐标系.3、B【解题分析】首先根据图形中给出的一次函数图象确定a、b的符号,进而运用二次函数的性质判断图形中给出的二次函数的图象是否符合题意,根据选项逐一讨论解析,即可解决问题.【题目详解】解:A、对于直线y=-bx+a来说,由图象可以判断,a<0,b>0;而对于抛物线y=ax2+bx来说,图象应开口向下,故不合题意;B、对于直线y=-bx+a来说,由图象可以判断,a>0,b<0;而对于抛物线y=ax2+bx来说,图象开口向上,对称轴x=-2b a>0,在y 轴的右侧,符合题意,图形正确; C 、对于直线y=-bx+a 来说,由图象可以判断,a <0,b <0;而对于抛物线y=ax 2+bx 来说,对称轴x=-2b a <0,应位于y 轴的左侧,故不合题意;D 、对于直线y=-bx+a 来说,由图象可以判断,a >0,b <0;而对于抛物线y=ax 2+bx 来说,图象应开口向下,故不合题意.故选:B .【题目点拨】此题主要考查了一次函数、二次函数图象的性质及其应用问题;解题的方法是首先根据其中一次函数图象确定a 、b 的符号,进而判断另一个函数的图象是否符合题意;解题的关键是灵活运用一次函数、二次函数图象的性质来分析、判断、解答.4、C【解题分析】解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD=BC=8,CD=AB=6,∴∠F=∠DCF ,∵∠C 平分线为CF ,∴∠FCB=∠DCF ,∴∠F=∠FCB ,∴BF=BC=8,同理:DE=CD=6,∴AF=BF−AB=2,AE=AD−DE=2∴AE+AF=4故选C5、B【解题分析】先求出菱形对角线的长度,再根据菱形的面积计算公式求解即可.【题目详解】∵四边形ABCD 是菱形,∴BD=2BO ,AC=2AO ,∵∴BD=63,AC=6, ∴菱形ABCD 的面积=12×AC×BD=12×63×6=183. 故选B.【题目点拨】此题主要考查菱形的对角线的性质和菱形的面积计算. 6、C【解题分析】试题解析:∵D 、E 分别是AB 、AC 上点,DE //BC , ∴AD AE BD EC= ∵AD =2,DB =1,AE =3,∴·31322AE BD EC AD ⨯=== 故选C.7、D【解题分析】根据中位线的性质得出//DE BC ,1=2DE BC ,然后根据勾股定理即可求出DE 的长. 【题目详解】 DE 垂直平分AC ,DE ∴为ACB ∆中BC 边上的中位线,∴//DE BC ,1=2DE BC 在Rt ACB ∆中, 22543BC =-=,1.5DE ∴=.故选D .【题目点拨】本题考查了三角形的线段长问题,掌握中位线的性质、勾股定理是解题的关键.8、C【解题分析】 先根据一次函数图象上的坐标特征和坐标轴上点的坐标特征确定直线与两条坐标轴的交点坐标,然后根据三角形的面积公式求解.【题目详解】解:把x=0代入得y=-1,则直线与y 轴的交点坐标为(0,-1); 把y=0代入得2x-1=0,解得x=2,则直线与x 轴的交点坐标为(2,0), 所以直线与x 轴、y 轴所围成的三角形的面积=×2×1=1. 故选:C .【题目点拨】本题考查了一次函数图象上点的坐标特征,直线与坐标轴的交点问题,掌握求直线与坐标轴的交点是解题的关键. 9、D【解题分析】根据正比例函数解析式及反比例函数解析式确定其函数图象经过的象限即可.【题目详解】解:函数y x =中10k =>,所以其图象过一、三象限,函数2y x =中20k =>,所以其图象的两支分别位于第一、三象限,符合的为D 选项.故选D.【题目点拨】本题综合考查了一次函数与反比例函数的图象,熟练掌握函数的系数与其图象经过的象限的关系是解题的关键. 10、B【解题分析】试题解析:A 、因为根据三角形内角和定理可求出三个角分别为30度,60度,90度,所以是直角三角形;B 、根据三角形内角和定理可求出三个角分别为45度,60度,75度,所以不是直角三角形;C 、因为32+42=52,符合勾股定理的逆定理,所以是直角三角形;D 、因为1+2=3,所以是直角三角形.故选B .11、D【解题分析】解:三角形纸片ABC 中,AB =8,BC =4,AC =1.A .44182AB ==,对应边631842AC AB ==≠,则沿虚线剪下的涂色部分的三角形与△ABC 不相似,故此选项错误;B.338AB=,对应边633848ACAB==≠,则沿虚线剪下的涂色部分的三角形与△ABC不相似,故此选项错误;C.22163AC==,对应边631843ACAB==≠,则沿虚线剪下的涂色部分的三角形与△ABC不相似,故此选项错误;D.22142BC==,对应边411822BCAB===,则沿虚线剪下的涂色部分的三角形与△ABC相似,故此选项正确;故选D.点睛:此题主要考查了相似三角形的判定,正确利用相似三角形两边比值相等且夹角相等的两三角形相似是解题关键.12、A【解题分析】根据正比例函数图象确定B点坐标再根据图象确定A点的坐标,设出一次函数解析式,代入一次函数解析式,即可求出.【题目详解】解:∵B点在正比例函数y=2x的图象上,横坐标为1,∴y=2×1=2,∴B(1,2),设一次函数解析式为:y=kx+b,∵一次函数的图象过点A(0,3),与正比例函数y=2x的图象相交于点B(1,2),∴可得出方程组32bk b=⎧⎨+=⎩,解得31bk=⎧⎨=-⎩,则这个一次函数的解析式为y=-x+3,故选:A.【题目点拨】此题主要考查了待定系数法求一次函数解析式,解决问题的关键是利用一次函数的特点,来列出方程组,求出未知数,即可写出解析式.二、填空题(每题4分,共24分)13、1.【解题分析】根据平行四边形的性质,对角相等以及邻角互补,即可得出答案.解:∵平行四边形ABCD,∴∠A+∠B=180°,∠A=∠C,∵∠A+∠C=140°,∴∠A=∠C=70°,∴∠B=1°.故答案为1.14、75︒【解题分析】根据平行四边形的对角相等的性质即可求解.【题目详解】解:在□ABCD中,//AB CD180A D∴∠+∠=︒∠A=105º,∴180********D A∠=︒-∠=︒-︒=︒故答案为:75︒【题目点拨】本题考查平行四边形的性质,利用平行四边形对角相等的性质是解题的关键.15、3【解题分析】由题意可知:中间小正方形的边长为:a-b,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长. 【题目详解】由题意可知:中间小正方形的边长为:a-b,∵每一个直角三角形的面积为:12ab=12×8=4,∴4×12ab+(a-b)2=25,∴(a−b)2=25-16=9,∴a-b=3,故答案为3.【题目点拨】本题考查了勾股定理的证明,熟练掌握该知识点是本题解题的关键.16、2-5. 【解题分析】 解:∵1a ﹣1b =2,∴a ﹣b =﹣2ab ,∴原式=42a b ab a b ab -+--()()=244ab ab ab ab -+--=25ab ab -=﹣25.故答案为﹣25.17、1分米. 【解题分析】分2是斜边时和2是直角边时,利用勾股定理列式求出斜边,然后根据直角三角形斜边上的中线等于斜边的一半解答.【题目详解】2是斜边时,此直角三角形斜边上的中线长=12×2=1分米,2是直角边时,斜边此直角三角形斜边上的中线长=122分米,综上所述,此直角三角形斜边上的中线长为1分米.故答案为1分米. 【题目点拨】 本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,难点在于分情况讨论.18、1x >【解题分析】根据二次根式的被开方数是非负数和分式的分母不等于零进行解答.【题目详解】 解:依题意得:201x -≥且x-1≠0, 解得1x >.故答案为:1x >.【题目点拨】0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.三、解答题(共78分)19、(1)长方形的长为8,宽为1;(2)m=1,a=1,b=11;(3)S与t的函数解析式为448(811)226(1113)t tSt t-+≤≤⎧=⎨-+<≤⎩.【解题分析】(1)由图象可知:当6≤t≤8时,△ABP面积不变,由此可求得长方形的宽,再根据点P运动到点C时S△ABP=16,即可求出长方形的长;(2)由图象知当t=a时,S△ABP=8=12S△ABP,可判断出此时点P的位置,即可求出a和m的值,再根据当t=b时,S△ABP=1,可求出AP的长,进而可得b的值;(3)先判断S与t成一次函数关系,再用待定系数法求解即可.【题目详解】解:(1)从图象可知,当6≤t≤8时,△ABP面积不变,∴6≤t≤8时,点P从点C运动到点D,且这时速度为每秒2个单位,∴CD=2(8-6)=1,∴AB=CD=1.当t=6时(点P运动到点C),由图象知:S△ABP=16,∴12AB•BC=16,即12×1×BC=16.∴BC=8.∴长方形的长为8,宽为1.(2)当t=a时,S△ABP=8=12×16,此时点P在BC的中点处,∴PC=12BC=12×8=1,∴2(6-a)=1,∴a=1.∵BP=PC=1,∴m=BPa=44=1.当t=b时,S△ABP=12AB•AP=1,∴12×1×AP=1,AP=2.∴b=13-2=11.故m=1,a=1,b=11.(3)当8≤t≤11时,S关于t的函数图象是过点(8,16),(11,1)的一条线段,可设S =kt +b ,∴816114k b k b +=⎧⎨+=⎩,解得448k b =-⎧⎨=⎩,∴S =-1t +18(8≤t ≤11). 同理可求得当11<t ≤13时,S 关于t 的函数解析式为S=-2t +26(11<t ≤13).∴S 与t 的函数解析式为448(811)226(1113)t t S t t -+≤≤⎧=⎨-+<≤⎩. 【题目点拨】本题是一次函数的综合题,重点考查了动点问题的函数图象和用待定系数法求一次函数的解析式,弄清题意,抓住动点运动中的几个关键点,读懂图象所提供的信息是解题的关键.20、(1)详见解析;(2)详见解析.【解题分析】(1)利用勾股定理即可解决问题.(2)利用数形结合的思想,画一个边长为2的正方形即可.【题目详解】解:(1)线段AB 如图所示.(2)正方形ABCD 如图所示.【题目点拨】本题考查作图﹣应用与设计,勾股定理等知识,解题的关键是熟练掌握基本知识,学会利用数形结合的思想解决问题.21、(1)m=2;2l 的解析式为:32y x =;(2)8;(3)k 的值为12-或32或1 【解题分析】(1)将点C 坐标代入142y x =-+即可求出m 的值,利用待定系数法即可求出l 2的解析式; (2)根据一次函数142y x =-+,可求出A (8,0),B (0,4),结合点C 的坐标,利用三角形面积的计算公式即可求出AOC BOC S S -的值;(3)若1l ,2l ,3l 不能围成三角形,则有三种情况,①当l 1∥l 3时;②当l 2∥l 3时;③当l 3过点C 时,根据得出k 的值即可.【题目详解】解:(1)将点()3C m ,代入142y x =-+得1342m =-+,解得m=2, ∴C (2,3)设l 2的解析式为y=nx ,将点C 代入得:3=2n ,∴32n =, ∴2l 的解析式为:32y x =; (2)如图,过点C 作CE ⊥y 轴于点E ,作CF ⊥x 轴于点F ,∵C (2,3)∴CE=2,CF=3,∵一次函数142y x =-+的图象1l 分别与x ,y 轴交于A ,B 两点, ∴当x=0时,y=4,当y=0时,x=8,∴A (8,0),B (0,4),∴OA=8,OB=4,∴1111834282222AOC BOC OA CF OB CE S S =⋅-⋅=⨯-⨯-⨯⨯=(3)①当l 1∥l 3时,1l ,2l ,3l 不能围成三角形,此时k=12-; ②当l 2∥l 3时,1l ,2l ,3l 不能围成三角形,此时k=32; ③当l 3过点C 时,将点C 代入1y kx =+中得:321k =+,解得k=1,综上所述,k 的值为12-或32或1. 【题目点拨】 本题考查了两直线的交点,要求利用图象求解各问题,要认真体会点的坐标,一次函数与一元一次方程组之间的内在联系.22、解:(1)D 错误(2)众数为1,中位数为1.(2)①小宇的分析是从第二步开始出现错误的.②1278(颗)【解题分析】分析:(1)条形统计图中D 的人数错误,应为20×10%. (2)根据条形统计图及扇形统计图得出众数与中位数即可.(2)①小宇的分析是从第二步开始出现错误的;②求出正确的平均数,乘以260即可得到结果.解:(1)D 错误,理由为:∵共随机抽查了20名学生每人的植树量,由扇形图知D 占10%,∴D 的人数为20×10%=2≠2.(2)众数为1,中位数为1.(2)①小宇的分析是从第二步开始出现错误的. ②44586672x 5.320⨯+⨯+⨯+⨯==(棵). 估计260名学生共植树1.2×260=1278(颗) 23、(1)2a a -;(2)2x. 【解题分析】(1)根据平方差公式和提公因式法,对分式进行化简即可(2)利用完全平方公式和平方差公式,进行化简,再对括号里面的分式进行通分约分,再把除法转化为乘法,即可解答【题目详解】(1)原式2122a a a =+=-- 或:原式22242a a a a a +==--(2)原式()()()2222x y x y x xy x y x y x y x y x x y x+---=÷=⋅=+++- 【题目点拨】此题考查分式的化简求值,掌握运算法则是解题关键24、(1)14a =,35%b =;(2)详见解析;(3)估计这次活动中爱心捐款额在1525x <的学生有1200人【解题分析】(1)先根据5≤x<l0的频数及其百分比求出样本容量,再根据各组频数之和等于总人数求出a 的值,继而由百分比的概念求解可得;(2)根据所求数据补全图形即可得;(3)利用200060%1200⨯=可以求得.【题目详解】(1)样本容量=3÷0.75%=40,∴14a =,35%b =.(2)补图如下.(3)200060%1200⨯=(人).答:估计这次活动中爱心捐款额在1525x <的学生有1200人.【题目点拨】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.25、(1)243y x =-+;(2)S =﹣x +6(0<x <6);(3)点P 的坐标是(3,2),P ′(9,﹣2). 【解题分析】(1)设直线BC 的函数关系式为y =kx +b (k ≠0),把B 、C 的坐标代入求出即可;(2)求出y =﹣23x +4和AD =3,根据三角形面积公式求出即可; (3)把S =3代入函数解析式,求出x ,再求出y 即可.【题目详解】解:(1)设直线BC 的函数关系式为y =kx +b (k ≠0),由图象可知:点C 坐标是(0,4),点B 坐标是(6,0),代入得:460b k b =⎧⎨+=⎩, 解得:k =﹣23,b =4, 所以直线BC 的函数关系式是y =﹣23x +4; (2)∵点P (x ,y )是直线BC 在第一象限内的点,∴y >0,y =﹣23x +4,0<x <6, ∵点A 的坐标为(﹣2,0),点D 的坐标为(1,0),∴AD =3,∴S △ADP =12×3×(﹣23x +4)=﹣x +6, 即S =﹣x +6(0<x <6);(3)当S =3时,﹣x +6=3,解得:x =3,y =﹣23×3+4=2, 即此时点P 的坐标是(3,2),根据对称性可知当当P 在x 轴下方时,可得满足条件的点P′(9,﹣2).【题目点拨】本题考查了用待定系数法求一次函数的解析式和一次函数图象上点的坐标特征,能正确求出直线BC 的解析式是解此题的关键.26、(1)A (4,0),B (0,8);(2)S =﹣4m +16,(0<m <4);(3,理由见解析 【解题分析】试题分析:(1)根据坐标轴上点的特点直接求值,(2)①由点在直线AB 上,找出m 与n 的关系,再用三角形的面积公式求解即可;②判断出EF 最小时,点P 的位置,根据三角形的面积公式直接求解即可.试题解析:(1)令x=0,则y=8,∴B (0,8),令y=0,则﹣2x+8=0,∴x=4,∴A (4,0),(2)∵点P (m ,n )为线段AB 上的一个动点,∴﹣2m+8=n ,∵A (4,0),∴OA=4,∴0<m <4∴S △PAO =12OA×PE=12×4×n=2(﹣2m+8)=﹣4m+16,(0<m <4); (3)存在,理由如下:∵PE ⊥x 轴于点E ,PF ⊥y 轴于点F ,OA ⊥OB ,∴四边形OEPF 是矩形,∴EF=OP ,当OP ⊥AB 时,此时EF 最小,∵A (4,0),B (0,8),∴∵S △AOB=12OA×OB=12AB×OP ,∴OP=OA OB AB ⨯==,∴EF 最小 【题目点拨】主要考查了坐标轴上点的特点,三角形的面积公式,极值的确定,解本题的关键是求出三角形PAO 的面积.。

四川省成都市新都区2024届数学八年级第二学期期末学业水平测试试题含解析

四川省成都市新都区2024届数学八年级第二学期期末学业水平测试试题含解析

四川省成都市新都区2024届数学八年级第二学期期末学业水平测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码粘贴在答题卡右上角"条形码粘贴处"。

2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试题卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(每小题3分,共30分)1.以下各组数中,能作为直角三角形的三边长的是( ) A .6,6,7B .6,7,8C .6,8,10D .6,8,92.平移直线6y x =-得到直线65y x =-+,正确的平移方式是( ) A .向上平移5个单位长度 B .向下平移5个单位长度 C .向左平移6个单位长度D .向右平移6个单位长度3.以下列各组数为边长,能组成直角三角形的是( ) A .1,2,3B .2,3,4C .3,4,6D .1,3,24.在平面直角坐标系中,点P(2,-3)关于原点对称的点的坐标是( ) A .(2,3) B .(-2,3) C .(-2,-3) D .(-3,2)5.如图,点O (0,0),A (0,1)是正方形OAA 1B 的两个顶点,以OA 1对角线为边作正方形OA 1A 2B 1,再以正方形的对角线OA 2作正方形OA 1A 2B 1,…,依此规律,则点A 2018的坐标是( )A .(﹣2018,0)B .(21009,0)C .(21008,﹣21008)D .(0,21009)6.在函数y=中,自变量x 的取值范围是( ) A .x≤﹣3B .x≥﹣3C .x <﹣3D .x >﹣37.若分式||1(2)(1)xx x--+的值为0,则x等于()A.﹣l B.﹣1或2 C.﹣1或1 D.1 8.下列二次根式中,与3是同类二次根式的是()A.6B.0.3C.23D.129.如图,在△ABC中,∠B=90°,以A为圆心,AE长为半径画弧,分别交AB、AC于F、E两点;分别以点E和点F为圆心,大于12EF且相等的长为半径画弧,两弧相交于点G,作射线AG,交BC于点D,若BD=43,AC长是分式方程135(2)x x=-的解,则△ACD的面积是()A.103B.203C.4 D.310.小强和小华两人玩“剪刀、石头、布”游戏,随机出手一次,则两人平局的概率为()A.16B.13C.12D.23二、填空题(每小题3分,共24分)11.某农科院为了选出适合某地种植的甜玉米种子,对甲、乙两个品种甜玉米各用10块试验田进行实验,得到这两个品种甜玉米每公顷产量的两组数据(如图所示).根据图6中的信息,可知在试验田中,____种甜玉米的产量比较稳定.12.某同学在体育训练中统计了自己五次“1分钟跳绳”成绩,并绘制了如图所示的折线统计图,这五次“1分钟跳绳”成绩的中位数是__________个.13.若23﹣1的整数部分是a ,小数部分是b ,则代数式a 2+2b 的值是_____.14.如图是两个一次函数y 1=k 1x +b 1与y 2=k 2x +b 2的图象,已知两个图象交于点A (3,2),当k 1x +b 1>k 2x +b 2时,x 的取值范围是_____.15.若直角三角形其中两条边的长分别为3,4,则该直角三角形斜边上的高的长为________.16.正方形111A B C O ,2221A B C C ,3332A B C C ,…按如图所示的方式放置.点1A ,2A ,3A ,…和点1C ,2C ,3C ,…分别在直线1y x =+和x 轴上,则点6B 的坐标是 .17.不等式2x-1>5的解集为 .18.设x 1,x 2是一元二次方程x 2﹣x ﹣1=0的两根,则x 1+x 2+x 1x 2=_____. 三、解答题(共66分)19.(10分)一家公司准备招聘一名英文翻译,对甲、乙和丙三名应试者进行了听、说、读、写 的英语水平测试,他们各项的成绩(百分制)如下: 应试者 听 说 读 写 甲82867875乙73 80 85 82丙81 82 80 79(1)如果这家公司按照这三名应试者的平均成绩(百分制)计算,从他们的成绩看,应该录取谁?(2)如果这家公司想招一名口语能力较强的翻译,听、说、读、写成绩按照3∶4∶2∶1 的权重确定,计算三名应试者的平均成绩(百分制),从他们的成绩看,应该录取谁?(3)如果这家公司想招一名笔译能力较强的翻译,听、说、读、写成绩按照1∶2∶3∶4 的权重确定,计算三名应试者的平均成绩(百分制).从他们的成绩看,应该录取谁?20.(6分)如图1,直线l1:y=﹣x+3与坐标轴分别交于点A,B,与直线l2:y=x交于点C.(1)求A,B两点的坐标;(2)求△BOC的面积;(3)如图2,若有一条垂直于x轴的直线l以每秒1个单位的速度从点A出发沿射线AO方向作匀速滑动,分别交直线l1,l2及x轴于点M,N和Q.设运动时间为t(s),连接CQ.①当OA=3MN时,求t的值;②试探究在坐标平面内是否存在点P,使得以O、Q、C、P为顶点的四边形构成菱形?若存在,请直接写出t的值;若不存在,请说明理由.21.(6分)如图(1),在平面直角坐标系中,直线y=-x+m交y轴于点A,交x轴于点B,点C为OB的中点,作C 关于直线AB的对称点F,连接BF和OF,OF交AC于点E,交AB于点M.(1)直接写出点F的坐标(用m表示);(2)求证:OF⊥AC;(3)如图(2),若m=2,点G的坐标为(-13,0),过G点的直线GP:y=kx+b(k≠0)与直线AB始终相交于第一象限;①求k的取值范围;②如图(3),若直线GP经过点M,过点M作GM的垂线交FB的延长线于点D,在平面内是否存在点Q,使四边形DMGQ为正方形?如果存在,请求出Q点坐标;如果不存在,请说明理由.22.(8分)如图,直线2y x m =+与x 轴交于点()2,0A -,直线y x n =-+与x 轴、y 轴分别交于B 、C 两点,并与直线2y x m =+相交于点D ,若4AB =.()1求点D 的坐标;()2求出四边形AOCD 的面积; ()3若E 为x 轴上一点,且ACE 为等腰三角形,写出点E 的坐标(直接写出答案).23.(8分)为声援扬州“运河申遗”,某校举办了一次运河知识竞赛,满分10分,学生得分为整数,成绩达到6分以上(包括6分)为合格,达到9分以上(包含9分)为优秀.这次竞赛中甲乙两组学生成绩分布的条形统计图如图所示.(1)补充完成下面的成绩统计分析表: 组别平均分中位数方差合格率优秀率甲组 6.7 3.41 90% 20% 乙组7.51.6980%10%(2)小明同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上表可知,小明是 组的学生;(填“甲”或“乙”)(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你给出两条支持乙组同学观点的理由.24.(8分)如图是一块地的平面图,AD=4m ,CD=3m ,AB=13m ,BC=12m ,∠ADC=90°,求这块地的面积.25.(10分)某租赁公司拥有汽车 100 辆.据统计,每辆车的月租金为 4000 元时,可全部租出.每辆车的月租金每增加 100 元,未租出的车将增加 1 辆.租出的车每辆每月的维护费为 500 元,未租出的车每辆每月只需维护费 100 元.(1)当每辆车的月租金为 4600 元时,能租出多少辆?并计算此时租赁公司的月收益(租金收入扣 除维护费)是多少万元?(2)规定每辆车月租金不能超过 7200 元,当每辆车的月租金定为多少元时,租赁公司的月收益(租金收入扣除维护费)可达到 40.4 万元? 26.(10分)完成下列各题 (124322623(2)解方程:2230x x --=参考答案一、选择题(每小题3分,共30分)1、C 【解题分析】分别把选项中的三边平方后,根据勾股定理逆定理即可判断能否构成直角三角形. 【题目详解】解:A 、22266727+=≠,不能构成直角三角形; B 、22267858+=≠,不能构成直角三角形; C 、2226810010+==,能构成直角三角形; D 、222681009+=≠,不能构成直角三角形; 故选C . 【题目点拨】考查了勾股数的判定方法,比较简单,只要对各组数据进行检验,看各组数据是否符合勾股定理的逆定理即可. 2、A 【解题分析】根据“上加下减”法则进行判断即可. 【题目详解】将直线6y x =-向上平移5个单位长度得到直线65y x =-+, 故选:A. 【题目点拨】本题主要考查了函数图像平移的性质,熟练掌握相关平移特点是解题关键. 3、D 【解题分析】根据勾股定理的逆定理,只要两边的平方和等于第三边的平方即可构成直角三角形. 【题目详解】解:A 、12+22=5≠32,故不符合题意; B 、22+32=13≠42,故不符合题意; C 、32+42=25≠62,故不符合题意;D 、12+2=4=22,符合题意.故选D. 【题目点拨】本题主要考查了勾股定理的逆定理,已知三条线段的长,判断是否能构成直角三角形的三边,简便的方法是:判断两个较小的数的平方和是否等于最大数的平方即可.4、B【解题分析】根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y)”解答.【题目详解】根据中心对称的性质,得点P(2,-3)关于原点对称的点的坐标是(-2,3).故选B.【题目点拨】关于原点对称的点坐标的关系,是需要识记的基本问题.记忆方法是结合平面直角坐标系的图形记忆.5、B【解题分析】根据正方形的性质找出点A1、A2、A3、A4、A5、A6、A7、A8、A9、A10、…的坐标,根据坐标的变化可找出变化规律“A8n+2(24n+1,0)(n为自然数)”,依此规律即可求出点A2018的坐标(根据点的排布找出第8n+2个点在x轴正半轴,利用排除法亦可确定答案).【题目详解】解:∵A1(1,1),A2(2,0),A3(2,﹣2),A4(0,﹣4),A5(﹣4,﹣4),A6(﹣8,0),A7(﹣8,8),A8(0,16),A9(16,16),A10(32,0),…,∴A8n+2(24n+1,0)(n为自然数).∵2018=252×8+2,∴点A2018的坐标为(21009,0).故选:B.【题目点拨】本题考查了规律型:点的坐标,根据点的坐标的变化找出变化规律“A8n+2(24n+1,0)(n为自然数)”是解题的关键.6、B【解题分析】根据二次根式有意义的条件列出不等式即可.【题目详解】解:根据题意得:x+3≥0解得:x≥-3所以B选项是正确的.【题目点拨】本题考查二次根式及不等式知识,解题时只需找出函数有意义必须满足的条件列出不等式即可,对于一些较复杂的函数一定要仔细.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.7、D【解题分析】直接利用分式的值为零则分子为零分母不为零进而得出答案.【题目详解】解:∵分式||1(2)(1)xx x--+的值为0,∴|x|﹣1=0,x﹣2≠0,x+1≠0,解得:x=1.故选D.【题目点拨】此题主要考查了分式有意义的条件,正确把握定义是解题关键.8、D【解题分析】首先把四个选项中的二次根式化简,再根据同类二次根式的定义:一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式可得答案.【题目详解】解:A不是同类二次根式;B=不是同类二次根式;C3=不是同类二次根式;D=故选:D.【题目点拨】此题主要考查了同类二次根式,关键是掌握同类二次根式的定义.9、A【解题分析】利用角平分线的性质定理证明DB=DH=43,再根据三角形的面积公式计算即可【题目详解】如图,作DH⊥AC于H,∵135(2) x x=-∴5(x-2)=3x∴x=5经检验:x=5是分式方程的解∵AC长是分式方程135(2)x x=-的解∴AC=5∵∠B=90°∴DB⊥AB,DH⊥AC ∵AD平分∠BAC,∴DH=DB=4 3S ADC= 14105= 233⨯⨯故选A【题目点拨】此题考查角平分线的性质定理和三角形面积,解题关键在于做辅助线10、B【解题分析】试题解析:小强和小华玩“石头、剪刀、布”游戏,所有可能出现的结果列表如下:小强小华石头剪刀布石头(石头,石头)(石头,剪刀)(石头,布)剪刀(剪刀,石头)(剪刀,剪刀)(剪刀,布)布(布,石头)(布,剪刀)(布,布)∵由表格可知,共有9种等可能情况.其中平局的有3种:(石头,石头)、(剪刀,剪刀)、(布,布).∴小明和小颖平局的概率为:31 93 .故选B.考点:概率公式.二、填空题(每小题3分,共24分)11、乙【解题分析】试题分析:从图中看到,乙的波动比甲的波动小,故乙的产量稳定.故填乙.考点:方差;折线统计图.点评:本题要求了解方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.12、1.【解题分析】解:由图可知,把数据从小到大排列的顺序是:180、182、1、185、186,中位数是1.故答案为1.【题目点拨】本题考查折线统计图;中位数.13、23【解题分析】a,b 的值,代入即可.【题目详解】解:∵16<23<25,∴15,∴31<1.∴a =3,b 1.∴原式=321)=8=故答案为:【题目点拨】本题考查的是估算无理数的大小,熟练掌握无理数的性质是解题的关键.14、x >3【解题分析】观察图象,找出函数y 1=k 1x +b 1的图象在y 2=k 2x +b 2的图象上方时对应的自变量的取值即可得答案.【题目详解】∵一次函数y 1=k 1x +b 1与y 2=k 2x +b 2的两个图象交于点A (3,2),∴当k 1x +b 1>k 2x +b 2时,x 的取值范围是x >3,故答案为:x >3.【题目点拨】本题考查了一次函数与不等式,运用数形结合思想是解本题的关键.15、2.4 【解题分析】分两种情况:直角三角形的两直角边为3、4或直角三角形一条直角边为3,斜边为4,首先根据勾股定理即可求第三边的长度,再根据三角形的面积即可解题.【题目详解】若直角三角形的两直角边为3、45=,设直角三角形斜边上的高为h , 1134522h ⨯⨯=⨯ ,∴ 2.4h =.若直角三角形一条直角边为3,斜边为4=设直角三角形斜边上的高为h , 113422h ⨯⨯=⨯ ,∴h =.故答案为:2.4或4. 【题目点拨】 本题考查了勾股定理和直角三角形的面积,熟练掌握勾股定理是解题的关键.16、(63,32).【解题分析】试题分析:∵直线1y x =+,x=0时,y=1,∴A 1B 1=1,点B 2的坐标为(3,2),∴A 1的纵坐标是:1=20,A 1的横坐标是:0=20﹣1,∴A 2的纵坐标是:1+1=21,A 2的横坐标是:1=21﹣1,∴A 3的纵坐标是:2+2=4=22,A 3的横坐标是:1+2=3=22﹣1,∴A 4的纵坐标是:4+4=8=23,A 4的横坐标是:1+2+4=7=23﹣1,即点A 4的坐标为(7,8),据此可以得到A n 的纵坐标是:2n ﹣1,横坐标是:2n ﹣1﹣1,即点A n 的坐标为(2n ﹣1﹣1,2n ﹣1),∴点A 6的坐标为(25﹣1,25),∴点B 6的坐标是:(26﹣1,25)即(63,32),故答案为(63,32).考点:1.一次函数图象上点的坐标特征;2.规律型.17、x>1【解题分析】考点:解一元一次不等式.分析:先移项,再合并同类项,系数化为1即可.解:移项得,2x>5+1,合并同类项得,2x>6,系数化为1得,x>1.故答案为x>1.点评:本题考查的是解一元一次不等式,熟知不等式的基本性质是解答此题的关键.18、1【解题分析】根据根与系数的关系得到x1+x2=1,x1×x2=﹣1,然后利用整体思想进行计算.【题目详解】解:∵x1、x2是方程x2﹣x﹣1=1的两根,∴x1+x2=1,x1×x2=﹣1,∴x1+x2+x1x2=1﹣1=1.故答案为:1.【题目点拨】此题考查根与系数的关系,解题关键在于得到x1+x2=1,x1×x2=﹣1.三、解答题(共66分)19、(1) 应该录取丙;(2) 应该录取甲;(3)应该录取乙【解题分析】(1)分别算出甲乙丙的平均数,比较即可;(2)由听、说、读、写按照的比3∶4∶2∶1确定,根据加权平均数的计算方法分别计算不同权的平均数,比较即可;(3) 由听、说、读、写按照的比1∶2∶3∶4确定,根据加权平均数的计算方法分别计算不同权的平均数,比较即可. 【题目详解】(1)甲的平均成绩:82+86+78+75=80.254乙的平均成绩:73+80+85+82=804丙的平均成绩:81+82+80+79=80.54∵80.5>80.25>80 ∴应该录取丙(2)甲的平均成绩:823+864+782+751=82.13+4+2+1⨯⨯⨯⨯乙的平均成绩:733+804+852+821=79.13+4+2+1⨯⨯⨯⨯丙的平均成绩:813+824+802+791=813+4+2+1⨯⨯⨯⨯∵82.1>81>79.1 ∴应该录取甲(3)甲的平均成绩:821+862+783+754=78.81+2+3+4⨯⨯⨯⨯乙的平均成绩:731+802+853+824=81.61+2+3+4⨯⨯⨯⨯丙的平均成绩:811+822+803+794=80.11+2+3+4⨯⨯⨯⨯∵81.6>80.1>78.8∴应该录取乙.【题目点拨】本题考查的是加权平均数的实际应用,熟练掌握加权平均数是解题的关键.20、(1)A(6,0)B(0,3);(2)S△OBC=3;(3)①t=或;②t=(6+2)s或(6﹣2)s或2s或4s时,以O、Q、C、P为顶点的四边形构成菱形.【解题分析】(1)利用待定系数法即可解决问题;(2)构建方程组确定点C坐标即可解决问题;(3)根据绝对值方程即可解决问题;(4)分两种情形讨论:当OC为菱形的边时,可得Q1Q2Q4(4,0);当OC为菱形的对角线时,Q3(2,0);【题目详解】(1)对于直线,令x=0得到y=3,令y=0,得到x=6,A(6,0)B(0,3).(2)由解得,∴C(2,2),∴(3)①∵∴∵OA=3MN,∴解得t=或②如图3中,由题意当OC为菱形的边时,可得Q1(﹣2,0),Q2(2,0),Q4(4,0);当OC为菱形的对角线时,Q3(2,0),∴t=(6+2)s或(6﹣2)s或2s或4s时,以O、Q、C、P为顶点的四边形构成菱形.【题目点拨】本题考查一次函数综合题、三角形的面积、菱形的判定和性质等知识,解题的关键是熟练掌握基本知识,学会用分类讨论的思想思考问题,属于中考压轴题.21、(1)(m,12m)(2)见解析(3)①0<k<6②(13,-53)【解题分析】(1)CF⊥AB,CR=FR,则∠RCB=45°,则RC=RB=RF,∠RBF=45°,即FB⊥x轴,即可求解;(2)证明△AOC≌△OBF(HL),即可求解;(3)①将点(-13,0)代入y=kx+b即可求解;②求出点D(2,-1),证明△MNG≌△MHD(HL),即可求解.【题目详解】解:(1)y=-x+m,令x=0,则y=m,令y=0,则x=m,则∠ABO=45°,故点A 、B 的坐标分别为:(0,m )、(m ,0),则点C (12m ,0), 如图(1)作点C 的对称轴F 交AB 于点R ,则CF ⊥AB ,CR=FR ,则∠RCB=45°,则RC=RB=RF ,∴∠RBF=45°,即FB ⊥x 轴,故点F (m ,12m ); (2)∵OC=BF=12m ,OB=OA , ∴△AOC ≌△OBF (HL ),∴∠OAC=∠FOB ,∵∠OAC+∠AOE=90°,∴∠OAC+∠AOE=90°,∴∠AEO=90°,∴OF ⊥AC ;(3)①将点(-12,0)代入y=kx+b 得: 213y x y kx k -+⎧⎪⎨+⎪⎩==,解得:633733k x k k y k -⎧=⎪⎪+⎨⎪=⎪+⎩, 由一次函数图象知:k >0, ∵交点在第一象限,则60337033k k k k -⎧>⎪⎪+⎨⎪>⎪+⎩, 解得:0<k <6;②存在,理由:直线OF 的表达式为:y=12x ,直线AB 的表达式为:y=-x+2,联立上述两个表达式并解得:x=43,故点M (43,23),直线GM 所在函数表达式中的k 值为:25,则直线MD 所在直线函数表达式中的k 值为-52, 将点M 坐标和直线DM 表达式中的k 值代入一次函数表达式并解得:直线DM 的表达式为:y=-52x+4,故点D (2,-1), 过点M 作x 轴的垂线于点N ,作x 轴的平行线交过点G 于y 轴的平行线于点S , 过点G 作y 轴的平行线交过点Q 与x 轴的平行线于点T ,则242415252,(1)33333333MN MH GN DH ===-==+===--=, ∴△MNG ≌△MHD (HL ), ∴MD=MG ,则△GTQ ≌△MSG ,则GT=MS=GN=53,TQ=SG=MN=23, 故点Q (13,-53). 【题目点拨】本题考查的是一次函数综合运用,涉及到待定系数法求一次函数解析式,一次函数图像的交点,全等三角形的判定与性质、点的对称性,其中(3)②,证明△MNG ≌△MHD (HL ),是本题的难点.22、(1)D 点坐标为28,33⎛⎫- ⎪⎝⎭;(2)103;(3)点E 的坐标为()222,0、()222,0-、()2,0、()0,0,()2210,0-+、()2210,0--、()8,0. 【解题分析】先确定直线AD 的解析式,进而求出点B 的坐标,再分两种情况:Ⅰ、当点B 在点A 右侧时,Ⅱ、当点B 在点A 左侧时,同Ⅰ的方法即可得出结论.(1)把B 点坐标代入y x n =-+可得到2n =,则2y x =-+,然后根据两直线相交的问题,通过解方程组224y x y x =-+⎧⎨=+⎩得到D 点坐标;(2)先确定C 点坐标为()0,2然后利用四边形AOCD 的面积DAB COB S S =-进行计算即可;(3)设出点E 的坐标,进而表示出AC AE CE 、、,再利用等腰三角形的两腰相等建立方程,即可得出结论;【题目详解】解:把()2,0A -代入2y x m =+得40m -+=,解得4m =,24y x ∴=-+,设(),0B c ,4AB =,()2,0A -,24c ∴+=,2c ∴=或6c =-,B ∴点坐标为()2,0或()6,0-,Ⅰ、当()2,0B 时,把()2,0B 代入y x n =-+得20n -+=,解得2n =,2y x ∴=-+,解方程组224y x y x ⎧=-+⎪⎨=+⎪⎩得2383x y ⎧=-⎪⎪⎨⎪=⎪⎩, D ∴点坐标为28,33⎛⎫- ⎪⎝⎭; ()2当0x =时,22y x =-+=,C ∴点坐标为()0,2,∴四边形AOCD 的面积DAB COB S S =-181422232=⨯⨯-⨯⨯ 103=; ()3设(),0E a ,()2,0A -,()0,2C ,AC ∴=,2AE a =+,CE =, ACE 是等腰三角形,①当AE AC =时,2a ∴+=,2a ∴=-+2a =--()2E ∴-+或()2-- ②当CE CA =时,=2a ∴=或2(a =-舍)()2,0E ∴,③当EA EC =时,2a ∴+=0a ∴=,()0,0E ∴,Ⅱ、当点()6,0B-时, 把()6,0B -代入y x n =-+得60n +=,解得6n =-, 6y x ∴=--,解方程组624y x y x ⎧=--⎪⎨=+⎪⎩,得51x y ⎧=-⎪⎨=-⎪⎩, D ∴点坐标为()5,1--;()2当0x =时,66y x =--=-, C ∴点坐标为()0,6-,∴四边形AOCD 的面积BOC ABD S S =-11664122=⨯⨯-⨯⨯ 16=;()3设(),0E b()2,0A -,()0,6C -,AC ∴=2AE b =+,CE =①当AE AC =时,2b ∴+=,2b ∴=-+2b =--,()2E ∴-+或()2-- ②当CE CA =时,=, 2b ∴=或2(a =-舍)()2,0E ∴,③当EA EC =时,2b ∴+=,8b ∴=, ()8,0E ∴,综上所述,点E 的坐标为()2,0、()2,0-、()2,0、()0,0,()2-+、()2--、()8,0.【题目点拨】此题是一次函数综合题,主要考查了待定系数法,坐标轴上点的坐标特征,两直线的交点坐标的确定,等腰三角形的性质,分类讨论的思想解决问题是解本题的关键.23、(1)6;7.1;(2)甲;(3)乙组的平均分,中位数高于甲组,方差小于甲组,故乙组成绩好于甲组 【解题分析】(1)将甲组成绩按照从小到大的顺序排列,找出第5、6个成绩,求出平均数即为甲组的中位数;找出乙组成绩,求出乙组的平均分,填表即可:∵甲组的成绩为:3,6,6,6,6,6,7,8,9,10,∴甲组中位数为6分 ∵乙组成绩为5,5,6,7,7,8,8,8,8,9,平均分为()155677888897.110+++++++++=(分) (2)根据两组的中位数,观察表格,成绩为7分处于中游略偏上,应为甲组的学生. (3)乙组的平均分高于甲组,中位数高于甲组,方差小于甲组,所以乙组成绩好于甲组 解:(1)填表如下: 组别 平均分 中位数 方差 合格率 优秀率 甲组 6.7 6 3.41 90% 20% 乙组7.17.51.6980%10%(2)甲.(3)乙组的平均分,中位数高于甲组,方差小于甲组,故乙组成绩好于甲组 故答案为(1)6;7.1;(2)甲 24、24m 2 【解题分析】连接AC ,利用勾股定理逆定理可以得出△ABC 是直角三角形,用△ABC 的面积减去△ACD 的面积就是所求的面积. 【题目详解】 连接AC ,∵∠ADC=90°∴在Rt △ADC 中,AC 2= AD 2+CD 2=42+32=25, ∵AC 2+BC 2=25+122=169, AB 2=132=169, ∴AC 2+BC 2= AB 2 ,∴∠ACB=90°, ∴S=S △ACB -S △ADC =12×12×5-12×4×3=24m 2 答:这块地的面积是24平方米考点:1.勾股定理的逆定理2.勾股定理 25、(1)38.48万元;(2)月租金定为1元. 【解题分析】(1)由月租金比全部租出多4600-4000=600元,得出未租出6辆车,租出94辆车,进一步算得租赁公司的月收益即可;(2)设上涨x 个100元,根据租赁公司的月收益可达到40.4万元列出方程解答即可. 【题目详解】(1)因为月租金4600元,未租出6辆车,租出94辆车; 月收益:94×(4600﹣500)﹣6×100=384800(元),即38.48万元.(2)设上涨x 个100元,由题意得(4000+100x ﹣500)(100﹣x )﹣100x=404000. 整理得:x 2﹣64x+540=0解得:x 1=54,x 2=10,因为规定每辆车月租金不能超过7200元,所以取x=10,4000+10×100=1. 答:月租金定为1元. 【题目点拨】本题考查了一元二次方程的应用,解题的难点在于根据题意列出一元二次方程. 26、(1)2;(2)13x =,21x =- 【解题分析】(1)先化简二次根式,再用二次根式乘法运算,最后合并同类项; (2)用因式分解法解一元二次方程. 【题目详解】(162=2=2=(2)2230x x --=(3)(1)0x x -+=解得:13x =,21x =-.【题目点拨】本题考查了二次根式的混合运算,及一元二次方程的解法,熟知以上运算法则是解题的关键.。

山西省晋中市榆次区2023-2024学年八年级上学期期中学业水平质量监测数学试卷(含解析)

山西省晋中市榆次区2023-2024学年八年级上学期期中学业水平质量监测数学试卷(含解析)

榆次区2023-2024学年第一学期期中学业水平质量监测题(卷)八年级数学注意事项:1.本试卷共8页,满分100分,考试时间90分钟.2.答卷前,考生务必将自己的姓名、准考证号填写在本试卷相应的位置.3.答案全部在答题卡上完成,答在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1. 64的平方根是()A. 8B.C.D. 4答案:C解析:解:64的平方根是:,故选:C.2. 在平面直角坐标系中,点的位置在()A. 第二象限B. 第四象限C. 轴上D. 轴上答案:D解析:解:平面直角坐标系中,点所在的位置是轴上,故选:D.3. 下列实数中的无理数是()A. B. C. D.答案:A解析:解:开方开不尽,是无理数;,是分数,是整数,都属于有理数;故选:A.4. “赵爽弦图”(图1)通过对图形的切割、拼接,巧妙地利用面积关系证明了一个重要的数学定理,它表现了我国古人对数学的钻研精神和聪明才智,是我国古代数学的骄傲,这个图案被选为2002年国际数学家大会的会徽(图2).利用这个图形证明的重要数学定理是()A. 三角形内角和定理B. 勾股定理C. 勾股定理的逆定理D. 全等三角形的判定定理答案:B解析:解:由勾股定理相关的数学背景可知:“赵爽弦图”是对勾股定理的验证.故选:B.5. 下列计算正确的是()A. B. C. D.答案:D解析:解:A、,此选项不符合题意;B、,此选项不符合题意;C、,此选项不符合题意;D、,此选项符合题意.故选:D.6. 以下四组数据中不能作为直角三角形的三边长的是()A. B. C. D.答案:D解析:解:A、,故不符合题意;B、,故不符合题意;C、,故不符合题意;D、,故符合题意;故选:D.7. 某校开展了主题为“生活中的一次函数”的项目学习,同学们找到了许多生活中的函数.下面实例中,变量之间的关系不是一次函数的是()A. 家庭用水的单价为4.1元,每月的水费支出与用水量之间的关系B. 百米赛跑中,时间与速度之间的关系C. 相同规格的A4纸整齐放置,纸的厚度与纸的张数之间的关系D. 普通钟表指针转动的角度与所用时间的关系答案:B解析:解:A、家庭用水的单价为4.1元,每月的水费支出与用水量之间的关系是一次函数关系,不符合题意;B、百米赛跑中,时间与速度之间的关系是不是一次函数关系,符合题意;C、相同规格的A4纸整齐放置,纸的厚度与纸的张数之间的关系是一次函数关系,不符合题意;D、普通钟表指针转动的角度与所用时间的关系是一次函数关系,不符合题意.故选:B.8. 如图1,大树移植后常用木头支撑.将其中一根木头的支撑情况抽象为数学图形(图2),如果木头的长为1.8米,木头底端A到树底端C的距离长为1米,则的长度在()A. 1.2米到1.3米之间B. 1.3米到1.4米之间C. 1.4米到1.5米之间D. 1.5米到1.6米之间答案:C解析:解:由勾股定理,得(米)∵,,∴∴长度在1.4米到1.5米之间故选:C.9. 如图是一个数值转换器,如果输入的为81,则输出的值为()A. B. C. D.答案:A解析:当时,取算术平方根为9,是有理数,代入,取算术平方根为3,是有理数,代入,取算术平方根为,是无理数,则输出为.故选:A.10. 小磊在画一次函数的图象时列出了如下表格,小颖看到后说有一个函数值求错了.这个错误的函数值是…012……852…A. 5B. 2C.D.答案:C解析:解:设一次函数的表达式为:,由表得:,解得:,,当时,,当时,,当时,,当时,,这个错误函数值为,故选C.二、填空题(本大题共5个小题,每小题3分,共15分)11. 的绝对值是_____.答案:12. 如图是杭州亚运会火炬传递线路图,小红和小亮想利用平面直角坐标系的相关知识标记各站点.他们将其置于正方形网格中,宁波站的坐标为,舟山站的坐标为,则丽水站的坐标为________.答案:解析:解:由,可建立如图所示的平面直角坐标系:∴点C的坐标是.故答案为:.13. 复习课上,同学们根据一次函数所满足的性质写表达式.小华说:“一次函数图象经过点,小丽说:“该函数中,的值随着值的增大而减小”,则该一次函数表达式可以是________.(写出一种即可)答案:(答案不唯一)解析:解:设一次函数的解析式为,∵y随着x的增大而减小,∴,∵图象过点,∴,∴符合条件的解析式可以为:.故答案为:(答案不唯一).14. 如图,长方体的长为,宽为,高为,点与点的距离是,一只蚂蚁如果要沿着长方体的表面从点爬到点,需要爬行的最短路程是________ .答案:15解析:解:由题意得:①当把长方体按照正面和右侧进行展开时,如图所示:,∴在中,;②当沿长方体的右侧和上面进行展开时,如图所示:,∴在中,;∵,∴一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是15,由长方体的特征可得其他途径必定比①②两种更远,故不作考虑;故答案为:15.15. 如图,在中,,动点在射线上移动,连接.如果,则线段的长为________.答案:或解析:解:由勾股定理,得,①当点P在线段上时,如图,∵,,∴∴,设,则,在中,由勾股定理,得解得:;②当点P在线段延长线上时,如图,在上截取,连接,∵,∴,∵,∴∴,∵,,∴∴∴,由①可得,∴,∴,综上,线段的长为或.三、解答题(本大题共8个小题,共55分.解答题应写出文字说明、证明过程或演算步骤)16. 计算:(1);(2);(3).答案:(1)(2)(3)小问1解析:解:原式;小问2解析:解:原式;小问3解析:解:原式17. 如图,平面直角坐标系中,正方形的顶点均在格点上,且.(1)请在图中画出与正方形关于轴对称正方形;(2)直接写出正方形与正方形的对应顶点的坐标满足的关系:横坐标,纵坐标;(3)正方形的面积为.答案:(1)见解析(2)互为相反数,相同(3)20小问1解析:如图所示;小问2解析:直接写出正方形与正方形的对应顶点的坐标满足的关系:横坐标互为相反数,纵坐标相同;小问3解析:正方形的面积.18. 某地气象资料表明,当地雷雨持续的时间可以用下面的公式“”来估计,其中是雷雨区域的直径.(1)如果雷雨区域直径为,那么这场雷雨大约持续多长时间?(结果精确到)(2)如果一场雷雨持续了,那么这场雷雨区域的直径是否超过?答案:(1)如果雷雨区域直径为,那么这场雷雨大约能持续大约持续(2)如果一场雷雨持续了,那么这场雷雨区域的直径没有超过小问1解析:当时,,根据题意,得,答:如果雷雨区域直径为,那么这场雷雨大约能持续大约持续.小问2解析:当时,,即,所以.又因为,且,所以.答:如果一场雷雨持续了,那么这场雷雨区域的直径没有超过.19. 已知,,,(为大于1的正整数).试问是直角三角形吗?若是,哪一条边所对的角是直角?请说明理由.答案:是直角三角形,且边所对角是直角,理由见解析解析:解:∵,;∴;∵;∴为最长边;,且,.是直角三角形,且边所对角是直角.20. 如图,正比例函数的图象经过点.(1)求的值;(2)请在如图的坐标系中画出一次函数的图象;(3)根据图象,写出与一次函数有关的一个结论:.答案:(1)(2)见解析(3)随的增大而增大小问1解析:解:将代入,得:,解得:.小问2解析:将的图象向上平移3个单位得到的图象,函数图象如图所示:小问3解析:,随的增大而增大(答案不唯一).21. 如图,某学校劳动实践基地有一块正方形空地,七、八年级分别在空地上开垦出两块面积为和的正方形区域进行种植试验.求这块正方形空地(正方形)的面积.答案:这块正方形空地的面积为解析:解:答:这块正方形空地的面积为.解法二:答:这块正方形空地的面积为.22. 阅读下列材料,并完成相应任务.巧用勾股定理测算旗杆高度数学活动课上,老师让同学们利用升旗的绳子、卷尺设计一个方案,测算出学校旗杆的的高度.小李同学将升旗的绳子拉直到其末端刚好接触地面,测得此时绳子末端距旗杆底端的距离为(如图1).小李同学发现无法求出旗杆的高度.小明同学将绳子拉直到其末端距离旗杆处,测得此时绳子末端距离地面的高度为(如图2).小明同学也发现无法求出旗杆的高度.他俩去请教老师,老师给出提示:你俩的方法结合一下便可以解决问题,因为不管怎么拉动绳子,绳子的长度不变,…任务:请你按照老师的提示帮小李和小明求出旗杆的高度.答案:旗杆的高度为解析:解:设旗杆的高度为,由图1得,绳子的平方为:,由图2得,绳子的平方为:,∴,解得:,答:旗杆的高度为.23. 如图,在平面直角坐标系中,一次函数的图象分别交轴,轴于两点,一次函数的图象经过点,并与轴交于点.(1)求两点的坐标;(2)求的面积;(3)在平面内是否存在点,使得是以点为直角顶点的等腰直角三角形?若存在,直接写出点的坐标;若不存在,说明理由.答案:(1),(2)(3)存在,点的坐标为或小问1解析:令,得,解得,.令,得.小问2解析:将代入中,得,所以.令,得,所以,所以.所以.小问3解析:如图所示,当是等腰直角三角形时,过点B作,过点P作,过点A作,∵,∴,∵∴∵∴∵,∴∴,∴点的横坐标为,点的纵坐标为,∴点的坐标为;当是等腰直角三角形时,同理可得,∴,∴∴点的坐标为综上所述,当点P的坐标为或时,是以点为直角顶点的等腰直角三角形.。

辽宁省朝阳市2023年八年级数学第一学期期末学业水平测试试题【含解析】

辽宁省朝阳市2023年八年级数学第一学期期末学业水平测试试题【含解析】

辽宁省朝阳市2023年八年级数学第一学期期末学业水平测试试题题请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题(每题4分,共48分)1.分式13y 和212y的最简公分母是()A .6yB .23y C .26y D .36y 2.计算(-2b )3的结果是()A .38b -B .38b C .36b -D .36b 3.如图,已知AB=AC,AF=AE,∠EAF=∠BAC,点C、D、E、F 共线.则下列结论,其中正确的是()①△AFB≌△AEC;②BF=CE;③∠BFC=∠EAF;④AB=BC.A .①②③B .①②④C .①②D .①②③④4.以二元一次方程组71x y y x +=⎧⎨-=⎩的解为坐标的点(,)x y 在平面直角坐标系的()A .第一象限B .第二象限C .第三象限D .第四象限5.因式分解x 2+mx ﹣12=(x +p )(x +q ),其中m 、p 、q 都为整数,则这样的m 的最大值是()A .1B .4C .11D .126.式子12a -有意义,则实数a 的取值范围是()A .a ≥-1B .a ≠2C .a ≥-1且a ≠2D .a >27.下列根式中不是最简二次根式的是()AB C D .8.已知一个直角三角形的两条直角边分别为6cm 、8cm ,那么这个直角三角形斜边上的高为()A .10B .2.4C .4.8D .149.用科学记数法表示:0.000000109是()A .1.09×10﹣7B .0.109×10﹣7C .0.109×10﹣6D .1.09×10﹣610.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm )185180185180方差3.63.67.48.1根据表数据,从中选择一名成绩好且发挥稳定的参加比赛,应该选择()A .甲B .乙C .丙D .丁11.下列说法中,正确的是()A .若a b >,则22 ac bc >B .若a b >,则22a b >C .若a b >,则11a b<D .若a b c d >>,,则a c b d ->-12.命题“邻补角的和为180︒”的条件是()A .两个角的和是180︒B .和为180︒的两角为邻补角C .两个角是邻补角D .邻补角的和是180︒二、填空题(每题4分,共24分)13.在一次函数y =﹣3x +1中,当﹣1<x <2时,对应y 的取值范围是_____.14.如图,长方体的底面边长分别为3cm 和3cm ,高为5cm ,若一只蚂蚁从A 点开始经过四个侧面爬行一圈到达B 点,则蚂蚁爬行的最短路径长为_____cm .15.如图,若△ABC ≌△ADE ,且∠B=65°,则∠BAD=.16.在平面直角坐标系中,已知一次函数y=-2x+1的图象经过P 1(x 1,y 1)、P 2(x 2,y 2)两点,若x 1>x 2,则y 1________y 2(填“>”或“<”).17.使分式22xx -+有意义的x 满足的条件是__________________.18.已知:△ABC 中,∠B 、∠C 的角平分线相交于点D ,过D 作EF//BC 交AB 于点E ,交AC 于点F .求证:BE+CF=EF .三、解答题(共78分)19.(8分)如图所示,△ABC 的顶点在正方形格点上.(1)写出顶点C 的坐标;(2)作△ABC 关于y 轴对称的△A 1B 1C 1.20.(8分)如图,,AD BC 相交于点O ,,90AD BC C D ︒=∠=∠=.(1)求证:ACB BDA ∆≅∆;(2)若28ABC ︒∠=,求CAO ∠的度数.21.(8分)先化简,再求值:[(x ﹣2y )2﹣(x +y )(x ﹣y )+5xy ]÷y ,其中x =﹣2,y =1.22.(10分)计算:﹣(2020﹣π)0+(12)﹣233627-.23.(10分)如图,在ABC 中,,AB AC =点D 在线段BC 上,,BE CD BD CF ==.(1)求证:BDE CFD△≌△(2)当70B ∠=︒时,求EDF ∠的度数.24.(10分)文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)25.(12分)如图,在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为A (-3,5),B (-2,1).(1)请在如图所示的网格内画出平面直角坐标系,并写出C 点坐标;(2)先将△ABC 沿x 轴翻折,再沿x 轴向右平移4个单位长度后得到△A 1B 1C 1,请在网格内画出△A 1B 1C 1;(3)在(2)的条件下,△ABC 的边AC 上一点M (a ,b )的对应点M 1的坐标是.(友情提醒:画图结果确定后请用黑色签字笔加黑)26.每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有甲、乙两种型号的设备可供选购.经调查:购买3台甲型设备比购买2台乙型设备多花16万元,购买2台甲型设备比购买3台乙型设备少花6万元.(1)求甲、乙两种型号设备每台的价格;(2)该公司经决定购买甲型设备不少于3台,预算购买节省能源的新设备资金不超过110万元,你认为该公司有哪几种购买方案;(3)在(2)的条件下,已知甲型设备每月的产量为240吨,乙型设备每月的产量为180吨.若每月要求产量不低于2040吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.参考答案一、选择题(每题4分,共48分)1、C【分析】当所有的分母都是单项式时,确定最简公分母的方法:(1)取各分母系数的最小公倍数作为最简公分母的系数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.再结合题意即可求解.【详解】∵13y和212y的最简公分母是26y∴选C 故选:C 【点睛】通常取各分母系数的最小公倍数与字母因式的最高次幂最为最简公分母,本题属于基础题.2、A【解析】直接利用积的乘方运算法则计算得出答案.【详解】33(2b)8b -=-.故选A .【点睛】此题主要考查了积的乘方运算,正确将原式变形是解题关键.3、A【分析】根据题意结合图形证明△AFB ≌△AEC ;利用四点共圆及全等三角形的性质问题即可解决.【详解】如图,∵∠EAF=∠BAC ,∴∠BAF=∠CAE ;在△AFB 与△AEC 中,AF AE BAF CAE AB AC ⎧⎪∠∠⎨⎪⎩===,∴△AFB ≌△AEC (SAS ),∴BF=CE ;∠ABF=∠ACE ,∴A 、F 、B 、C 四点共圆,∴∠BFC=∠BAC=∠EAF ;故①、②、③正确,④错误.故选A..【点睛】本题主要考查了全等三角形的判定及其性质的应用问题;解题的关键是准确找出图形中隐含的全等三角形,灵活运用四点共圆等几何知识来分析、判断、推理或证明.4、A【分析】求出方程组的解,即可作出判断.【详解】71 x yy x+=⎧⎨-=⎩①②①+②得:2y=8,解得:y=4,把y=4代入②得:x=3,则(3,4)在第一象限,故选:A.【点睛】此题考查了二元一次方程组的解,以及点的坐标,熟练掌握运算法则是解本题的关键.5、C【解析】分析:根据整式的乘法和因式分解的逆运算关系,按多项式乘以多项式法则把式子变形,然后根据p、q的关系判断即可.详解:∵(x+p)(x+q)=x2+(p+q)x+pq=x2+mx-12∴p+q=m,pq=-12.∴pq=1×(-12)=(-1)×12=(-2)×6=2×(-6)=(-3)×4=3×(-4)=-12∴m=-11或11或4或-4或1或-1.∴m的最大值为11.故选C.点睛:此题主要考查了整式乘法和因式分解的逆运算的关系,关键是根据整式的乘法还原因式分解的关系式,注意分类讨论的作用.6、C【分析】根据被开方数大于等于0,分母不等于0列式计算即可.【详解】解:由题意得,a10,a2+≥≠解得,a≥-1且a≠2,故答案为:C.【点睛】本题考查的知识点是根据分式有意义的条件确定字母的取值范围,属于基础题目,比较容易掌握.7、C【详解】最简二次根式必须满足两个条件:被开方数不含分母,被开方数中不含能开的尽方的因数或因式.C8、C【分析】设斜边上的高为h ,再根据勾股定理求出斜边的长,根据三角形的面积公式即可得出结论.【详解】设斜边上的高为h ,∵直角三角形的两条直角边为6cm ,8cm ,∴斜边的长10==(cm),则直角三角形的面积为12×6×8=12×10h ,∴h=4.8,∴这个直角三角形斜边上的高为4.8,故选:C .【点睛】本题考查了勾股定理的运用,正确利用三角形面积得出其高的长是解题关键.9、A【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】用科学记数法表示:0.000000109是1.09×10﹣1.故选:A .【点睛】本题考查了用科学记数法表示较小的数,一般形式为10n a -⨯,其中110a ≤<,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.10、A【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加.【详解】∵x 甲=x 丙>x 乙=x 丁,∴从甲和丙中选择一人参加比赛,∵2S 甲=2S 乙<2S 丙<2S 丁,∴选择甲参赛,故选A .【点睛】此题主要考查了平均数和方差的应用,解题关键是明确平均数越高,成绩越高,方差越小,成绩越稳定.11、B【分析】根据不等式的性质逐一对选项进行分析即可.【详解】A.若a b >,当0c =时,则22 ac bc =,故该选项错误;B.若a b >,则22a b >,故该选项正确;C.若,0,0a b a b >><,则11a b>,故该选项错误;D.若a b c d >>,,则a c -不一定比b d -大,故该选项错误;故选:B .【点睛】本题主要考查不等式,考虑到a,b 可能是任意实数是解题的关键.12、C【分析】根据命题“邻补角的和为180︒”的条件是:两个角是邻补角,即可得到答案.【详解】命题“邻补角的和为180︒”的条件是:两个角是邻补角,故选C .【点睛】本题主要考查命题的条件和结论,学会区分命题的条件与结论,是解题的关键.二、填空题(每题4分,共24分)13、-5<y <1【解析】解:由y =﹣3x +1得到x =﹣13y -,∵﹣1<x <2,∴﹣1<﹣13y -<2,解得﹣5<y <1.故答案为﹣5<y <1.点睛:本题考查了一次函数的性质,根据题意得出关于y 的不等式是解答此题的关键.14、1【分析】要求长方体中两点之间的最短路径,只需将长方体展开,然后利用两点之间线段最短及勾股定理求解即可.【详解】解:展开图如图所示:由题意,在Rt ADB中,AD=12cm,BD=5cm,∴蚂蚁爬行的最短路径长为:13===,AB cm故答案为1.【点睛】本题主要考查最短路径问题,熟练掌握求最短路径的方法是解题的关键.15、50°【解析】试题分析:由全等三角形的性质可知AB=AD,再根据等腰三角形的性质和三角形内角和定理即可得到答案.∵△ABC≌△ADE,∴AB=AD,∴∠B=∠ADB,∵∠B=65°,∴∠BAD=180°﹣2×65°=50°考点:全等三角形的性质.16、<【分析】根据一次函数的性质,当k<0时,y随x的增大而减小进行判断即可.【详解】解:∵一次函数y=-1x+1中k=-1<0,∴y随x的增大而减小,∵x1>x1,∴y1<y1.故答案为<.【点睛】此题主要考查了一次函数的性质,关键是掌握一次函数y=kx+b,当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小.x≠-;17、2【分析】本题主要考查分式有意义的条件:分母不能为1.x+≠,【详解】解:∵20x≠-;∴2x≠-.故答案为:2【点睛】本题考查的是分式有意义的条件,当分母不为1时,分式有意义.18、证明见解析【详解】试题分析:根据角平分线定义和平行线性质求出∠EDB=∠EBD,推出DE=BE,同理得出CF=DF,即可求出答案.试题解析:∵EF∥BC,∴∠EDB=∠DBC,∵BD平分∠ABC,∴∠EBD=∠DBC,∴∠EBD=∠EDB ,∴BE=ED ,同理CF=DF ,∴BE+CF=ED+DF=EF .考点:①等腰三角形的判定与性质;②平行线的性质.三、解答题(共78分)19、(1)C(-2,-1);(2)见解析【分析】(1)根据平面直角坐标系写出坐标即可;(2)利用网格结构找出点A 、B 、C 关于y 轴对称的点A 1、B 1、C 1的位置,然后顺次连接即可.【详解】(1)点C (﹣2,﹣1);(2)如图所示,△A 1B 1C 1即为所求作的三角形.【点睛】本题考查了利用轴对称变换作图,在平面直角坐标找点的坐标,比较简单,熟练掌握网格结构是解答本题的关键.20、(1)见解析;(2)34°【分析】(1)根据HL 证明Rt △ABC ≌Rt △BAD ;(2)利用全等三角形的性质证明即可.【详解】解:(1)证明:∵90C D ∠=∠=︒,∴ACB ∆和BDA ∆都是直角三角形,在Rt ACB ∆和Rt BDA ∆中,AD BC =AB BA =,∴()ACB BDA HL ∆≅∆;(2)解:在Rt ACB ∆中,∵28ABC ∠=︒,∴902862CAB ∠=-=︒︒︒,由(1)可知ACB BDA ∆≅∆,∴28BAD ABC ∠=∠=︒,∴CAO CAB BAD ∠=∠-∠,6228=︒-︒34=︒【点睛】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS ”、“SAS ”、“ASA ”、“AAS ”,“HL ”;全等三角形的对应边相等.21、5y +x ,2.【分析】原式中括号中利用完全平方公式,平方差公式化简,去括号合并后利用多项式除以单项式法则计算得到最简结果,把x 与y 的值代入计算即可求出值.【详解】解:原式=2222445x y xy x y xy y +++⎡⎤-⎣⎦÷-=()25y xy y+÷=5y x +,当21x y =-,=时,原式=523-=【点睛】本题考查整式的混合运算-化简求值,解题的关键是利用完全平方公式,平方差公式正确化简原式.22、1.【分析】分别根据零指数幂的意义、负整数指数幂的运算法则、算术平方根和立方根的定义计算每一项,再合并即可.【详解】解:﹣(2121﹣π)1+(12)﹣2=﹣1+4﹣6﹣(﹣3)=1.【点睛】本题考查了零指数幂的意义、负整数指数幂的运算法则、算术平方根和立方根的定义等知识,属于基本题型,熟练掌握基本知识是解题关键.23、(1)详见解析;(2)70︒【分析】(1)根据等边对等角可得∠B=∠C ,然后利用SAS 即可证出结论;(2)根据全等三角形的性质可得,BED FDC ∠=∠然后求出FDC BDE ∠+∠,即可求出结论.【详解】解:(1)证明:,AB AC =∴∠B=∠C在BDE 和CFD △中,BE CD B C BD CF =⎧⎪∠=∠⎨⎪=⎩()BDE CFD SAS ∴V V ≌,(2)由(1)知BDE CFD△≌△,BED FDC ∴∠=∠FDC BDE BED BDE∴∠+∠=∠+∠180B=︒-∠110=︒18011070EDF ∴∠=︒-︒=︒【点睛】此题考查的是等腰三角形的性质和全等三角形的判定及性质,掌握等边对等角和全等三角形的判定及性质是解决此题的关键.24、(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.【分析】(1)乙种图书售价每本x 元,则甲种图书售价为每本1.4x 元,根据“用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本”列出方程求解即可;(2)设甲种图书进货a 本,总利润w 元,根据题意列出不等式及一次函数,解不等式求出解集,从而确定方案,进而求出利润最大的方案.【详解】(1)设乙种图书售价每本x 元,则甲种图书售价为每本1.4x 元.由题意得:14001680101.4x x-=,解得:20x =.经检验,20x =是原方程的解.所以,甲种图书售价为每本1.42028⨯=元,答:甲种图书售价每本28元,乙种图书售价每本20元.(2)设甲种图书进货a 本,总利润w 元,则()()()28203201421200w a a =--+---4800a =+.又∵()2014120020000a a +⨯-≤,解得:16003a ≤.∵w 随a 的增大而增大,∴当a 最大时w 最大,∴当533a =本时w 最大,此时,乙种图书进货本数为1200533667-=(本).答:甲种图书进货533本,乙种图书进货667本时利润最大.【点睛】本题考查了一次函数的应用,分式方程的应用,一元一次不等式的应用,理解题意找到题目蕴含的相等关系或不等关系是解应用题的关键.25、(1)图见解析;C(-1,3);(2)图见解析;(3)(a+4,-b).【分析】(1)根据A 、B 的坐标即可画出平面直角坐标系,进而得出点C 的坐标;(2)依据轴对称的性质,即可得到△ABC 关于x 轴对称的图形,然后利用平移的性质得到△A 1B 1C 1;(3)利用关于x 轴对称的两点坐标关系和平移规律即可求出点M 1的坐标.【详解】(1)根据点A (-3,5),故将A 向右移动3个单位、向下移动5个单位,即可得到原点的位置,建立坐标系,如图所示平面直角坐标系即为所求,此时点C(-1,3);(2)根据题意,翻折和平移后得到△A 1B 1C 1,如图所示△A 1B 1C 1即为所求:(3)点M (a ,b )关于x 轴对称点为(a ,-b ),然后向右平移4个单位后的坐标为(a+4,-b)M 1的坐标为(a+4,-b).【点睛】本题考查了轴对称和平移变换,熟练掌握轴对称和平移变换的性质是解题的关键.26、(1)甲12万元,乙10万元;(2)有3种;(3)选购甲型设备4台,乙型设备6台【分析】(1)设甲型设备每台的价格为x 万元,乙型设备每台的价格为y 万元,根据“购买3台甲型设备比购买2台乙型设备多花16万元,购买2台甲型设备比购买3台乙型设备少花6万元”,即可得出关于x 、y 的二元一次方程组,解之即可得出结论;(2)设购买甲型设备m 台,则购买乙型设备(10−m )台,由购买甲型设备不少于3台且预算购买节省能源的新设备的资金不超过110万元,即可得出关于m 的一元一次不等式组,解之即可得出各购买方案;(3)由每月要求总产量不低于2040吨,可得出关于m 的一元一次不等式,解之结合(2)的结论即可找出m 的值,再利用总价=单价×数量求出两种购买方案所需费用,比较后即可得出结论.【详解】解:(1)设甲型设备每台的价格为x 万元,乙型设备每台的价格为y 万元,根据题意得:3216263x y x y -=⎧⎨+=⎩,解得:1210x y =⎧⎨=⎩答:甲型设备每台的价格为12万元,乙型设备每台的价格为10万元.(2)设购买甲型设备m 台,则购买乙型设备()10m -台,根据题意得:()1210101103m m m ⎧+-≤⎨≥⎩解得:35m ≤≤∵m 取非负整数,∴3,4,5m =∴该公司有3种购买方案,方案一:购买甲型设备3台、乙型设备7台;方案二:购买甲型设备4台、乙型设备6台;方案三:购买甲型设备5台、乙型设备5台(3)由题意:()240180102040m m +-≥,解得:4m ≥,∴m 为4或5当4m =时,购买资金为:124106108⨯+⨯=(万元)当m =5时,购买资金为:125105110⨯+⨯=(万元)∵108110<,∴最省钱的购买方案为:选购甲型设备4台,乙型设备6台【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组;(3)根据各数量之间的关系,正确列出一元一次不等式.。

2024-2025学年度第一学期期中学业质量检测八年级数学试卷

2024-2025学年度第一学期期中学业质量检测八年级数学试卷

2024-2025学年度第一学期期中学业质量检测八年级数学试卷一.选择题(共8小题)1.中国“二十四节气”已被正式列入联合国教科文组织人类非物质文化遗产代表作品录.北京国际设计周面向社会公开征集“二十四节气”标识系统设计,以期通过现代设计的手段,尝试推动我国非物质文化遗产创新传承与发展.下面四幅作品分别代表“立春”、“芒种”、“白露”、“大雪”,其中是中心对称图形的是()A.B.C.D.2.以下列长度的线段为边,能构成直角三角形的是()A.2,3,4 B.3,4,5 C.4,5,6 D.5,6,73.如图所示,两个三角形全等,则∠α等于()A.72°B.60°C.58°D.50°4.等腰三角形一边长等于2,一边长等于3,则它的周长是()A.5 B.7 C.8 D.7或85.如图①是两位同学玩跷跷板的场景,如图②跷跷板示意图,支柱OC与地面垂直,点O是AB的中点,AB绕着点O上下转动.若A端落地时,∠OAC=25°,则跷跷板上下可转动的最大角度(即∠A’OA是()A.45°B.50°C.60°D.75°6.如图,在ABC ∆中,CD 是边AB 上的高,BE 平分ABC ∠,交CD 于点E ,10BC =,3DE =,则BCE ∆的面积为( )A .16B .15C .14D .137.已知ABC ∆的三边长分别为3,5,7,DEF ∆的三边长分别为3,32x -,21x -,若这两个三角形全等,则x 为( )A .73B .4C .3D .不能确定8.如图,在Rt ABC ∆中,90C ∠=︒,20A ∠=︒.若某个三角形与ABC ∆能拼成一个等腰三角形(无重叠),则拼成的等腰三角形有( )A .4种B .5种C .6种D .7种二.填空题(共8小题)9.小强从镜子中看到的电子表的读数如图所示,则电子表的实际读数是 .10.王强同学用10块高度都是2cm 的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(,90)AC BC ACB =∠=︒,点C 在DE 上,点A 和B 分别与木墙的顶端重合.则两堵木墙之间的距离DE 是 .A .10cmB .15cmC .20cmD .25cm11.如果ABC DEF ∆≅∆,则AB 的对应边是 .12.如图,已知B C ∠=∠,在不添加任何字母的情况下,添加一个合适的条件 使ABD ACD ∆≅∆.(只需填写一个符合题意的条件即可)13.如图,在Rt ABC ∆中,90ACB ∠=︒.以AB 、AC 为边的正方形的面积分别为1S 、2S .若120S =,211S =,则BC 的长为 .14.如图,在ABC ∆中,90C ∠=︒,2AB =,1BC =,射线AM AC ⊥,P 为AC 上的动点,Q 为射线AM 上的动点,点P 、Q 分别在AC 、AM 上运动,且始终保持PQ AB =,当ABC ∆与APQ ∆全等时,此时AP 的长为 .15.如图,将直角三角形纸片ABC 折叠,恰好使直角顶点C 落在斜边AB 的中点D 的位置,EF 是折痕,已知3DE =,4DF =,则AB = .16.如图,△ABC 中,10BC =,6AC AB -=.过C 作BAC ∠的角平分线的垂线,垂足为D ,点E 为DC 边的中点,连结BD ,CD ,则BEC S 的最大值为 .三.解答题(共10小题)17.如图,点D在AB上,点E在AC上,AB AC∠=∠.=,B C求证:ABE ACD∆≅∆;18.“儿童散学归来早,忙趁东风放纸莺”.又到了放风筝的最佳时节,某校八年级(1)班的小明和小亮学习了“勾股定理”之后,为了测得风筝的垂直高度CE,他们进行了如下操作:①测得水平距离BD的长为15米;②根据手中剩余线的长度计算出风筝线BC的长为25米;③牵线放风筝的小明的身高为1.6米.求风筝的垂直高度CE.19.在边长为1的小正方形组成的1010⨯网格中(我们把组成网格的小正方形的顶点称为格点),ABC∆的三个顶点都在格点上,请利用网格线和直尺画图.(1)在图中画出ABC ∆关于直线l 成轴对称的△A B C ''';(2)在直线l 上找一点P ,使PA PB +的长最短.20.如图,ABC ∆与DEF ∆中,B 、E 、C 、F 在同一条直线上,BE CF =,A D ∠=∠,//AC DF ,求证:AC DF =.21.如图,已知ABC ∆,90B ∠=︒,AB BC <,D 为AC 上一点,且到A 、B 两点的距离相等.(1)用直尺和圆规作点D 的位置(不写作法,保留作图痕迹);(请用2B 铅笔作图)(2)连接BD ,若48A ∠=︒,则DBC ∠的度数为 .22.写出下面定理的已知、求证,并完成证明过程.定理:有两个角相等的三角形是等腰三角形(简称:“等角对等边” ).已知:如图,在△ABC中,.求证:.证明:23.如图,在ABC∠的平分线AD交BC于点D,E为AB的中点,若6BC=,=,BAC∆中,AB ACAD=,求DE的长.424.在边长为9的等边三角形ABC中,点P是AB上一动点,以每秒1个单位长度的速度从点A向点B运动,设运动时间为t秒.(1)如图1,若点Q是BC上一定点,6PQ AC,求t的值;BQ=,//(2)如图2,若点P从点A向点B运动,同时点Q以每秒2个单位长度的速度从点B经点C 向点A运动,当t为何值时,APQ∆为等边三角形?25.定义:若过三角形的一个顶点作射线与其对边相交,将这个三角形分成的两个三角形中有等腰三角形,那么这条射线就叫做原三角形的“等腰分割线”.(1)如图1,ABC∆的等腰分割线:∠=︒,若O为AB的中点,则射线OC ABCC∆中,90(填“是”或“不是”)(2)如图2,ABCBC=,ABCAC=,6∆的一条等腰分割线BP交AC边于∠=︒,8∆中,90C点P,且PA PB=,请求出CP的长度.(3)如图3,ABC∆中,CD为AB边上的高,F为AC的中点,过点F的直线l交AD于点E,作CM l∠<︒.若射线CD为ABCA∆的“等⊥,DN IAC=,且45⊥,垂足为M,N,3BD=,5腰分割线”,求CM DN+的最大值.26.如图1,在ABC∆中,延长AC到D,使CD AB∠=∠=∠,=,E是AD上方一点,且A BCE D 连接BE.(1)线段BC与CE的大小关系是:BC_______CE(填“>”或“<”或“=”)(2)如图2,若90ACB ∠=︒,将DE 沿直线CD 翻折得到DE ',连接BE '交CE 于F ,若//BE ED ',求证:F 是BE '的中点;(3)在如图3,若90ACB ∠=︒,AC BC =,将DE 沿直线CD 翻折得到DE ',连接BE '交CE 于F ,交CD 于G ,若AC n =,(0)AB m m n =>>求线段CG 的长度.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A B C D O E 2013—2014学年下学期第一次教学集中检测测试题 八年级数学试题 一、选择题 (每小题3分,共36分) 1. 要使式子 有意义,则x 的取值范围是( )
A .x >0
B .x ≥-2
C .x ≥2
D .x ≤2
2.下列二次根式中,是最简二次根式的是( )
A.xy 2
B.2ab
C.2
1 D.422x x y + 3.正方形具有菱形不一定具有的性质是( )
A .对角线互相垂直
B .对角线互相平
C .对角线相等
D .对角线平分一组对角
4.下列计算中,正确的是 ﹙ ﹚
A .123-⎪⎭⎫ ⎝⎛-=23
B .a 1+b 1=b a +1
C .b a b a --22=a+b
D .0
203⎪⎭
⎫ ⎝⎛-=0 5.已知, 则2xy 的值为( ) A .15- B .15 C .152- D.152
6.如图,在梯形ABCD 中AD ∥BC ,F 是下底BC 上的一点,若将△ABF 沿AF 进行折叠,点B 恰好能与AD 上的E 重合,那么关于四边形AEFB ,下列说法正确的是( )
A .是轴对称图形但不是中心对称图形 B. 是中心对称图形但不是轴对称图形
C. 既是轴对称图形又是中心对称图形
D. 既不是轴对称图形,也不是中心对称图形
7.如图,在周长为20cm 的平行四边形ABCD 中,AB≠AD,AC 、BD 相交于点O ,OE⊥BD 交AD 于E ,则△ABE 的周长为( )
A .4cm B.6cm C.8cm D.10cm
8.如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AB 于点N,则MN等于( )
A
B C D F E
A.56 B.59 C.512 D.5
16 9.设等腰三角形(两底角相等的三角形)顶角的度数为y ,底角的度数为x ,则有( )
A .1802y x =-(x 为全体实数)
B .1802(090)y x x =-≤≤
C .1802(090)y x x =-<<
D .1180(090)2y x x =-
<< 10、如图,正方形ABCD 的边长为2,点E 在AB 边上,四边形EFGB 也为正方形,设AFC △的面积为S ,则( ) A.2S = B. 2.4S = C.4S = D.S 与BE 长度有关
11、梯形ABCD 中,AD ∥BC ,E 、F 为BC 上点,且DE ∥AB ,AF ∥DC ,DE ⊥AF 于G ,若AG =3,DG =4,四边形ABED 的面积为36,则梯形ABCD 的周长为( )
A .49
B .43
C .41
D .46
12、 已知:如图,正方形ABCD ,AC 、BD 相交于点O ,E 、F 分别为BC 、CD 上的两点,BE=CF ,AE 、BF 分别交BD 、AC 于M 、N 两点,连结OE 、OF.下列结论,其中正确的是
( ).①AE=BF ;②AE ⊥BF ;③OM=ON=12DF ;④CE+CF=22
AC . (A )①②④ (B )①②
(C )①②③④ (D )②③④ 二、填空题 (每小题4分,共24分)
13.函数21y x =-中,当4x =-时,y = ,当4y =时,x = .
14.如图,矩形ABCD 中,AB =3,BC =4,如果将该矩形沿对角线BD 折叠,那么图中阴影部分的面积是_________.
15.已知a b 、为有理数,m n 、分别表示57的整数部分和小数部分,且21amn bn +=,
则2a b += .
16.如图,在菱形ABCD 中,∠A=060,E 、F 分别是AB 、AD 的中点,若
EF=2,则菱形ABCD的周长是____.
G C D A E A
B C D O M E N F G F E D C B A
17.如图,正方形ABCD 的面积为25,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD+PE 的和最小,则这个最小值为_____________。

18、如图,在正方形ABCD 中,边长为2的等边三角形AEF 的顶点E 、F 分别在BC 和CD 上.下列结论:① CE=CF ②∠AEB =75°;③BE +DF=EF ;
④S 正方形ABCD =23+.其中正确的序号是______________. 第17题图 三、解答题
19.计算(每小题4分,共8分)
(1
)8
132182+- (2))23)(23()13(2+---
20.(6分)先化简,再求值:÷(2
+1),其中=2-1.
21.(10分)某市第五中学校办工厂今年产值是15万元,计划今后每年增加2万元.
(1)写出年产值y (万元)与今后年数x 之间的函数关系式.
A B C D E
F 第18题图
(2)画出函数图象.
(3)求5年后的年产值.
22.(8分)已知:平行四边形ABCD的四个内角的平分线分别相交于E、F、G、H。

试证明:四边形EFGH为矩形
23.(8分)如图,△ABC中,AC的垂直平分线MN交AB于点D,交AC于点O,CE//AB交MN于E,连结AE、CD.请判断四边形ADCE的形状,说明理由.
24.(8分)E为正方形ABCD的BC边上的一点,CG平分∠DCF,连结AE,并在CG上取一点G,使EG=AE.求证:AE⊥EG.
25.(12分)如图所示,四边形ABCD是正方形,M是AB延长线上一点。

直角三角尺的一条直角边
经过点D,且直角顶点E在AB边上滑动(点E不与点A、B重合),另一直角边与∠CBM 的平分线BF相交于点F.
(1)如图1,当点E在AB边得中点位置时:
①通过测量DE、EF的长度,猜想DE与EF满足的数量关系是________________.
②连接点E与AD边的中点N,猜想NE与BF满足的数量关系是_________________.
③请证明你的上述两个猜想.
(2)如图2,当点E在AB边上的任意位置时,猜想此时DE与EF有怎样的数量关系.。

相关文档
最新文档