勾股定理的逆定理(1)
勾股定理的逆定理知识点

要点一、勾股定理的逆定理如果三角形的三条边长a b c ,,,满足222a b c +=,那么这个三角形是直角三角形. 要点诠释:(1)勾股定理的逆定理的作用是判定某一个三角形是否是直角三角形.(2)勾股定理的逆定理是把“数”转为“形”,是通过计算来判定一个三角形是否为直角三角形.要点二、如何判定一个三角形是否是直角三角形(1) 首先确定最大边(如c ).(2) 验证2c 与22a b +是否具有相等关系.若222c a b =+,则△ABC 是∠C =90°的直角三角形;若222c a b ≠+,则△ABC 不是直角三角形.要点诠释:当222a b c +<时,此三角形为钝角三角形;当222a b c +>时,此三角形为锐角三角形,其中c 为三角形的最大边.要点三、互逆命题如果两个命题的题设与结论正好相反,则称它们为互逆命题.如果把其中一个叫原命题,则另一个叫做它的逆命题.要点诠释:原命题正确,逆命题未必正确;原命题不正确,其逆命题也不一定错误;正确的命题我们称为真命题,错误的命题我们称它为假命题.要点四、勾股数满足不定方程222x y z +=的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以x y z 、、为三边长的三角形一定是直角三角形.熟悉下列勾股数,对解题会很有帮助:① 3、4、5; ②5、12、13;③8、15、17;④7、24、25;⑤9、40、41……如果a b c 、、是勾股数,当t 为正整数时,以at bt ct 、、为三角形的三边长,此三角形必为直角三角形. 要点诠释:(1)22121n n n -+,,(1,n n >是自然数)是直角三角形的三条边长; (2)2222,21,221n n n n n ++++(n 是自然数)是直角三角形的三条边长;(3)2222,,2m n m n mn -+ (,m n m n >、是自然数)是直角三角形的三条边长;。
14.1 勾股定理的逆定理(1)--

他们用13个等距的结巴一根绳子分成 等长的12段,一个工匠同时握住绳子的第1 个结和第13个结,两个助手分别握住第4个 结和第8个结,拉紧绳子,就会得到一个直 角三角形,其直角在第4个结处。
这个问题意味着:
如果围成的三角形的三边分别 为3、4、5.满足关系: 32+42=52.那么围成的三角 形是直角三角形.
a、b、c满足 a2
+ b2 = c2 ,那么这个
三角形是直角三角形。
例1:判断由线段a,b,c组成的三角形是不是直角
三角形? (1) a=15,b=17,c=8; (2) a=13,b=15,c=14 是直角三角形, 只要看两条较少边长的平方和是否等于 条边长的三个正整数,称为 勾股数. 最大边长的平方 .
猜想:如果三角形的三边长a、b、c满
足 a2
+
2 b
=
2 c ,那么这个三角形是直
角三角形。
已知△ABC,AB=c,AC=b,BC=a,且a2+b2=c2, 求证:∠C=900
证明:作Rt△A′B′C′, 使∠C′=900,A′C′=b,B′C′=a
则△ABC≌ △A′B′C′
∴∠C=900
勾股定理的逆定理:如果三角形的三边长
△ABC三边a,b,c为边向外作正 方形,正三角形,以三边为直 径作半圆,若S1+S2=S3成立,则 是直角三角形吗?
S1
a c
S2
B
C
b
C
B
S2
A
b
a c
S1
A
S3
S3
已知:如图,四边形 ABCD 中,∠B=900,AB=3,BC=4, CD = 12 , AD = 13, 求 四 边 形 ABCD的面积?
第5课 勾股定理的逆定理1

18.2 勾股定理的逆定理1学习目标掌握勾股定理的逆定理,并会用来判断一个三角形是不是直角三角形;熟记一些勾股数学习重点勾股定理的逆定理及其应用学习过程一、复习引入1.直角三角形有哪些性质?2.你有哪些方法说明一个三角形是直角三角形?二、探究新知1.将勾股定理的题设与结论互换,得到的命题是:.2.这个命题是真命题吗?(1)我们用几组符合222+=的三条线段a,b,c来围成三角形,看看它们是否是直角三角a b c形?(3,4,5);(2.5,6,6.5).(2)你会证明这个命题吗?已知:求证:证明:3.将一个命题的题设和结论互换,得到一个新命题,新命题与原命题互为逆命题.练习:写出下列命题的逆命题,并判断原命题和其逆命题的真假:(1)原命题:两直线平行,同位角相等.()逆命题:.()(2)原命题:如果一个角的两边分别平行于另一个角的两边,那么这两个角互补.()逆命题:.()(3)原命题:如果AC=BC,那么点C是线段AB的中点.()逆命题:.()(4)原命题:对顶角相等.()逆命题:.()4.通过刚才的练习可知,原命题的真假与其逆命题的真假之间没有关联.当一个定理的逆命题也是真命题时,它也是一个定理,我们称这两个定理为互逆定理.练习:举出一些我们学过的互逆定理的例子三、巩固提高1.判断下面的三条线段能不能组成直角三角形:(1)15,8,17;(2)13,14,15;(3)n2-1,2n,n2+1.小结:能够构成直角三角形三条边长的三个正整数,成为勾股数.请你写出几组常见的勾股数:练习:书本77页 62.一个三角形的三边长分别为15,20,25,求这个三角形最长边上的高.练习:如果三角形的三边分别为2,2,2,那么这个三角形的三个角的度数分别为;如果三角形的三边分别为1,2的度数之比为.3.如果一个三角形的三边a,b,c满足4422220a b b c a c-+-=,试判断这个三角形的形状.4.正方形网格中,小格的顶点叫做格点。
《勾股定理的逆定理》PPT课件(第1课时)

理的逆定理,∴这个三角形不是直角三角形.
总结:根据勾股定理的逆定理,判断一个三角形是不是直角三 角形,只要看两条较小边长的平方和是否等于最大边长的平方.
巩固练习
D
在Rt△CEF中,得EF2=CE2+CF2=a2+4a2=5a2.
在Rt△ADF中,得AF2=AD2+DF2=16a2+4a2=20a2.
在△AEF中,AE2=EF2+AF2,∴△AEF为直角三角形,且AE为
斜边.∴∠AFE=90°,即AF⊥EF.
课堂小结
勾股定理 的逆定理
内容 作用 注意
如果三角形的三边长a 、b 、c满
下列各组线段中,能够组成直角三角形的一组是( D )
A. 1,2,3
B. 2,3,4
C. 4,5,6
D. 1, 2, 3 C
满足下列条件的三角形中,不是直角三角形的是( C )
A.三个内角比为1:2:1
C.三边之比为 3 : 2 : 5
B. 三边之比为1:2: 5 D. 三个内角比为1:2:3
探究新知 考 点 2 勾股定理的逆定理和乘法公式判断三角形
b
根据勾股定理,则有 A1B1 2=B1C1 2+C1A1 2=a2+b2. B
B
∵a2+b2=c2, ∴A1B1 =c, ∴AB=A1B1.
A1
在△ABC和△A1B1C 1中,
aC
BC=B1C1,
b
CA=C1A1, AB=A1B1.
B1 a C1
∴∆ABC ≌ ∆A1B1C1. ∠C=∠ C1 =90°.
勾股定理逆定理(一)

⑤ A. 2个; B. 3个; C. 4个; D. 5个.
6、三角形的三边长为 ,则这个三角形是( )
A.等边三角形; B.钝角三角形; C.直角三角形; D.锐角三角形.
7、如图,在△ABD中,∠A是直角,AB=3,AD=4,BC=12,DC=13,△DBC是直角三角形吗?
D.如果∠A:∠B:∠C=5:2:3,则△ABC是直角三角形。
3.下列四条线段不能组成直角三角形的是()
A.a=8,b=15,c=17 B.a=9,b=12,c=15
C.a= ,b= ,c= D.a:b:c=2:3:4
【四、综合提升】
三角形的三边长分别为 , , ( 都是正整数),试判断三角形的形状
集兵镇中学八年级数学导学案
备课日期:2013年12月3日教学日期:12月日设计:周健审核:祝亮
课题:勾股定理逆定理(一)
学
习
目
标
1.体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理。
2.探究勾股定理的逆定理的证明方法。
3.理解原命题、逆命题、逆定理的概念及关系。
学习重点:掌握勾股定理的逆定理及证明
(1)这三组数满足 吗?
(2)分别以每组数为三边长作出三角形,用量角器量一量,它们都是直角三角形吗?
猜想命题2:如果三角形的三边长 、 、 ,满足 ,那么这个三角形是三角形
问题二:命题1:
命题2:
命题1和命题2的和正好相反,把像这样的两个命题叫做命题,如果把其中一个叫做,那么另一个叫做
由此得到
勾股定理逆定理:
【五、知识梳理】
【六、当堂检测】
1、任何一个命题都有,但任何一个定理未必都有。
八年级-人教版-数学-下册-第1课时-勾股定理的逆定理

3
5
4
三边分别为 3,4,5, 满足关系:32+42=52, 则该三角形是直角三角形.
探究
画一画:下列各组数中的两数的平方和等于第三数的平方,
分别以这些数为边长画出三角形(单位:cm).
① 2.5,6,6.5;
② 6,8,10;
③ 4,7.5,8.5.
量一量:用量角器量一量,它们是什么三角形? 直角三角形
例2 在△ABC 中,a∶b∶c=9∶15∶12,试判断△ABC 是否 是直角三角形.
解:依题意知 b 是最长边, 设 a=9k,b=15k,c=12k(k>0), ∵ a2+c2=(9k)2+(12k)2=225k2,b2=(15k)2=225k2, ∴ a2+c2=b2,即△ABC 是直角三角形.
本题易错点:没有弄清楚哪条边是最长边的情况下 就盲目地运用勾股定理的逆定理,从而导致错误.
勾股定理的逆定理
互逆命题:原命题、逆命题 勾股定理的逆定理的证明 勾股数
解:(3)对应角相等的两个三角形全等,不成立; (4)角平分线上的点到角两边的距离相等,成立.
一般地,原命题成立时,它的逆命题可能成立,也可 能不成立.
思考 命题 2 正确吗?如何证明呢?
∠C 是直角 ?
△ABC 是直角三角形
a2+b2=c2
画一个两条直角边分别为 a,b 的直角 三角形,如果△ABC 与这个直角三角形全等, 那么△ABC 就是直角三角形.
由前面几个例子,我们可以作出什么猜想?
如果三角形的三边长 a,b,c 满足 a2+b2=c2,那么这个三 角形是直角三角形.
题设
命题 1 如果直角三角形两直角边长分别为 a,b,斜边长为 c,
那么 a2+b2=c2.结论
18.2勾股定理的逆定理(1)

具体训练步骤
1、情景引入2、典型例题3、针对性练习4、小结
训练内容实例
一、情景引入一起看书第73页上的故事引出命题2
命题2如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形
思考:这个命题与命题1“如果直角三角形两直角边是a、b,斜边是c,那么a2+b2=c2”
(2)勾股定理的逆定理是:如果两条直角边的平方和等于斜边的平方,那么这个三角形是直角三角形。
(3)△ABC的三边之比是1:1: ,则△ABC是直角三角形。
2.△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题中的假命题是()
A.如果∠C-∠B=∠A,则△ABC是直角三角形。
B.如果c2= b2—a2,则△ABC是直角三角形,且∠C=90°。
⑴a= ,b= ,c= ;⑵a=5,b=7,c=9;
⑶a=2,b= ,c= ;⑷a=5,b= ,c=1。
5.若三角形的三边是⑴1、 、2;⑵ ;⑶32,42,52⑷9,40,41;
⑸(m+n)2-1,2(m+n),(m+n)2+1;则构成的是直角三角形的有()
A.2个B.3个 C.4个 D.5个
三、本课知识能力提升训练
四、课堂梳理小结作业说明
小结具体内容
1、命题与逆命题2、勾股定理的逆定理3、直角三角形的判断
详细分层作业
布置要求说明
必做:书76页习题18.2 1、2导航33页18.2随堂练习
选作:书76页习题18.2 4、6
提升能力点
灵活运用“勾股定理的逆定理”解决问题
学生层面
综合运用因式分解等相关知识解决勾股定理的问题
提升内容
1、已知a , b , c是△ABC的三边长,且满足 ,
勾股定理的逆定理定义

勾股定理的逆定理1. 引言勾股定理是数学中最基本且重要的定理之一,它描述了直角三角形中三条边的关系。
而勾股定理的逆定理则是根据已知两条边的长度,判断这两条边是否能构成一个直角三角形。
在本文中,我们将详细介绍勾股定理的逆定理的定义、证明以及应用。
2. 定义勾股定理的逆定理可以简单表述为:如果给定一个三角形,其中两条边长分别为a和b,那么当且仅当a、b满足以下条件时,该三角形为直角三角形:•a和b是正数;•a、b存在一个整数m使得a=m^2;•a、b存在一个整数n使得b=n^2;•m和n互质(即最大公约数为1)。
3. 证明下面我们将对勾股定理的逆定理进行证明。
步骤1:假设给定一个符合条件的三角形假设给定一个三角形ABC,其中AB=c为斜边,AC=a为一条直角边,BC=b为另一条直角边。
步骤2:根据已知条件推导首先,我们可以根据已知条件得出以下结论:•根据直角三角形的定义,我们知道角C为直角。
•根据勾股定理,我们有c^2 = a^2 + b^2。
步骤3:证明a、b满足逆定理的条件接下来,我们将分两步证明a、b满足逆定理的条件。
步骤3.1:证明a和b是正数根据已知条件,我们可以得出a、b都是正数。
步骤3.2:证明存在整数m和n使得a=m2和b=n2,并且m和n互质假设m和n不互质,则存在一个正整数d能够同时整除m和n。
那么我们可以将m 表示为dm’,n表示为dn’,其中m’和n’是互质的。
由已知条件可得:• a = m^2 = (dm’)^2 = d2(m’)2;• b = n^2 = (dn’)^2 = d2(n’)2。
由此可见,a和b都能被d^2整除。
但是根据勾股定理可知c不可能被d整除(因为c是斜边),这与已知矛盾。
因此,假设不成立。
即m和n一定是互质的。
步骤4:得出结论根据步骤3的证明,我们可以得出结论:当且仅当a、b满足逆定理的条件时,三角形ABC为直角三角形。
即勾股定理的逆定理成立。
4. 应用勾股定理的逆定理在实际问题中有广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
18.2 勾股定理的逆定理(一)
教学目标
1、知识与技能:了解并掌握勾股定理的逆定理,掌握直角三角形的判定条件。
2、过程与方法:通过实验操作探索三边长a 、b 、c 满足222c b a
=+的三角形是
直角三角形,直接领教同一法;
3、情感、态度、价值观:在探索活动过程中,亲身体验并感受知识的生成和发展的过程,培养敢于实践、敢于发现、大胆探索、合作创新的精神。
教学重点、难点
1.重点:掌握勾股定理的逆定理及证明。
2.难点:勾股定理的逆定理的证明。
教学设计:
一、课堂引入
创设情境:
⑴ 样判定一个三角形是等腰三角形?
⑵ 怎样判定一个三角形是直角三角形?和等腰三角形的判定进行对比,从勾股定理的
逆命题进行猜想。
二、合作、探究
1、复习原命题与逆命题
例1(补充)说出下列命题的逆命题,这些命题的逆命题成立吗?
⑴同旁内角互补,两条直线平行。
⑵如果两个实数的平方相等,那么两个实数平方相等。
⑶线段垂直平分线上的点到线段两端点的距离相等。
⑷直角三角形中30°角所对的直角边等于斜边的一半。
分析:⑴每个命题都有逆命题,说逆命题时注意将题设和结论调换即可,但要分清题设和结论,并注意语言的运用。
⑵理顺他们之间的关系,原命题有真有假,逆命题也有真有假,可能都真,也可能一真一假,还可能都假。
2、勾股定理的逆定理
例2(P82探究)证明:如果三角形的三边长a ,b ,
c 满足a 2+b 2=c 2,那么这个三角形是直角三角形。
分析:⑴注意命题证明的格式,首先要根据题意画出图
形,然后写已知求证。
⑵如何判断一个三角形是直角三角形,现在只知道
若有一个角是直角的三角形是直角三角形,从而将问题转化为如何判断一个角是直角。
⑶利用已知条件作一个直角三角形,再证明和原三角形全等,使问题得以解决。
b
B C A 1C1
⑷先做直角,再截取两直角边相等,利用勾股定理计算斜边A1B1=c,则通过三边对应相等的两个三角形全等可证。
⑸先让学生动手操作,画好图形后剪下放到一起观察能否重合,激发学生的兴趣和求知欲,再探究理论证明方法。
充分利用这道题锻炼学生的动手操作能力,由实践到理论学生更容易接受。
例3(课本例1)判断由线段a、b、c所组成的三角形是不是直角三角形:(1)a=15,b=8,c=17;(2)a=13,b=14,c=15。
三、课堂练习
1.判断题。
⑴在一个三角形中,如果一边上的中线等于这条边的一半,那么这条边所对的角是直角。
⑵命题:“在一个三角形中,有一个角是30°,那么它所对的边是另一边的一半。
”的逆命题是真命题。
⑶勾股定理的逆定理是:如果两条直角边的平方和等于斜边的平方,那么这个三角形是直角三角形。
⑷△ABC的三边之比是1:1:2,则△ABC是直角三角形。
2.△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题中的假命题是()A.如果∠C-∠B=∠A,则△ABC是直角三角形。
B.如果c2= b2—a2,则△ABC是直角三角形,且∠C=90°。
C.如果(c+a)(c-a)=b2,则△ABC是直角三角形。
D.如果∠A:∠B:∠C=5:2:3,则△ABC是直角三角形。
3.已知:在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,分别为下列长度,判断该三角形是否是直角三角形?并指出那一个角是直角?
2,c=5;⑵a=5,b=7,c=9;
⑴a=3,b=2
2,c=1。
⑶a=2,b=3,c=7;⑷a=5,b=6
四、小结
1、内容:勾股定理的逆定理的内容及其证明方法
2、思想方法:通过让动手操作,画好图形后剪下放到一起观察能否重合,激发学生的兴趣和求知欲,再通过探究理论证明方法,使实践上升到理论,提高学生的理性思维
五、课后作业
1.叙述下列命题的逆命题,并判断逆命题是否正确。
⑴如果a3>0,那么a2>0;
⑵如果三角形有一个角小于90°,那么这个三角形是锐角三角形;
⑶如果两个三角形全等,那么它们的对应角相等;
⑷关于某条直线对称的两条线段一定相等。
2.填空题。
⑴任何一个命题都有,但任何一个定理未必都有。
⑵“两直线平行,内错角相等。
”的逆定理是。
⑶在△ABC 中,若a 2=b 2-c 2,则△ABC 是三角形,是直角;
若a 2<b 2-c 2,则∠B 是。
⑷若在△ABC 中,a=m 2-n 2,b=2mn ,c= m 2+n 2,则△ABC 是三角形。
3.若三角形的三边是⑴1、3、2;⑵5
1,41,31;⑶32,42,52⑷9,40,41;⑸(m +n )2-1,2(m +n ),(m +n )2+1;则构成的是直角三角形的有()
A .2个
B .3个 C.4个 D.5个
4.已知:在△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,分别为下列长度,判断该三角形是否是直角三角形?并指出那一个角是直角?
⑴a=9,b=41,c=40;⑵a=15,b=16,c=6;
⑶a=2,b=32,c=4;⑷a=5k ,b=12k ,c=13k (k >0)。
选作:
已知:在△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,a=n 2-1,b=2n ,c=n 2+1(n >1)
求证:∠C=90°。