模糊控制器的设计
自适应模糊PID控制器的设计与仿真

自适应模糊PID控制器的设计与仿真自适应模糊PID控制器是一种结合了模糊控制和PID控制的自适应控制器,它能够在系统的不同工况下根据实际需求对PID参数进行自适应调整,从而使得系统具有更好的动态性能和稳定性。
本文将介绍自适应模糊PID控制器的设计思路和仿真过程。
1.设计思路1.1系统建模首先需要对待控制的系统进行建模,得到系统的数学模型。
这可以通过实验数据或者理论分析来完成。
一般情况下,系统的数学模型可以表示为:$G(s)=\frac{Y(s)}{U(s)}=\frac{K}{s(Ts+1)}$其中,K是系统的增益,T是系统的时间常数。
1.2设计模糊控制器接下来需要设计模糊控制器,包括模糊规则、模糊集和模糊运算等。
模糊控制器的输入是系统的误差和误差的变化率,输出是PID参数的调整量。
1.3设计PID控制器在模糊控制器的基础上,设计PID控制器。
PID控制器的输入是模糊控制器的输出,输出是控制信号。
1.4设计自适应机制引入自适应机制,根据系统的性能指标对PID参数进行自适应调整。
一般可以采用Lyapunov函数进行系统性能的分析和优化。
2.仿真过程在仿真中,可以使用常见的控制系统仿真软件,如MATLAB/Simulink 等。
具体的仿真过程如下:2.1设置仿真模型根据系统的数学模型,在仿真软件中设置仿真模型。
包括系统的输入、输出、误差计算、控制信号计算等。
2.2设置模糊控制器根据设计思路中的模糊控制器设计,设置模糊控制器的输入和输出,并设置模糊规则、模糊集和模糊运算等参数。
2.3设置PID控制器在模糊控制器的基础上,设置PID控制器的输入和输出,并设置PID参数的初始值。
2.4设置自适应机制设置自适应机制,根据系统的性能指标进行PID参数的自适应调整。
2.5运行仿真运行仿真,观察系统的响应特性和PID参数的变化情况。
根据仿真结果可以对设计进行调整和优化。
3.结果分析根据仿真结果,可以分析系统的稳定性、动态性能和鲁棒性等指标,并对设计进行调整和改进。
基于MATLAB的模糊PID控制器的设计

基于MATLAB的模糊PID控制器的设计模糊PID控制器是一种常用的控制算法,可以解决传统PID控制器在非线性系统中效果不佳的问题。
在MATLAB中,可以使用fuzzylogic工具箱来设计模糊PID控制器。
模糊PID控制器的设计过程分为三个步骤:建立模糊系统、设计控制器和性能评估。
接下来,设计模糊PID控制器。
在MATLAB中,可以使用fuzzy工具箱提供的mamdani和sugeno两种模糊控制器类型。
其中,mamdani模糊控制器基于模糊规则的if-then逻辑,而sugeno模糊控制器使用模糊规则来计算模糊输出。
根据系统的具体需求,可以选择合适的模糊控制器类型,并设置相应的参数。
同时,可以使用模糊控制器设计工具来对模糊控制器进行优化和调整。
最后,对设计的模糊PID控制器进行性能评估。
在MATLAB中,可以使用模拟仿真工具对模糊PID控制器进行测试和评估。
具体方法是将模糊PID控制器与待控制的系统进行耦合,观察系统的响应和控制效果,并评估其性能和稳定性。
可以通过调整模糊PID控制器的参数和模糊规则来改善控制效果。
总之,基于MATLAB的模糊PID控制器设计包括建立模糊系统、设计控制器和性能评估三个步骤。
通过合理设置模糊输入、模糊输出和模糊规则,可以有效地解决非线性系统的控制问题。
同时,利用MATLAB提供的模糊控制器设计工具和性能评估工具,可以对模糊PID控制器进行优化和改进,以达到更好的控制效果和稳定性。
基于matlab的模糊控制器的设计与仿真

基于MATLAB的模糊控制器的设计与仿真摘要:本文对模糊控制器进行了主要介绍。
提出了一种模糊控制器的设计与仿真的实现方法,该方法利用MA TLB模糊控制工具箱中模糊控制器的控制规则和隶属度函数,建立模型,并进行模糊控制器设计与仿真。
关键词:模糊控制,隶属度函数,仿真,MA TLAB1 引言模糊控制是一种特别适用于模拟专家对数学模型未知的较复杂系统的控制,是一种对模型要求不高但又有良好控制效果的控制新策略。
与经典控制和现代控制相比,模糊控制器的主要优点是它不需要建立精确的数学模型。
因此,对一些无法建立数学模型或难以建立精确数学模型的被控对象,采用模糊控制方法,往往能获得较满意的控制效果。
模糊控制器的设计比一般的经典控制器如PID控制器要复杂,但如果借助MATLAB则系统动态特性良好并有较高的稳态控制精度,可提高模糊控制器的设计效率。
本文在MATLAB环境下针对某个控制环节对模糊控制系统进行了设计与仿真。
2 模糊控制器简介模糊控制器是一种以模糊集合论,模糊语言变量以及模糊推理为数学基础的新型计算机控制方法。
显然,模糊控制的基础是模糊数学,模糊控制的实现手段是计算机。
本章着重介绍模糊控制的基本思想,模糊控制的基本原理,模糊控制器的基本设计原理和模糊控制系统的性能分析。
随着科学技术的飞速发展,在那些复杂的,多因素影响的严重非线性、不确定性、多变性的大系统中,传统的控制理论和控制方法越来越显示出局限性。
长期以来,人们期望以人类思维的控制方案为基础,创造出一种能反映人类经验的控制过程知识,并可以达到控制目的,能够利用某种形式表现出来。
而且这种形式既能够取代那种精密、反复、有错误倾向的模型建造过程,又能避免精密的估计模型方程中各种方程的过程。
同时还很容易被实现的,简单而灵活的控制方式。
于是模糊控制理论极其技术应运而生。
3 模糊控制的特点模糊控制是以模仿人类人工控制特点而提出的,虽然带有一定的模糊性和主观性,但往往是简单易行,而且是行之有效的。
模糊控制器的设计步骤

模糊控制器的设计步骤引言在控制理论中,模糊控制是一种根据模糊逻辑进行决策和控制的方法。
模糊控制器的设计步骤非常重要,本文将详细探讨模糊控制器设计的各个步骤。
一、确定控制目标控制系统的第一步是明确控制目标。
确定控制目标包括明确系统的输入和输出变量,以及期望的控制效果。
控制目标的明确定义对于后续的模糊控制器设计至关重要。
二、建立模糊化输入输出变量在模糊控制器设计中,需要将实际的输入输出变量进行模糊化。
模糊化是指将实际物理变量的取值映射到一系列模糊集合中。
模糊化过程需要确定模糊集合的数量和形状。
可以使用三角型、梯型等形状表示模糊集合。
2.1 模糊化输入变量模糊化输入变量需要确定输入变量的模糊集合和隶属度函数。
通过隶属度函数,可以将实际输入变量的取值映射到各个模糊集合中。
通常使用高斯函数、三角函数等形式的隶属度函数。
2.2 模糊化输出变量模糊化输出变量的过程类似于模糊化输入变量。
需要确定输出变量的模糊集合和隶属度函数。
同样地,可以使用各种形式的隶属度函数来描述输出变量的模糊集合。
三、制定模糊规则模糊规则是模糊控制器的核心部分,用于将模糊输入变量映射到模糊输出变量上。
模糊规则的制定需要基于专家经验或者系统的训练数据。
通常使用“如果-那么”形式的规则来描述模糊控制器的行为。
3.1 规则库的建立规则库是所有模糊规则的集合。
规则库的建立过程需要根据具体的系统特点和控制要求进行设计。
规则库中的每一条规则都包含一组条件和一个结论。
3.2 规则的模糊化在制定模糊规则时,需要对规则中的条件和结论进行模糊化处理。
模糊化处理的目的是将实际的输入值映射到相应的模糊集合上。
3.3 规则的归结在进行模糊控制运算时,需要将模糊输入和模糊规则进行匹配,并计算出相应的输出结果。
规则的归结是指将输入值和规则进行匹配,并计算出匹配程度。
3.4 规则的去模糊化规则的去模糊化是指将模糊输出结果转换为实际的物理输出值。
去模糊化需要考虑到模糊输出的不确定性和误差。
模糊PID控制原理与设计步骤

模糊PID控制原理与设计步骤模糊PID控制(Fuzzy PID control)是在PID控制基础上引入了模糊逻辑的一种控制方法。
相比传统的PID控制,模糊PID控制能够更好地适应系统的非线性、时变和不确定性等特点,提高系统的性能和鲁棒性。
设计步骤:1.确定系统的模型和控制目标:首先需要对待控制的系统进行建模,确定系统的数学模型,包括系统的输入、输出和动态特性等。
同时,需要明确控制目标,即系统应达到的期望状态或性能指标。
2.设计模糊控制器的输入和输出变量:根据系统的特性和控制目标,确定模糊控制器的输入和输出变量。
输入变量通常为系统的误差、误差变化率和累积误差,输出变量为控制力。
3.确定模糊集和模糊规则:对于每个输入和输出变量,需要确定其模糊集和模糊规则。
模糊集用于将实际变量映射为模糊集合,如“大、中、小”等;模糊规则用于描述输入变量与输出变量之间的关系,通常采用IF-THEN形式,如“IF误差大AND误差变化率中THEN控制力小”。
4.编写模糊推理和模糊控制算法:根据确定的模糊集和模糊规则,编写模糊推理和模糊控制算法。
模糊推理算法用于根据输入变量和模糊规则进行推理,生成模糊的输出变量;模糊控制算法用于将模糊的输出变量转化为具体的控制力。
5.调试和优化:根据系统的实际情况,调试和优化模糊PID控制器的参数。
可以通过试错法或专家经验等方式对模糊集、模糊规则和模糊函数等进行调整,以达到较好的控制效果。
6.实施和验证:将调试完成的模糊PID控制器应用到实际系统中,并进行验证。
通过监控系统的实际输出和期望输出,对模糊PID控制器的性能进行评估和调整。
总结:模糊PID控制是一种将模糊逻辑引入PID控制的方法,能够有效地提高系统的性能和鲁棒性。
设计模糊PID控制器的步骤主要包括确定系统模型和控制目标、设计模糊控制器的输入输出变量、确定模糊集和模糊规则、编写模糊推理和模糊控制算法、调试和优化以及实施和验证。
通过这些步骤,可以设计出较为优化的模糊PID控制器来实现系统的控制。
模糊控制课程设计报告

模糊控制课程设计报告一、模糊控制器设计1.输入输出变量的隶属度函数图1.1输入偏差量e图1.2输入偏差量变化率ec图1.3输出控制量u2.模糊规则设置1.if(input1 is ss1 ) and (input2 is s2)then (output1is b3)2.if(input1 is ss1 )and (input2 is m2)then (output1 is b3)3.if(input1 is ss1 )and (input2 is b2)then (output1 is mb3)4.if(input1 is s1 ) and (input2 is s2)then (output1 is b3)5.if(input1 is s1 )and (input2 is m2)then (output1 is mb3)6.if(input1 is s1 ) and (input2 is b2)then (output1 is m3)7.if(input1 is sm1) and (input2 is s2)then (output1 is mb3)8.if(input1 is sm1)and (input2 is m2)then (output1 is mb3)9.if(input1 is sm1)and (input2 is b2)then (output1 is m3)10.if(input1 is bb1)and (input2 is b2)then (output1 is s3)11.if(input1 is bb1)and (input2 is m2)then (output1 is s3)12.if(input1 is bb1)and (input2 is s2)then (output1 is sm3)13.if(input1 is b1) and (input2 is b2)then (output1 is s3)14.if(input1 is b1)and (input2 is m2)then (output1 is sm3)15.if(input1 is b1)and (input2 is s2)then (output1 is m3)16.if(input1 is mb1)and (input2 is b2)then (output1 is sm3)17.if(input1 is mb1)and (input2 is m2)then (output1 is sm3)18.if(input1 is mb1)and (input2 is s2)then (output1 is m3)19.if(input1 is m1)and (input2 is m2)then (output1 is m3)20.if(input1 is m1)and (input2 is s2)then (output1 is mb3)21.if(input1 is m1)and (input2 is b2)then (output1 is sm3)二、Simulink回路设计1.设计思路按照书中所示的基本结构将偏差、控制器、被控对象连接成一个回路,通过将偏差和偏差变化率输入模糊控制器,得到输出控制力矩u输入到被控对象中,最终得到理想的控制结果。
无刷直流电机模糊pid控制器的simulink设计

无刷直流电机模糊pid控制器的simulink设计在控制系统中,PID控制器是最常见且广泛应用的控制器之一,它通过调节比例项、积分项和微分项来实现对系统的控制。
而模糊控制器则是一种基于模糊逻辑的控制器,能够处理系统模型非线性、参数变化较大或难以精确建模的情况。
将PID控制器与模糊控制器相结合,可以充分发挥各自的优势,提高系统的控制性能。
在Simulink中设计无刷直流电机模糊PID控制器,首先需要建立电机模型。
电机模型可以通过数学建模或直接使用Simulink中的电机模型来实现。
接下来,需要设计PID控制器和模糊控制器。
PID控制器的参数可以通过经验法则、试错法或自整定法等方法进行调节,以获得合适的控制效果。
模糊控制器的设计需要确定模糊集合、模糊规则库和模糊推理方法,以实现对系统的模糊控制。
设计无刷直流电机模糊PID控制器的Simulink模型时,可以按照以下步骤进行:1. 建立电机模型:选择合适的直流电机模型,包括电机的电气特性、机械特性和控制接口等。
2. 设计PID控制器:设置PID控制器的比例、积分和微分参数,通过模拟和调节,使得系统的响应速度、稳定性和抗干扰能力达到要求。
3. 设计模糊控制器:确定模糊控制器的模糊集合、模糊规则库和模糊推理方法,设置模糊控制器的输入输出变量和模糊规则。
4. 整合PID控制器和模糊控制器:将PID控制器和模糊控制器串联或并联,根据系统的要求和性能指标来设计控制器的整体结构。
5. 仿真验证:在Simulink中进行仿真验证,通过模拟系统的运行情况和控制效果,来评估控制器的性能和稳定性。
通过以上步骤的设计和仿真验证,可以得到一个合理、有效的无刷直流电机模糊PID控制器的Simulink模型。
在实际应用中,可以根据系统的实际情况和性能要求,进一步优化控制器的参数和结构,以实现更好的控制效果。
同时,不断的实验和调试,能够进一步提高控制器的稳定性和鲁棒性,确保系统的可靠性和性能的提升。
模煳控制第四章 模糊控制器设计

4. 模糊PID控制器 PID控制器对不同的控制对象要用不同的PID参
数,而且调整不方便,抗干扰能力差,超调量 差。 模糊控制器是一种语言控制,不依赖被控对象 的数学模型,设计方法简单、易于实现。能够 直接从操作者的经验归纳、优化得到,且适应 能力强、鲁棒性好。
整理ppt
模糊控制也有其局限性和不足,就是它的 控制作用只能按档处理,是一种非线性控 制,控制精度不高,存在静态余差,一般 在语言变量偏差趋于零时有振荡。
整理ppt
2. 模糊自调整控制器 模糊控制器性能的好坏直接影响到模糊控
制系统的控制特性,而模糊控制器的性能 又取决于控制规则的完善与否。 如果在简单模糊控制器的输入输出关系中 加入修正因子,便能对控制规则进行自动 调整,从而可对不同的被控对象获得相对 满意的控制效果。
整理ppt
在简单模糊控制器中,如果将误差e、误 差变化率Δe及控制量u的关系描述为:
整理ppt
在模糊推理机中,模糊推理决策逻辑是核 心,它能模仿人的模糊概念和运用模糊蕴 涵运算以及模糊逻辑推理规则对模糊控制 作用的推理进行决策。
整理ppt
(3) 解模糊接口(Defuzzification) 通过模糊推理得出的模糊输出量不能直接
去控制执行机构,在这确定的输出范围中, 还必须要确定一个最具有代表性的值作为 真正的输出控制量,这就是所谓解模糊判 决。 完成这部分功能的模块就称作解模糊接口, 它的主要功能包括:
整理ppt
4.1 模糊控制器的基本结构及主要类 型
4.1.1 模糊控制器的基本结构
模糊控制的基础是模糊集合理论和模糊逻 辑,是用模糊逻辑来模仿人的思维对那些 非线性、时变的复杂系统以及无法建立数 学模型的系统实现控制的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4模糊控制器的设计4 Design of Fuzzy Controllor4.1概述(Introduction)随着PLC在自动控制领域内的广泛应用及被控对象的日趋复杂化,PLC控制软件的开发单纯依靠工程人员的经验显然是行不通的,而必须要有科学、有效的软件开发方法作为指导。
因此,结合PLC可编程逻辑控制器的特点,应用最新控制理论、技术和方法,是进一步提高PLC软件开发效率及质量的重要途径。
系统设计的目标之一就是要提高装车的均匀性,车厢中煤位的高度变化直接影响装车的均匀性,装车不均匀对车轴有很大的隐患。
要保持高度值不变就必须不断的调整溜槽的角度,但是,在装车过程中,煤位的高度和溜槽角度之间无法建立精确的数学模型。
模糊控制它最大的特点是[43-45]:不需建立控制对象精确数学模型,只需要将操作人员的经验总结描述成计算机语言即可,因此采用模糊控制思想实现均匀装车是行之有效的方法。
虽然很多PLC生产厂家推出FZ模糊推理模块,但这些专用模块价格昂贵,需使用专门的编程设备,成本高通用性差,所以自主开发基于模糊控制理论的PLC控制器有很大的工程价值。
本章首先介绍了模糊控制的基本原理、模糊控制系统及模糊控制器的设计步骤;然后在对煤位高度控制系统分析的基础上,设计基于模糊理论的PLC控制,分别从查询表计算生成和PLC程序查询两个部分进行设计。
4.2模糊控制原理(Fuzzy Control Principle)4.2.1模糊控制理论(Fuzzy Control Theory)模糊控制理论是由美国加利福尼亚大学的自动控制理论专家L.A.Zadch教授首次提出,由英国的Mamdani首次用于工业控制的一种智能控制技术[46]。
模糊控制(FUZZY)技术是一种由数学模型、计算机、人工智能、知识工程等多门科学领域相互渗透、理论性很强的科学技术。
模糊控制是以人的控制经验作为控制的知识模型,以模糊集合、模糊语言变量以及模糊逻辑推理作为控制算法的数学工具,用计算机来实现的一中计算机智能控制[47-48]。
它的基本思想是:把人类专家对待特定的被控对象或过程的控制策略总结成一系列以“IF…THEN…”形式表示的控制规则,通过模糊推理得到控制作用集,作用与被控对象或过程。
与传统的控制方法相比,它具有以下优点[48]:无需知道被控对象的数学模型;是一种反映人类智慧思维的智能控制;易被人们所接受;构造容易;鲁棒性好。
4.2.2模糊控制系统(Fuzzy Control System)模糊控制系统是一种自动控制系统,它是以模糊数学、模糊语言形式的知识表示和模糊逻辑推理为理论基础,采用计算机控制技术构成的一种具有闭环结构是数字控制系统。
模糊控制系统主要由模糊控制器、输入输出接口、检测装置、执行机构和被控对象等组成[46,49]。
如图4-1所示。
图4-1 模糊控制系统的组成Figure 4-1 The Composition of the Fuzzy Control System模糊控制系统的结构与一般计算机数字控制系统类似,只是它的控制器为模糊控制器(图中虚线框内),并且由计算机来实现。
模糊控制器(Fuzzy Controller,FC)也称为模糊逻辑控制器[50](Fuzzy Logic Controller,FLC),为模糊控制系统的核心部分。
它根据误差信号产生合适的控制作用输出给被控对象。
模糊控制器主要由模糊化接口、知识库、模糊推理机和解模糊接口组成[46,51],各部分的作用概述如下:(1)模糊化接口这部分的作用是将输入的精确量转换成模糊量。
其中包括外界的参考输入、系统的输出或状态等。
(2)知识库知识库中包含了具体应用领域中的知识和要求的控制目标。
它通常由数据库和模糊控制规则两部分组成:①数据库主要包括各语言变量的隶书度函数、尺度变换因子以及模糊空间的分级数等。
②规则库包括了用模糊语言变量表示的一系列控制规则。
它们反映了控制专家的经验和知识。
(3)模糊推理机模糊推理是模糊控制器的核心,它具有模拟人的基于模糊概念的推理能力。
该推理过程是基于模糊逻辑中的蕴涵关系及推理规则来进行的。
(4)解模糊接口(清晰化)解模糊接口的作用是将模糊推理得到的控制量(模糊量)变换为实际用于控制的清晰量。
它包含以下两部分内容:①将模糊的控制量经清晰化变换变成表示在论域范围的清晰量。
②将表示在论域氛围的清晰量经尺度变换变成实际的控制量。
4.2.3模糊控制器的设计(Fuzzy Controller Design)由于模糊控制器采用数字计算机来实现的,它可以将系统的偏差从数字量化为模糊量,对模糊量按给定的规则进行模糊推理,最后把模糊推理结构的模糊输出量转化为实际系统能够接受的精确数字量或模拟量。
(1)模糊控制器算法设计的内容模糊控制器的算法设计[48,52-54]主要包括以下内容:①选择模糊输入、输出变量的论域范围及模糊变量子集类型;②确定各模糊变量的隶属度函数类型;③精确输入、输出的变量的模糊化;④制定模糊控制规则;⑤确定模糊推理算法;⑥模糊输出变量的去模糊化;⑦生成查询表。
(2)模糊控制器实现的方法目前,随着PLC的广泛应用以及其功能的不断提高,基于PLC模糊控制器的研究称为一个焦点,并取得了一定的成果。
模糊控制集成到PLC主要有两种实现方法:一种是基于硬件,一种是基于软件。
基于硬件既是用模糊逻辑芯片[55]来是现在模糊化、模糊推理、去模糊化全过程;基于软件则是由软件来实现,分为查表法[56]、软件推理法[57]两种。
比较而言,基于硬件的模糊控制推理速度快,控制精度高,但灵活性差,价格昂贵,不适合一般用户的要求而软件推理控制精度高、灵活性好,但资源投入大、需要花费大量的计算时间;查表法则响应速度快,投入小,虽然控制精度相对较低,但完全能满足一般控制的要求。
4.3 PLC模糊控制器的实现(Implementation of the PLC Fuzzy Controller)4.3.1 煤位高度的控制(Control of the Coal Level )对车厢装载的控制不仅要控制装载的重量,还要实现均匀装车,即要车厢内煤位高度恒定。
煤位高度的控制受到很多因素的影响,如:溜槽的角度、溜槽的煤流量、铁牛牵引的速度、煤炭颗粒的大小、煤炭下落的轨迹以及卡煤现象等等。
然而这些因素之间不易建立精确的数学模型。
在实际装车过程中,操作人员是凭工作经验,根据车厢型号和载重量,通过调节溜槽的角度来控制煤位的高度,但是单凭人工操作严重影响了装载的精度和装车的效率,不能满足自动化的需要。
基于此,对车厢煤位高度的控制采用了模糊控制的方法。
如图4-2煤位高度控制系统方框图。
图4-2 煤位高度控制系统方框图Figure 4-2 The Block Diagram of the Coal Level Control System 图中,PLC模糊控制器为核心部分,它主要任务是数据接收,数据处理和输出控制;绞吊电机为执行器控制溜槽的的角度;车厢为被控对象;超声波料位计为检测变送环节,将检测的高度值以标准电信号的形式,传送到PLC。
本文采用了工程中普遍使用的“双输入单输出”控制器,选用受控变量和输入给定的偏差E和偏差变化率EC作为输入,因为二维的控制器能够比较严格的反映受控过程中输入变量的动态特性[46],因而在控制效果上要好于一维控制器,计算上要简单与三维控制器。
以煤位高度差e和高度差变化率ec作为模糊控制器的输入,以绞吊电机的启动时间作为控制器的输出。
为了克服实时计算量大的缺点,模糊控制器采用查表法。
查表法的基本思想[59-64]是通过计算推理取得一个模糊控制表,并将其控制表放在PLC数据块中。
当进行模糊控制时,只需直接根据采样得到的误差和误差变化率的量化值来找出当前时刻的控制量的输出量化值。
最后,将此量化值乘以比例因子得到最终的输出控制量。
PLC模糊控制器的基本结构见图4-3。
图4-3 PLC模糊控制器基本结构Figure 4-3 The Basic Structure of the PLC Fuzzy Controller Based 图中,查询表是利用Matlab的辅助工具箱Fuzzy Control Toolbox建立模糊推理系统,规则器计算生成的。
查询表的查询是STEP7编写的PLC程序实的。
4.3.2查询表的设计(Off-Line Design on the Fuzzy Controller)模糊控制器离线设计的主要目的就是煤堆高度偏差及偏差变化率到输出控制绞吊电机时间的一个模糊控制查询表的构建,也是查表法设计的关键。
论文对查询表的建立是通过MATLAB 7来实现的。
具体步骤如下: (1) 模糊化① 常用车厢的高度基本为1500~2000范围之内。
通常根据操作人员的装车经验,煤位的期望高度L 0为车厢高度的基础上增加100~200,可达到均匀装车的效果,所以L X 的范围约为0~2200,得出偏差的最大值为2200。
在实际的装车过程中,偏差为基本在大于零的范围,且不允许有较大的负偏差。
所以取e 的实际测量范围为[-200,1000](把小于-200或大于1000的值,作为临界值处理)。
设系统设定的煤位高度为L 0,实际检测的煤位高度为L X ,则煤位高度误差X L L e -=0,其语言变量为E 。
E 的论域为:E = {-6,-5,-4,-3,-2,-1, 0, 1, 2, 3, 4, 5, 6}相应的语言值为NB ,NM ,NS ,ZE ,PS ,PM ,PB 。
分别表示测量高度c 相对于目标高度r 为:“极高”,“很高”,“偏高”,“零”,“偏低”,“很低”,“极低”。
② 取ec 的实际测量范围为[-200,200](把小于-200或大于200的值,作为临界值处理)。
设高度误差两次采样值的变化量是)1()()(--=k e k e k ec ,其语言变量为EC 。
论域为:EC= {-6,-5,-4,-3,-2,-1, 0, 1, 2, 3, 4, 5, 6}相应的语言值为NB ,NM ,NS ,ZE ,PS ,PM ,PB 。
分别表示测量高度c 相对于目标高度r 为:“快速升高”,“升高”,“缓慢升高”,“不变”,“缓慢降低”,“降低”,“快速降低”。
③ 控制系统的输出是绞吊电机的运行时间,通过计算可以得到溜槽的绞吊速度为s m v /17.0=,溜槽的运行角度为0°~ 90°,对应的运行时间约为18.5s 而实际中一般溜槽的角度控制中0°~ 60°的变化范围内,运行时间约12s ,所以时间的变化范围为[-12,12]。
设绞吊电机的启动时间为系统的输出控制量u ,其语言变量为U ,论语为:U= {-6,-5,-4,-3,-2,-1, 0, 1, 2, 3, 4, 5, 6}当U 为正值时表示绞吊电机正转(溜槽下降)的时间为|U|,当U 为负值时表示绞吊电机反转(溜槽上升)的时间为|U|。