勾股定理与逆定理的应用

合集下载

勾股定理及逆定理的应用

勾股定理及逆定理的应用

勾股定理的逆定理及应用知识点1:互逆命题与互逆定理 知识点2:勾股定理的逆定理如果三角形的三边长度分别是,,a b c ,并且满足222a b c +=,那么这个三角形是直角三角形。

注意:(1)勾股定理的逆定理是直角三角形的判定定理,即已知三角形的三条边长,且满足两条较小的边的平方和等于最长边的平方,才可判断此三角形是直角三角形,最长边所对的角为直角。

(2)在应用勾股定理的逆定理时,注意计算准确,要写计算过程。

知识点3:勾股数(1)满足222a b c +=的三个正整数,,a b c 就是一组勾股数(2)对于任意两个整数,(0)m n m n >>,2222,,2m n m n mn +-这三个数就是一组勾股数,可见勾股数有无数组。

(3)常见的勾股数有①3,4,5 ②6,8,10 ③8,15,17 ④7,24,25 ⑤5,12,13 ⑥9,12,15【知识点一】根据数量关系判断三角形是否直角三角形。

例题1:在下列线段中能组成直角三角形三边的是( )A 7,10,13B 2226,8,10111,,345例题2:已知a 、b 、c 是△ABC 的三边,且满足a 2+b 2+c 2+50 =6a+8b+10c ,试判断△ABC 的形状.【变式练习】1、判断:三边长分别为2222,21,221(0)n n n n n n ++++>的三角形是否是直角三角形2、在正方形ABCD 中,F 是DC 边中点,E 是BC 上的一点,且EC=14BC 。

求证∠EFA=90°。

【知识点二】利用勾股定理逆定理构造直角三角形求其边或角。

例题3、如图在△ABC 中,AB=5,AC=13,BC 上的中线AD=6,求BC 边的长。

【变式练习】1、如图所示,△ABC 是等腰直角三角形,AB=AC ,D 是斜边BC 的中点,E 、F 分别是AB 、AC 边上的点,且DE ⊥DF ,若BE=12,CF=5.求线段EF 的长2、如图,在△ABC 中,D 为BC 边上与B 、C 不重合的任意一点,且AB=AC 。

17.2勾股定理及其逆定理的综合应用

17.2勾股定理及其逆定理的综合应用

第2课时勾股定理及其逆定理的综合应用姓名:基础题知识点1 勾股定理逆定理的应用1.在一根长为30个单位长度的绳子上,分别标出A,B,C,D四个点,将绳子分成长为5个单位长度,12个单位长度和13个单位长度的三条线段.自己握住绳子的两个端点(A点和D点交于一处),两个同伴分别握住B点和C点,将绳子拉成一个几何图形,会得到( )A.直角三角形B.锐角三角形C.钝角三角形D.不能组成三角形2.甲、乙两艘客轮同时离开港口,航行的速度都是每分钟40 m,甲客轮用15分钟到达点A,乙客轮用20分钟到达点B.若A,B两点的直线距离为1 000 m,甲客轮沿着北偏东30°的方向航行,则乙客轮的航行方向可能是( )A.南偏东60°B.南偏西60°C.北偏西30°D.南偏西30°3.五根小木棒,其长度分别为7,15,20,24,25,现将它们摆成两个直角三角形,下列选项中正确的是( )A B C D4.某小区的一所健身中心的平面图如图所示,活动区是面积为200 m2的长方形,其长为20 m,餐饮区是一个半圆形,面积为 4.5π m2,休息区是一个三角形,边AE=8 m,求休息区的面积.知识点2 勾股定理及其逆定理的综合应用5.如图,正方形网格中的△ABC.若小方格边长为1,则△ABC的形状为( )A.直角三角形B.B.锐角三角形C.钝角三角形D.以上答案都不对6.如图是一个零件的示意图,测量AB=4 cm,BC=3 cm,CD=12 cm,AD=13 cm,∠ABC=90°,根据这些条件,你能求出∠ACD的度数吗?试说明理由.7.如图,已知点C是线段BD上的一点,∠B=∠D=90°.若AB=3,BC=2,CD=6,DE=4,AE=65.(1)求AC,CE的长.(2)求证:∠ACE=90°.中档题8.已知△ABC,AB=5,BC=12,AC=13,点P是AC上一个动点,则线段BP长的最小值是( )A.6013B.5 C.3013D.129.如图,A,B两个村庄分别在两条公路MN和EF 的边上,且MN∥EF,某施工队在A,B,C三个村之间修了三条笔直的路.若∠MAB=65°,∠CBE=25°,AB=160 km,BC=120 km,则A,C两村之间的距离为( )A.250 km B.240 kmC.200 km D.180 km10.如图所示的网格是正方形网格,则∠ACB-∠DCE= (点A,B,C,D,E是网格线交点).11.如图,某小区的两个喷泉A,B位于小路AC的同侧,两个喷泉的距离AB的长为250 m.现要为喷泉铺设供水管道AM,BM,供水点M在小路AC上,供水点M 到AB的距离MN的长为120 m,BM的长为150 m.(1)求供水点M到喷泉A,B需要铺设的管道总长.(2)直接写出喷泉B到小路AC的最短距离.12.(教材P34习题T5变式)如图,在四边形ABCD 中,AB=BC=1,CD=3,DA=1,且∠B=90°.(1)求∠BAD的度数.(2)求四边形ABCD的面积(结果保留根号).(3)将△ABC沿AC翻折至△AB′C,如图所示,连接B′D,求四边形ACB′D的面积.综合题13.通过对《勾股定理》的学习,我们知道:如果一个三角形中,两边的平方和等于第三边的平方,那么这个三角形一定是直角三角形.如果我们新定义一种三角形——两边的平方和等于第三边平方的2倍的三角形叫做奇异三角形.(1)根据奇异三角形的定义,请你判断:等边三角形一定是奇异三角形吗? (填“是”或“不是”).(2)若某三角形的三边长分别为1,7,2,则该三角形是不是奇异三角形?请做出判断并写出判断依据.(3)在Rt△ABC中,三边长分别为a,b,c,且a2=50,c2=100,则这个三角形是不是奇异三角形?请做出判断并写出判断依据.探究:在Rt△ABC中,∠C=90°,AB=c,AC=b,BC=a,且b>a.若Rt△ABC是奇异三角形,求a2∶b2∶c2.1.A 2.A 3.C4.解:根据题意,得12π×(ED 2)2=4.5π,∴ED =6.∵AD ·AB =200,AB =20, ∴AD =10. ∵AE =8,∴AE 2+ED 2=AD 2,即∠AED =90°.∴S △AED =8×62=24(m 2),即休息区的面积为24 m 2.5.A6.解:在△ABC 中,∵AB =4,BC =3,∠ABC =90°, ∴根据勾股定理,得AC 2=AB 2+BC 2=42+32=52. ∴AC =5.∵AC 2+CD 2=52+122=25+144=169, AD 2=132=169, ∴AC 2+CD 2=AD 2.∴△ACD 是直角三角形,且AD 为斜边, 即∠ACD =90°.7.解:(1)∵在Rt △ABC 中,∠B =90°,AB =3,BC =2,∴AC =AB 2+BC 2=32+22=13.∵在Rt △EDC 中,∠D =90°,CD =6,DE =4, ∴CE =CD 2+DE 2=62+42=52=213. (2)证明:∵AC =13,CE =52,AE =65, ∴AE 2=AC 2+CE 2.∴∠ACE =90°. 8. A 9. C 10.45°11.解:(1)在Rt △MNB 中,BN =BM 2-MN 2=1502-1202=90(m),∴AN =AB -BN =250-90=160(m).在Rt △AMN 中,AM =AN 2+MN 2=1602+1202=200(m).∴供水点M 到喷泉A ,B 需要铺设的管道总长为AM +BM =200+150=350(m).(2)喷泉B 到小路AC 的最短距离是BM =150 m. 12.解:(1)∵AB =BC =1,∠B =90°,∴∠BAC =∠ACB =45°,AC =AB 2+BC 2= 2. 又∵CD =3,DA =1, ∴AC 2+DA 2=CD 2.∴△ADC 为直角三角形,∠DAC =90°. ∴∠BAD =∠BAC +∠DAC =135°. (2)∵S △ABC =12AB ·BC =12,S △ADC =12AD ·AC =22,∴S 四边形ABCD =S △ABC +S △ADC =1+22.(3)过点D 作DE ⊥AB ′,垂足为E , 由(1)知∠DAC =90°.根据折叠可知∠B ′AC =∠BAC =45°,AB =AB ′=1,S △AB ′C =S △ABC =12.∴∠DAE =∠DAC -∠B ′AC =45°. ∴AE =DE.设DE =AE =x ,在Rt △ADE 中,AE 2+DE 2=AD 2. ∴x 2+x 2=1.∴x =22. ∴S △ADB ′=12×1×22=24.∴S 四边形ACB ′D =S △AB ′C +S △ADB ′=12+24=2+24.13.解:(2)∵12+(7)2=2×22,∴该三角形是奇异三角形.(3)当c 为斜边时,b 2=c 2-a 2=50,Rt △ABC 不是奇异三角形;当b 为斜边时,b 2=c 2+a 2=150,∵50+150=2×100,∴a 2+b 2=2c 2.∴Rt △ABC 是奇异三角形.探究:Rt △ABC 中,∠C =90°,∴a 2+b 2=c 2. ∵c >b >a ,∴2c 2>b 2+a 2,2a 2<b 2+c 2. ∵Rt △ABC 是奇异三角形, ∴2b 2=a 2+c 2.∴2b 2=a 2+a 2+b 2. ∴b 2=2a 2.∴c 2=3a 2. ∴a 2∶b 2∶c 2=1∶2∶3.。

第三讲 中考中的勾股定理应用

第三讲  中考中的勾股定理应用

第三讲中考中的勾股定理应用【典型例题A】类型一、勾股定理及逆定理的简单应用1、已知直角三角形的两边长分别为6和8,求第三边的长.【变式】在△ABC中,AB=15,AC=13,高AD=12.求△ABC的周长.2、如图所示,△ABC中,∠ACB=90°,AC=CB,M为AB上一点.求证:.【变式】已知,△ABC中,AB=AC,D为BC上任一点,求证:.类型二、勾股定理及逆定理的综合应用3、已知如图所示,在△ABC中,AB=AC=20,BC=32,D是BC上的一点,且AD⊥AC,求BD的长.【变式】如图所示,已知△ABC中,∠B=22.5°,AB的垂直平分线交BC于D,BD=,AE⊥BC于E,求AE的长.4、如图①所示,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用表示,则不难证明.(1)如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用表示,那么之间有什么关系?(不必证明)(2)如图③,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用表示,请你确定之间的关系并加以证明.5、如果ΔABC的三边分别为,且满足,判断ΔABC的形状.类型三、勾股定理的实际应用6、如图①,一只蚂蚁在长方体木块的一个顶点A处,食物在这个长方体上和蚂蚁相对的顶点B处,蚂蚁急于吃到食物,所以沿着长方体的表面向上爬,请你计算它从A处爬到B处的最短路线长为多少?【变式】如图,有一个圆柱体,它的高为20,底面半径为5.如果一只蚂蚁要从圆柱体下底面的A点,沿圆柱表面爬到与A相对的上底面B点,则蚂蚁爬的最短路线长约为______.(π取3)【典型例题B】类型一、勾股定理及逆定理的应用1、如图所示,直角梯形ABCD中,AD∥BC,∠B=90°,AD=,AB=,BC,E是AB上一点,且AE=,求点E到CD的距离EF.【变式】如图所示,在△ABC中,D是BC边上的点,已知AB=13,AD=12,AC=15,BD=5,求DC的长.类型二、勾股定理与其他知识结合应用2、如图所示,牧童在A处放牛,其家在B处,A、B到河岸的距离分别为AC=400米,BD=200米,CD=800米,牧童从A处把牛牵到河边饮水后再回家.试问在何处饮水,所走路程最短?最短路程是多少?【变式】如图所示,正方形ABCD的AB边上有一点E,AE=3,EB=1,在AC上有一点P,使EP+BP最短.求EP+BP的最小值.3、如图所示,等腰直角△ABC中,∠ACB=90°,E、F为AB上两点(E左F右),且∠ECF=45°,求证:.4、已知:如图,△ABC中,∠CAB=120°,AB=4,AC=2,AD⊥BC,D是垂足,求AD的长.类型三、本章中的数学思想方法1.转化的思想方法:我们在求三角形的边或角,或进行推理论证时,常常作垂线,构造直角三角形,将问题转化为直角三角形问题来解决.5、如图所示,△ABC是等腰直角三角形,AB=AC,D是斜边BC的中点,E、F分别是AB、AC边上的点,且DE⊥DF,若BE=12,CF=5.求线段EF的长.【变式】已知凸四边形ABCD中,∠ABC=30°,∠ADC=60°,AD=DC,求证:2.方程的思想方法6、如图所示,已知△ABC中,∠C=90°,∠A=60°,,求、、的值.【变式】直角三角形周长为12,斜边长为5,求直角三角形的面积.【巩固练习A】一、选择题1.如图,一棵大树被台风刮断,若树在离地面3处折断,树顶端落在离树底部4处,则树折断之前高( )(1)(2)(4)A.5B.7C.8D.102.如图,从台阶的下端点B到上端点A的直线距离为( )A. B.C. D.3. 下列命题中是假命题的是()A.三个内角的度数之比为:3:4的三角形是直角三角形;B.三个内角的度数之比为::2的三角形是直角三角形;C.三边长度之比::2的三角形是直角三角形;D.三边长度之比::2的三角形是直角三角形;4. 如图所示,在△ABC中,AB=AC=5,BC=6,点E、F是中线AD上的两点,则图中阴影部分的面积是().A.6 B.12 C.24 D.305.下列三角形中,是直角三角形的是( )A.三角形的三边满足关系B.三角形的三边比为1∶2∶3C.三角形的一边等于另一边的一半D.三角形的三边为9,40,416.某市在旧城改造中,计划在市内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价元,则购买这种草皮至少需要( )(6)(7)(8)A.450元B.225元C.150元D.300元7. 如图所示,正方形网格中的△ABC,若小方格边长为1,则△ABC是()A.直角三角形B.锐角三角形C.钝角三角形D.以上答案都不对8. 已知,如图长方形ABCD中,AB=3,AD=9,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.3B.4C.6D.12二、填空题9.若一个三角形的三边长分别为6,8,10,则这个三角形中最短边上的高为______.10.若等边三角形的边长为2,则它的面积为______.11.如图,B,C是河岸边两点,A是对岸岸边一点,测得∠ABC=45°,∠ACB=45°,BC=60米,则点A到岸边BC的距离是______米.(12)(13)(15)12. 下列命题中,其逆命题成立的是______________.(只填写序号)①同旁内角互补,两直线平行;②如果两个角是直角,那么它们相等;③如果两个实数相等,那么它们的平方相等;④如果三角形的三边长满足,那么这个三角形是直角三角形.13. 长为4 的梯子搭在墙上与地面成45°角,作业时调整为60°角(如图所示),则梯子的顶端沿墙面升高了______.14.在直角三角形中,一条直角边为11,另两边是两个连续自然数,则此直角三角形的周长为______.15. 如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,若涂黑的四个小正方形的面积的和是10,则其中最大的正方形的边长为______.16.如图,△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边做垂线,画出一个新的等腰直角三角形,如此继续下去,直到所画直角三角形的斜边与△ABC的BC边重叠为止,此时这个三角形的斜边长为__________.三.解答题17. 若直角三角形两直角边的比是3:4,斜边长是20,求此三角形的面积.18.如图,两个村庄A、B在河CD的同侧,A、B两村到河的距离分别为AC=1千米,BD=3 千米,CD=3千米.现要在河边CD上建造一水厂,向A、B两村送自来水.铺设水管的工程费用为每千米20000元,请你在CD上选择水厂位置O,使铺设水管的费用最省,并求出铺设水管的总费用W.19.如图,△ABC中,∠A=90°,AC=20,AB=10,延长AB到D,使CD+DB=AC+AB,求BD的长.20. 如图,四边形ABCD是边长为9的正方形纸片,为CD边上的点,=3.将纸片沿某条直线折叠,使点B落在点处,点A的对应点为,折痕分别与AD,BC边交于点M,N.求BN的长.【巩固练习B】一、选择题1. 在△中,若,则△ABC是()A. 锐角三角形B. 钝角三角形C. 等腰三角形D. 直角三角形2. 如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90°B.60°C.45°D.30°(2)(6)(8)3.在下列说法中是错误的()A.在△ABC中,∠C=∠A一∠B,则△ABC为直角三角形.B.在△ABC中,若∠A:∠B:∠C=5:2:3,则△ABC为直角三角形.C.在△ABC中,若,,则△ABC为直角三角形.D.在△ABC中,若a:b:c=2:2:4,则△ABC为直角三角形.4.若等腰三角形两边长分别为4和6,则底边上的高等于( )A. B. 或 C. D. 或5. 若三角形的三边长分别等于,则此三角形的面积为()A. B. C. D.6.如图,Rt△ABC中,∠C=90°,CD⊥AB于点D,AB=13,CD=6,则AC+BC等于( )A. 5B.C. D.7. 已知三角形的三边长为,由下列条件能构成直角三角形的是()A.B.C.D.8. 如图,已知直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=DC=5,点P在BC上移动,则当PA+PD取最小值时,△APD中边AP上的高为()A. B. C. D. 3二、填空题9. 如图,平面上A、B两点处有甲、乙两只蚂蚁,它们都发现C处有食物,已知点C在A的东南方向,在B的西南方向.甲、乙两只蚂蚁同时从A、B两地出发爬向C处,速度都是30/min.结果甲蚂蚁用了2 min,乙蚂蚁2分40秒到达C处分享食物,两只蚂蚁原来所处地点相距_______.(9)(10)(11)10.如图,AB=5,AC=3,BC边上的中线AD=2,则△ABC的面积为______.11.如图所示,有一块直角三角形纸片,两直角边AB=6,BC=8,将直角边AB折叠使它落在斜边AC上,折痕为AD,则BD=______.12.△ABC中,AB=AC=13,若AB边上的高CD=5,则BC=______.13.如图,长方体的底面边长分别为1和3,高为6.如果用一根细线从点A开始经过四个侧面缠绕一圈到达点B,那么所用细线最短需要_____,如果从点A开始经过四个侧面缠绕圈到达点B,那么所用细线最短需要_____.(13)(15)(16)14.已知:△ABC中,AB=15,AC=13,BC边上的高AD=12,BC=_______.15. 已知,如图,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A(10,0)、C(0,4),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为________.16. 如图所示,在△ABC中,AB=5,AC=13,BC边上的中线AD=6,BC=________.三.解答题17. 如图所示,已知D、E、F分别是△ABC中BC、AB、AC边上的点,且AE=AF,BE=BD,CF=CD,AB =4,AC=3,,求:△ABC的面积.18.有一块直角三角形的绿地,量得两直角边长分别为6,8.现在要将绿地扩充成等腰三角形,且扩充部分是以8为直角边的直角三角形,求扩充后等腰三角形绿地的周长.19. 有一块直角三角形纸片,两直角边AC =6,BC =8,①如图1,现将纸片沿直线AD折叠,使直角边AC落在斜边AB上,且与AB重合,则CD =_________.②如图2,若将直角∠C沿MN折叠,使点C落在AB中点H上,点M、N分别在AC、BC上,则、与之间有怎样的数量关系?并证明你的结论.20. 如图1,四根长度一定的木条,其中AB=6,CD=15,将这四根木条用小钉绞合在一起,构成一个四边形ABCD(在A、B、C、D四点处是可以活动的).现固定AB边不动,转动这个四边形,使它的形状改变,在转动的过程中有以下两个特殊位置.位置一:当点D在BA的延长线上时,点C在线段AD上(如图2);位置二:当点C在AB的延长线上时,∠C=90°.(1)在图2中,若设BC的长为,请用的代数式表示AD的长;(2)在图3中画出位置二的准确图形;(各木条长度需符合题目要求)(3)利用图2、图3求图1的四边形ABCD中,BC、AD边的长.。

勾股定理应用

勾股定理应用

一、勾股定理的逆定理:1. 逆定理:如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状。

在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角。

二. 实际应用定理中的注意问题:1、定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边2、勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形三、勾股定理逆定理的几种典型应用:例题1如图,△ABC 中,AB=15,AC=8,AD 是中线,且AD=8.5,则BC的长为( )A .15 B .16 C .17 D .18例题2 勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=2,AC=3,则D ,E ,F ,G ,H ,I 都在长方形KLMJ 的边上,则长方形KLMJ 的面积为( )A .50B .52C .54D .56利用勾股定理计算角度实例:如图,点E 是正方形ABCD 内的一点,连接AE 、BE 、CE ,将△ABE 绕点B 顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3,则∠BE′C= 度.开放性试题发挥主观能动性,答案不唯一。

勾股定理逆定理的应用(教案)【2023春人教版八下数学优质备课】

勾股定理逆定理的应用(教案)【2023春人教版八下数学优质备课】

17.2.2勾股定理逆定理的应用核心素养目标:1.应用勾股定理的逆定理判断一个三角形是否是直角三角形;2.灵活应用勾股定理及逆定理解综合题;3.进一步加深性质定理与判定定理之间关系的认识。

教学重难点:重点:进一步理解勾股定理的逆定理;难点:勾股定理逆定理的灵活应用;教学过程:一、复习导入1.我们已经学习了勾股定理及其逆定理,你能叙述吗?2.你能用勾股定理及其逆定理解决哪些问题?二、互助探究探究点一:利用勾股定理的逆定理解答角度问题例题讲解:例1如图,某港口P位于东西方向的海岸线上,“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口一个半小时后分别位于Q、R处,且相距30海里,如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?探究点二:利用勾股定理的逆定理解答面积问题例2已知:如图,四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.跟踪练习:如图,有一块地,已知,AD=4m,CD=3m,∠ADC=90°,AB=13m,BC=12m.求这块地的面积.探究点三:利用勾股定理的逆定理解答检测问题例3 如图,是一农民建房时挖地基的平面图,按标准应为长方形,他在挖完后测量了一下,发现AB=DC=8m,AD=BC=6m,AC=9m,请你运用所学知识帮他检验一下挖的是否合格?跟踪练习:一个零件的形状如图所示,按规定这个零件中∠A和∠DBC都应为直角,工人师傅量得这个零件各边的尺寸如图所示,这个零件符合要求吗?三、课堂小结1.利用勾股定理逆定理求角的度数2.利用勾股定理逆定理求线段的长3.利用勾股定理逆定理解决实际问题四、课堂检测1.如图,直线l上有三个正方形a,b,c,若a,c的面积分别为5和11,则b的面积为()A.4B.6C.16D.552. 如图,△ABC的顶点A,B,C,在边长为1的正方形方格的格点上,BD⊥AC于点D,则BD的长为()A. 23√5 B. 34√5 C. 45√5 D.56√53. 医院、公园和超市的平面示意图如图所示,超市在医院的南偏东25°的方向,且到医院的距离为300m,公园到医院的距离为400m.若公园到超市的距离为500m,则公园在医院的北偏东的方向.4.如图,等边三角形的边长为6,则高AD的长是;这个三角形的面积是 .5. 如图,矩形ABCD中,AB=8,BC=6,将矩形沿AC折叠,点D落在E处,则重叠部分△AFC的面积是多少?五、课后作业必做题:教材习题17.2第4题.选做题:教材习题17.2第12、13、14题.。

第10讲 勾股定理逆定理及简单应用(3种题型)(原卷版)-【暑假自学课】2024年新八年级数学暑假精

第10讲 勾股定理逆定理及简单应用(3种题型)(原卷版)-【暑假自学课】2024年新八年级数学暑假精

第10讲勾股定理逆定理及简单应用(3种题型)1. 掌握勾股定理的逆定理及其应用.理解原命题与其逆命题,原定理与其逆定理的概念及它们之间的关系.2. 能利用勾股定理的逆定理,由三边之长判断一个三角形是否是直角三角形.3. 能够理解勾股定理及逆定理的区别与联系,掌握它们的应用范围.一.勾股定理的逆定理(1)勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.说明:①勾股定理的逆定理验证利用了三角形的全等.②勾股定理的逆定理将数转化为形,作用是判断一个三角形是不是直角三角形.必须满足较小两边平方的和等于最大边的平方才能做出判断.(2)运用勾股定理的逆定理解决问题的实质就是判断一个角是不是直角.然后进一步结合其他已知条件来解决问题.注意:要判断一个角是不是直角,先要构造出三角形,然后知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.二.勾股数勾股数:满足a2+b2=c2的三个正整数,称为勾股数.说明:①三个数必须是正整数,例如:2.5、6、6.5满足a2+b2=c2,但是它们不是正整数,所以它们不是够勾股数.②一组勾股数扩大相同的整数倍得到三个数仍是一组勾股数.③记住常用的勾股数再做题可以提高速度.如:3,4,5;6,8,10;5,12,13;…三.勾股定理的应用(1)在不规则的几何图形中,通常添加辅助线得到直角三角形.(2)在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.(3)常见的类型:①勾股定理在几何中的应用:利用勾股定理求几何图形的面积和有关线段的长度.②由勾股定理演变的结论:分别以一个直角三角形的三边为边长向外作正多边形,以斜边为边长的多边形的面积等于以直角边为边长的多边形的面积和.③勾股定理在实际问题中的应用:运用勾股定理的数学模型解决现实世界的实际问题.④勾股定理在数轴上表示无理数的应用:利用勾股定理把一个无理数表示成直角边是两个正整数的直角三角形的斜边.一.勾股定理的逆定理1.(2022秋•句容市期末)已知△ABC中,a、b、c分别是∠A、∠B、∠C的对边,下列条件不能判断△ABC是直角三角形的是()A.∠A﹣∠B=∠C B.∠A:∠B:∠C=3:4:5C.(b+c)(b﹣c)=a2D.a=7,b=24,c=252.(2022秋•阜宁县期末)下列条件中,不能判断△ABC为直角三角形的是()A.a2=1,b2=2,c2=3B.a:b:c=3:4:5C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:53.(2022秋•大丰区期末)如图,在Rt△ABC中,∠BCA=90°,AC=12,AB=13,点D是Rt△ABC外一点,连接DC,DB,且CD=4,BD=3.(1)求BC的长;(2)求证:△BCD是直角三角形.4.(2022秋•南通期末)下列各组数中能作为直角三角形三边长度的是()A.1,2,3B.2,3,4C.3,4,5D.4,5,85.(2022秋•玄武区期末)如图,在5×5的正方形网格中,已知线段a,b和点P,且线段的端点和点P 都在格点上,在网格中找一格点Q,使线段a,b,PQ恰好能构成直角三角形,则满足条件的格点Q有()A.2个B.3个C.4个D.5个6.(2022秋•兴化市期末)一个三角形三边长为15、20、25,则三角形的面积为.7.(2022秋•丹徒区期末)若三角形的边长分别为5cm、12cm、13cm,则它的最长边上的中线为cm.8.(2022秋•邗江区期末)如图所示,在△ABC中,AC=13,BC=20,CD=12,AD=5.求:(1)BD的长;(2)△ABC的面积.9.(2022秋•太仓市期末)如图,△ABC中,AD⊥BC,垂足为D,BD=1,AD=2,CD=4.(1)求证:∠BAC=90°;(2)点P为BC上一点,连接AP,若△ABP为等腰三角形,求BP的长.二.勾股数10.(2022秋•泰兴市期末)下列四组数中,是勾股数的是()A.0.3,0.4,0.5B.32,42,52C.3,4,5D.11.(2022秋•宿豫区期中)下列各组数中不是勾股数的是()A.3,4,5B.4,5,6C.6,8,10D.11,60,6112.(2022秋•盐都区期中)观察下列勾股数组:①3,4,5;②5,12,13;③7,24,25;④9,40,41;….若a,144,145是其中的一组勾股数,则根据你发现的规律,a=.(提示:5=,13=,…)13.(2022秋•铜山区期中)若m、n为整数,且m>n>1,a=m2﹣n2,b=2mn,c=m2+n2.请你证明a、b、c为勾股数.14.(2022秋•工业园区校级期中)如果直角三角形的三边的长都是正整数,这样的三个正整数叫做勾股数组.我国清代数学家罗士琳对勾股数组进行了深入研究,提出了各种有关公式400多个.他提出:当m,n 为正整数,且m>n时,m2﹣n2,2mn,m2+n2为一组勾股数组,直到现在,人们都普遍采用他的这一公式.(1)除勾股数3,4,5外,请再写出两组勾股数组,;(2)若令x=m2﹣n2,y=2mn,z=m2+n2,请你证明x,y,z为一组勾股数.15.(2022秋•盱眙县期末)我们学习了勾股定理后,都知道“勾三、股四、弦五”.观察:3、4、5;5、12、13;7、24、25;9、40、41;…,发现这些勾股数的勾都是奇数,且从3起就没有间断过.(1)请你根据上述的规律写出下一组勾股数:;(2)若第一个数用字母n(n为奇数,且n≥3)表示,那么后两个数用含n的代数式分别表示为和,请用所学知识说明它们是一组勾股数.16.(2022秋•高邮市期中)课堂上学习了勾股定理后,知道“勾三、股四、弦五”.王老师给出一组数让学生观察:3、4、5;5、12、13;7、24、25;9、40、41;…,学生发现这些勾股数的勾都是奇数,且从3起就没有间断过,于是王老师提出以下问题让学生解决.(1)请你根据上述的规律写出下一组勾股数:11、、;(2)若第一个数用字母a(a为奇数,且a≥3)表示,那么后两个数用含a的代数式分别怎么表示?聪明的小明发现每组第二个数有这样的规律:4=,12=,24=……,则用含a的代数式表示每组第二个数和第三个数分别为、;(3)用所学知识加以说明.17.(2022秋•灌南县期中)【知识背景】我国古代把直角三角形较短的直角边称为“勾”,较长的直角边称为“股”,斜边称为“弦”.据《周髀算经》记载,公元前1000多年就发现了“勾三股四弦五”的结论.像3、4、5这样为三边长能构成直角三角形的3个正整数,称为勾股数.请你观察下列三组勾股数:(3,4,5);(5,12,13);(7,24,25)…分析其中的规律,可以发现这些勾股数的勾都是奇数,且从3起就没有间断过.当勾为3时,股4=×(9﹣1),弦5=×(9+1);当勾为5时,股12=×(25﹣1),弦13=×(25+1);当勾为7时,股24=×(49﹣1),弦25=×(49+1).(1)如果勾用n(n≥3,且n为奇数)表示时,请用含有n的式子表示股和弦,则股=,弦=,则据此规律第四组勾股数是.(2)若a=m2﹣1,b=2m,c=m2+1,其中m>1且m是整数.求证:以a,b,c为边的△ABC是直角三角形.18.(2022秋•江都区期中)同学们都知道,凡是可以构成一个直角三角形三边的一组正整数,称之为“勾股数”.比如3,4,5或11,60,61等.(1)请你写出另外两组勾股数:6,,;7,,;(2)清朝的扬州籍数学家罗士琳提出了四个构造勾股数的法则,其中有两个法则如下:(I)如果k是大于1的奇数,那么k,,是一组勾股数(Ⅱ)如果k是大于2的偶数,那么k,,是一组勾股数①如果在一组勾股数中,其中有一个数为12,根据法则(I)求出另外两个数;②请你任选其中一个法则证明它的正确性.三.勾股定理的应用19.(2022秋•句容市期末)在《九章算术》中有一个问题(如图):今有竹高一丈(一丈=10尺),末折抵地,去本三尺(竹梢触地面处离竹根3尺),问:折者高尺.20.(2022秋•无锡期末)如图,长为2.5m的梯子靠在墙上,梯子的底端离墙脚线的距离为1.5m,则梯子顶端的高度h是()A.1.8m B.2m C.2.2m D.2.4m21.(2022秋•广陵区校级期末)一种盛饮料的圆柱形杯,测得内部底面半径为2.5cm,高为12cm,吸管放进杯里(如图所示),杯口外面至少要露出3.6cm,为节省材料,管长a的取值范围是cm.22.(2022秋•江都区期末)看着冉冉升起的五星红旗,你们是否想过旗杆到底有多高呢?某数学兴趣小组为了测量旗杆高度,进行以下操作:如图1,先将升旗的绳子拉到旗杆底端,发现绳子末端刚好接触到地面;如图2,再将绳子末端拉到距离旗杆8m处,发现绳子末端距离地面2m.请根据以上测量情况,计算旗杆的高度.23.(2022秋•泰兴市期末)如图,某渡船从点B处沿着与河岸垂直的路线AB横渡,由于受水流的影响,实际沿着BC航行,上岸地点C与欲到达地点A相距70米,结果发现BC比河宽AB多10米,求该河的宽度AB.(两岸可近似看作平行)24.(2022秋•徐州期末)《九章算术》卷九中记载:今有立木,系索其末,委地三尺,引索却行,去本八尺而索尽,问索长几何?译文:今有一竖立着的木柱,在木柱的上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺,牵着绳索(绳索头与地面接触)退行,在距木柱根部8尺处时绳索用尽,问绳索长是多少?25.(2022秋•常州期末)数学兴趣小组要测量旗杆的高度,同学们发现系在旗杆顶端A的绳子沿旗杆垂到地面时,测得多出部分BC的长为2m(如图1),再将绳子拉直(如图2),测得绳子末端的位置D到旗杆底部B的距离为6m,求旗杆AB的长.26.(2022秋•建邺区期末)如图,点A处的居民楼与马路相距14m,当居民楼与马路上行驶的汽车距离小于50m时就会受到噪声污染,若汽车以15m/s的速度行驶经过,那么会给这栋居民楼带来多长时间的噪声污染?27.(2022秋•广陵区校级期末)如图,有一架秋千,当它静止在AD的位置时,踏板离地的垂直高度为0.6m,将秋千AD往前推送3m,到达AB的位置,此时,秋千的踏板离地的垂直高度为1.6m,秋千的绳索始终保持拉直的状态.(1)根据题意,BF=m,BC=m,CD=m;(2)根据(1)中求得的数据,求秋千的长度.(3)如果想要踏板离地的垂直高度为2.6m时,需要将秋千AD往前推送m.28.(2022秋•兴化市期末)如图是一个长方形的大门,小强拿着一根竹竿要通过大门.他把竹竿竖放,发现竹竿比大门高1尺;然后他把竹竿斜放,竹竿恰好等于大门的对角线的长.已知大门宽4尺,请求出竹竿的长.29.(2022秋•亭湖区期末)一个零件的形状如图所示,工人师傅按规定做得∠B=90°,AB=3,BC=4,CD=12,AD=13,假如这是一块钢板,你能帮工人师傅计算一下这块钢板的面积吗?一.选择题1.(2023•广陵区一模)如图,有四个三角形,各有一边长为6,一边长为8,若第三边分别为6,8,10,12,则面积最大的三角形是()A.B.C.D.2.(2022秋•如皋市校级期末)以下列长度的三条线段为边,能组成直角三角形的是()A.2,4,5B.4,5,6C.6,12,13D.9,12,153.(2022秋•相城区校级月考)如图,△ABC中,AC=6,BC=8,AB=10.AD为△ABC的角平分线,CD的长度为()A.2B.C.3D.4.(2022秋•邗江区期中)下列各组数中,是勾股数的一组是()A.0.3,0.4,0.5B.8,15,17C.D.3,4,45.(2022秋•句容市期中)在△ABC中,∠A、∠B、∠C的对边分别为a、b、c,下列条件能判断△ABC 不是直角三角形的是()A.∠B=∠C+∠A B.a2=(b+c)(b﹣c)C.a=1.5,b=2,c=2.5D.a=9,b=23,c=256.(2021秋•泗阳县期中)下列各组数中,哪一组是勾股数()A.1,1,2B.6,8,10C.32,42,52D.7,12,15二.填空题7.(2022秋•天宁区校级期中)【教材例题】判断由线段a.b,c组成的三角形是不是直角三角形:a=13,b=14,c=15.解:因为132+142=169+196=365,152=225.所以132+142≠152,根据,这个三角形不是直角三角形.8.(2022秋•沭阳县期中)已知a、b、c是一个三角形的三边长,如果满足(a﹣3)2+|b﹣4|+(c﹣5)2=0,则这个三角形的面积为.9.(2022秋•秦淮区校级月考)若三角形三边满足a:b:c=3:4:5,且三角形周长为24cm,则这个三角形最长边上的高为.10.(2022秋•江阴市期中)《算法统宗》是中国古代数学名著,作者是我国明代数学家程大位.在《算法统宗》中有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几?”译文:“有一架秋千,当它静止时,踏板离地1尺,将它往前推送10尺(水平距离)时,秋千的踏板就和人一样高,这个人的身高为5尺,秋千的绳索始终拉得很直(如图所示),试问绳索有多长?”.根据题意求出绳索的长为尺.11.(2022秋•梁溪区校级期中)《九章算术》中记载着这样一个问题:已知甲乙两人同时从同一地点出发,甲的速度为每单位时间走7步,乙的速度为每单位时间走3步,乙一直向东走,甲先向南走10步,后又斜向北偏东方向走了一段后与乙相遇,那么相遇时,甲、乙各走了多远?解:如图,设甲乙两人从出发到相遇用了x个单位时间.根据勾股定理可列得方程为.12.(2022秋•句容市期末)已知△ABC的三边长分别为3、4、5,则最长边上的中线长为.13.(2022秋•金湖县期中)在如图所示的正方形网格中,△ABC的顶点A、B、C都是网格线的交点,则△ABC的外角∠ACD等于°.14.(2022秋•连云港期中)如图,一根竹子原高10尺,中部有一处折断,竹梢触地面处离竹根3尺,试问折断处离地面多高?设折断处离地面的高为x尺,则可列方程为.(不用化简)15.(2021秋•邳州市期中)观察下列各组勾股数:(1)3,4,5;(2)5,12,13;(3)7,24,25;(4)9,40,41;…照此规律,将第n组勾股数按从小到大的顺序排列,排在中间的数,用含n的代数式可表示为.16.(2022秋•新吴区期中)《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(门槛的意思)一尺,不合二寸,问门广几何?题目的大致意思是:如图1、2(图2为图1的平面示意图),推开双门,双门间隙CD的距离为2寸,点C和点D距离门槛AB都是1尺(1尺=10寸),则AB的长是几寸?若设图中单扇门的宽AD=x寸,则可列方程为:.三.解答题17.(2022秋•赣榆区校级月考)如图2,是小朋友荡秋千的侧面示意图,静止时秋千位于铅垂线BD上,转轴B到地面的距离BD=2.5m.乐乐在荡秋千过程中,当秋千摆动到最高点A时,过点A作AC⊥BD于C,点A到地面的距离AE=1.5m(AE=CD),当他从A处摆动到A'处时,A'B=AB,若A'B⊥AB,作A'F⊥BD,垂足为F.求A′到BD的距离A'F.18.(2022秋•泗洪县期中)《西江月》中描述:平地秋千未起,踏板一尺离地,送行二步恰竿齐,五尺板高离地…;翻译成现代文为:如图,秋千OA静止的时候,踏板离地高一尺(AC=1尺)将它往前推进两步(EB=10尺),此时踏板升高离地五尺(BD=5尺),求秋千绳索OB的长度.18.(2022秋•涟水县期中)八年级的小明和小亮同学学习了“勾股定理”之后,为了测得如图所示风筝的高度CE,他们进行了如下操作:①测得BD=9米;(注:BD⊥CE)②根据手中剩余线的长度计算出风筝线BC=15米;③牵线放风筝的小明身高1.6米.求风筝的高度CE.20.(2022秋•鼓楼区期中)如图,货车卸货时支架侧面是Rt△ABC,已知AB=2.5m,AC=2m.求BC的长.21.(2022秋•江都区期中)如图,小明爸爸在鱼池边开了一块四边形土地种了一些蔬菜,爸爸让小明计算这块土地的面积,以便估算产量.小明测得AB=3m,AD=4m,CD=12m,BC=13m,又已知∠A=90°.求这块土地的面积.22.(2022秋•涟水县期中)如图,已知CD⊥AB,垂足为D,BD=1,CD=2,AD=4.求证:∠ACB=90°.23.(2021秋•句容市期中)观察下列各组勾股数有哪些规律:3,4,5;9,40,41;5,12,13;……;7,24,25;a,b,c.请解答:(1)当a=11时,求b,c的值;(2)判断21,220,221是否为一组勾股数?若是,请说明理由.24.(2020秋•盱眙县期中)【知识背景】我国古代把直角三角形较短的直角边称为“勾”,较长的直角边称为“股”,斜边称为“弦”.据《周髀算经》记载,公元前1000多年就发现了“勾三股四弦五”的结论.像3、4、5这样为三边长能构成直角三角形的3个正整数,称为勾股数.【应用举例】观察3,4,5;5,12,13;7,24,25;…可以发现这些勾股数的勾都是奇数,且从3起就没有间断过,当勾为3时,股4=,弦5=;当勾为5时,股12=,弦13=;当勾为7时,股24=,弦25=.请仿照上面三组样例,用发现的规律填空:(1)如果勾用n(n≥3,且n为奇数)表示时,请用含有n的式子表示股和弦,则股=,弦=.【问题解决】(2)古希腊的哲学家柏拉图也提出了构造勾股数组的公式.具体表述如下:如果a=2m,b=m2﹣1,c=m2+1(m为大于1的整数),则a、b、c为勾股数.请你证明柏拉图公式的正确性;(3)毕达哥拉斯在他找到的勾股数的表达式中发现弦与股的差为1,若用2a2+2a+1(a为任意正整数)表示勾股数中最大的一个数,请你找出另外两个数的表达式分别是多少?25.(2022秋•鼓楼区期中)已知:整式A=(n2﹣1)2+(2n)2,整式B>0.尝试化简整式A.发现A=B2,求整式B.联想由上可知,B2=(n2﹣1)2+(2n)2,当n>1时,n2﹣1,2n,B为直角三角形的三边长,如图.填写下表中B的值:直角三角形三边n2﹣12n B勾股数组Ⅰ/8勾股数组Ⅱ35/26.(2022秋•苏州期中)“三农”问题是关系国计民生的根本问题,实施乡村振兴战略是建设美丽中国的关键举措.如图,公路上A、B两点相距50km,C、D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=30km,CB=20km,现在要在公路AB上建一个土特产品市场E,使得C、D两村庄到市场E的距离相等,则市场E应建在距A多少千米处?并判断此时△DEC的形状,请说明理由.27.(2022秋•梁溪区期中)长清的园博园广场视野开阔,阻挡物少,成为不少市民放风筝的最佳场所,某校七年级(1)班的小明和小亮学习了“勾股定理”之后,为了测得风筝的垂直高度CE,他们进行了如下操作:①测得水平距离BD的长为15米;②根据手中剩余线的长度计算出风筝线BC的长为25米;③牵线放风筝的小明的身高为1.6米.(1)求风筝的垂直高度CE;(2)如果小明想风筝沿CD方向下降12米,则他应该往回收线多少米?28.(2021秋•江都区校级月考)满足a2+b2=c2的三个正整数,称为勾股数.(1)请把下列三组勾股数补充完整:①,8,10 ②5,,13 ③8,15,.(2)小敏发现,很多已经约去公因数的勾股数组中,都有一个数是偶数,如果将它写成2mn,那么另外两个数可以写成m2+n2,m2﹣n2,如4=2×2×1,5=22+12,3=22﹣12.请你帮小敏证明这三个数2mn,m2+n2,m2﹣n2是勾股数组.(3)如果21,72,75是满足上述小敏发现的规律的勾股数组,求m+n的值.29.(2021秋•东台市月考)一架方梯AB长25米,如图所示,斜靠在一面上:(1)若梯子底端离墙7米,这个梯子的顶端距地面有多高?(2)在(1)的条件下,如果梯子的顶端下滑了4米,那么梯子的底端在水平方向滑动了几米?30.(2022秋•姑苏区校级期中)“村村通”公路是我国的一项重要的民生工程,如图,A,B,C三个村都分别修建了一条互通公路,其中AB=BC,现要在公路BC边修建一个景点M(B,C,M在同一条直线上),为方便A村村民到达景点M,又修建了一条公路AM,测得AC=13千米,CM=5千米,AM=12千米.(1)判断△ACM的形状,并说明理由;(2)求公路AB的长.31.(2022秋•镇江期中)国庆节前,学校开展艺术节活动,小明站在距离教学楼(CD)35米的A处,操控一架无人机进行摄像,已知无人机在D点处显示的高度为距离地面30米,随后无人机沿直线匀速飞行到点E处悬停拍摄,此时显示距离地面10米,随后又沿着直线飞行到点B处悬停拍摄,此时正好位于小明的头项正上方(AB∥CD),且显示距离地面25米,已知无人机从点D匀速飞行到点E所用时间与它从点E匀速飞行到点B所用时间相同,你能求出无人机从点D到点E再到点B一共飞行了多少米吗?请写出相应计算过程.32.(2022秋•高新区校级月考)如图,在笔直的公路AB旁有一座山,从山另一边的C处到公路上的停靠站A的距离为15km,与公路上另一停靠站B的距离为20kn,停靠站A、B之间的距离为25km,为方便运输货物现要从公路AB上的D处开凿隧道修通一条公路到C处,且CD⊥AB.(1)求修建的公路CD的长;(2)若公路CD修通后,一辆货车从C处经过D点到B处的路程是多少?33.(2022秋•连云港期中)如图,一架2.5米长的梯子AB斜靠在竖直的AC上,这时点B到墙底端C的距离BC为0.7米.(1)求AC的值;(2)如果梯子的顶端沿墙面下滑0.4米,那么点B是否也向外移动0.4米?请通过计算说明.34.(2022秋•玄武区期中)如图,某人从A地到B地共有三条路可选,第一条路是从A到B,AB为10米,第二条路是从A经过C到达B地,AC为8米,BC为6米,第三条路是从A经过D地到B地共行走26米,若C、B、D刚好在一条直线上.(1)求证:∠C=90°;(2)求AD和BD的长.35.(2022秋•东海县期中)在创建“全国文明城市”期间,某小区在临街的拐角清理出了一块可以绿化的空地.如图,经技术人员的测量,已知AB=9m,BC=12m,CD=17m,AD=8m,∠ABC=90°.若平均每平方米空地的绿化费用为100元,试计算绿化这片空地共需花费多少元?一.选择题1.下列各组数不是勾股数的是()A.3,4,5 B.5,12,13 C.7,24,25 D.0.6,0.8,12.如图,已知钓鱼竿AC的长为10m,露在水面上的鱼线BC长为6m,某钓鱼者想看看鱼钩上的情况,把鱼竿AC转动到AC'的位置,此时露在水面上的鱼线B'C'为8m,则BB'的长为()A.1m B.2m C.3m D.4m3.一座建筑物发生了火灾,消防车到达现场后,发现最多只能靠近建筑物底端7米,消防车的云梯最大升长为25米,则云梯可以达该建筑物的最大高度是()A.16米B.20米C.24米D.25米4.在《九章算术》中有一个问题(如图):今有竹高一丈,末折抵地,去本三尺,问折者高几何?它的意思是:一根竹子原高一丈(10尺),中部一处折断,竹梢触地面处离竹根3尺,试问折断处离地面()尺.A.4 B.3.6 C.4.5 D.4.555.如图,有一个水池,水面是一个边长为14尺的正方形,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面.则水的深度是()A.15尺B.24尺C.25尺D.28尺二.填空题6.如图,△ABC中,∠C=90°,AD平分∠BAC,AB=6,CD=2,则△ABD的面积是.7.若三角形的边长分别为6、8、10,则它的最长边上的中线为.8.如图,《九章算术》中记载:今有立木,系索其末,委地三尺,引索却行,去本八尺而索尽.问索长几何.译文:今有一竖直着的木柱,在木柱的上端系有绳索,绳索从木柱的上端顺木柱下垂后堆在地面的部分有三尺(绳索比木柱长3尺),牵着绳索退行,在距木柱底部8尺(BC=8)处时而绳索用尽.则木柱长为尺.9.一根竹子高一丈,折断后竹子顶端落在离竹子底端3尺处,则折断处离地面的高度是尺.(这是我国古代数学著作《九章算术》中的一个问题其中的丈、尺是长度单位,1丈=10尺.)10.在一棵树的5米高B处有两个猴子为抢吃池塘边水果,一只猴子爬下树跑到A处(离树10米)的池塘边.另一只爬到树顶D后直接跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高米.11.已知△ABC中,AB=5,BC=8,BC边上的中线AD=3,则AC=.12.(2021秋•朝阳区校级期末)如图所示的网格是正方形网格,则∠P AB+∠PBA=°(点A,B,P 是网格线交点).13.如图,某自动感应门的正上方A处装着一个感应器,离地面的高度AB为2.5米,一名学生站在C处时,感应门自动打开了,此时这名学生离感应门的距离BC为1.2米,头顶离感应器的距离AD为1.5米,则这名学生身高CD为米.三.解答题14.如图,一个直径为20cm的杯子,在它的正中间竖直放一根小木棍,木棍露出杯子外2cm,当木棍倒向杯壁时(木棍底端不动),木棍顶端正好触到杯口,求木棍长度.15.如图,有一张四边形纸片ABCD,AB⊥BC.经测得AB=9cm,BC=12cm,CD=8cm,AD=17cm.(1)求A、C两点之间的距离.(2)求这张纸片的面积.16.如图,某人从点A划船横渡一条河,由于水流的影响,实际上岸地点C离欲到达点B有45m,已知他在水中实际划了75m,求该河流的宽度AB.17.如图,已知等腰△ABC的底边BC=10cm,D是腰AC上一点,且CD=6cm,BD=8cm.(1)判断△BCD的形状,并说明理由;(2)求△ABC的周长.18.如图,AD是△ABC的中线,DE⊥AC于点E,DF是△ABD的中线,且CE=2,DE=4,AE=8.(1)求证:∠ADC=90°;(2)求DF的长.19.如图,已知点C是线段BD上一点,∠B=∠D=90°,若AB=4,BC=3,CD=8,DE=6,AE2=125.(1)求AC、CE的长;(2)求证:∠ACE=90°.20.小东和小明要测量校园里的一块四边形场地ABCD(如图所示)的周长,其中边CD上有水池及建筑遮挡,没有办法直接测量其长度.小东经测量得知AB=AD=30米,∠A=60°,BC=40米,∠ABC=150°.小明说根据小东所得的数据可以求出四边形ABCD的周长.你同意小明的说法吗?若同意,请求出四边形ABCD的周长;若不同意,请说明理由.21.阜宁市民广场要对如图所示的一块空地进行草坪绿化,已知AD=4m,CD=3m,AD⊥DC,AB=13m,BC=12m,绿化草坪价格150元/米2.求这块地草坪绿化的价钱.。

人教版八年级下册数学:勾股定理及其逆定理的综合应用

人教版八年级下册数学:勾股定理及其逆定理的综合应用
勾股定理:
直角三角形的两直角边为a ,b , 斜边为 c ,则有

a2+ b2=c2
是 互
Rt△ 直角边a、b,斜边c

a2+b2=c2





Rt△
逆定理:
a2+b2=c2


三边a、b、c 逆

三角形的三边a,b,c满足a2+b2=c2,则这个三角形 理
是直角三角形; 较大边c 所对的角是直角.
D
B
10 x6
A
x 8-x C
E
折叠四边形
折叠四边形
例7:折叠矩形ABCD的一边AD,点D落在
BC边上的点F处,已知AB=8CM,BC=10CM, 求 (1) CF的长 ;(2)EC的长.
10
D
A
8-X
8 10
E
8-X X
B
6
F4 C
折叠四边形
例8:折叠矩形纸片,先折出折痕 对角线BD,再绕点D折叠,使点A 落在BD的E处,折痕DG,若AB=4, BC=3,求AG的长。
2O
蛋糕 B
C

B
8

A
A
展开思想
例12:如图是一个三级台阶,它的每一级的长宽和高分别 为20dm、3dm、2dm,A和B是这个台阶两个相对的端点, A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿 着台阶面爬到B点最短路程是多少?

20

A
20
3
23

3
2
B
3
∵ AB2=AC2+BC2=625,
勾股数

勾股定理及勾股定理的逆定理

勾股定理及勾股定理的逆定理

勾股定理及勾股定理的逆定理
 勾股定理:重点是准确掌握勾股定理,难点是能熟练地运用勾股定理.
 知识点精析与应用
1.勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方,即a²+b²=c².
 (1)注意:由于直角三角形斜边最长,故运用勾股定理时,一定要抓住直角三角形最长边(即斜边)的平方等于两短边(两直角边)的平方和.不能写成
a²+c²=b²,除非b为斜边才能这样写.
 (2)定理的作用:勾股定理揭示了直角三角形的三边关系.其作用有:①已知两边求第三边;②证明三角形中的某些线段的平方关系;③作长为根号n的线段.
2.勾股定理的证明
 勾股定理的证明方法很多,课本里是用面积法证明的,这种证明方法同学们一定要掌握好.
 [解题方法指导]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求: △ABC的面积 .
小结
1.通过本节课的学习,你知道一个三角形的 三边在数量上满足怎样的关系时,这个三角 形才是直角三角形呢? 2.请你总结一下,判断一个三角形是否是直 角三角形,都有哪些方法?
中考链接
已 知 : 如 图 , 四 边 形 ABCD 中 , ∠B=900,AB=3,BC=4,CD=12, AD=13,求四边形ABCD的面积?
S C
四边形ABCD=36
B D
A
中考链接
已知:如图,四边形ABCD中,AB=20,BC=15,
CD=7,AD=24, ∠B=90°求证:
∠A+∠BCD=180° D 7 C
24 15
A
20
B
中考链接
如图BE⊥AE,
∠A=∠EBC=60°,AB=4,BC= 2 3
CD= 3 DE=3,求证:AD⊥CD
D3
3
Hale Waihona Puke CE2360°
A
4
60°
B
1.已知:在△ABC中,AB=13cm,BC=10cm, BC边上的中线AD=12cm.
求证:AB=AC.
2.已知:在△ABC中,AB=AC=26, 点D是AC上一点, CD=2,BD=10.
勾股定理:如果直角三角形两直角边分别
为a,b,斜边为c,那么 a2 + b2 = c2 。
互逆命题
逆命题:如果三角形的三边长a、b、c满
足 a2 + b2 = c2,那么这个三角形是直
角三角形。
例 2.在△ABC中,a=15, b=17, c=8,求此三角
形的面积。
解:∵ 152 82 172
a2 c2 b2
∴△ABC为直角三角形,且∠B=90°
∴ △ABC的面积为 1 a c 1 158 60.
2
2
例:3:“远航”号、“海天”号轮船同时离开港口,
各自沿一固定方向航行,“远航”号每小时航行16海里
,“海天”号每小时航行12海里。它们离开港口一个半
小时后相距30海里。如果知道“远航”号沿东北方向航
行,能知道“海天”号沿哪个方向航行吗?N
解:根据题意画图,如图所示: PQ=16×1.5=24
Q S
PR=12×1.5=18
R
QR=30 ∵242+182=302,
R’
PE
即 PQ2+PR2=QR2
∴∠QPR=900
答:由”远航“号沿东北方向航行可知,∠QPS=450.所以
∠RPS=450,即“海天”号沿西北方向航行.或东南方向
相关文档
最新文档