[初中数学]画轴对称图形教案 人教版

合集下载

人教版初中八年级上册数学《作轴对称图形》精品教案

人教版初中八年级上册数学《作轴对称图形》精品教案

13.2 画轴对称图形第1课时作轴对称图形【知识与技能】1.通过动手操作体验如何作轴对称图形.2.能作出一个图形经一次或二次轴对称变换后的图形.3.能利用轴对称变换设计一些简单的图案.【过程与方法】通过实际操作获取作轴对称图形的方法,并应用于简单的图案设计.【情感态度】通过图案设计等活动,培养学生的动手操作能力\,审美及数学兴趣,发展学生的空间观念.【教学重点】作一个图形经轴对称变换后的图形.【教学难点】通过动手操作总结轴对称变换的特征.一、情境导入,初步认识利用多媒体向学生展示剪纸图片,供学生欣赏,并请学生交流:如此漂亮的剪纸是如何剪出的呢?问题1 请学生拿出画有一个简单风筝(如图形状)的半透明纸,把这张纸对折后描图,学生画好后打开对折的纸,观察并回答下列问题:(1)画出的图形与原来的图形有什么关系?(2)两个图形成轴对称有什么特征?问题 2 如果改变对称轴的方向和位置,结果又如何呢?让学生在刚才的纸上任意折叠,描图,打开纸.你发现了什么?【教学归纳】由学生画图、操作、观察后总结出:(1)由一个平面图形可以得到它关于一条直线l对称的图形,这个图形与原图形的形状、大小完全一样.(2)新图形上的每一点,都是原图形上的某一点关于直线l的对称点,连接任意一对对应点的线段被对称轴垂直平分.【教学说明】教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知【教学说明】成轴对称的两个图形中的任何一个可以看作由另一个图形经轴对称变换后得到.一个轴对称图形也可以看作以它的一部分为基础,经轴对称变换扩展而成的.问题除上面所用的描图法;还可用什么方法画出轴对称变换后的图形?请学生间交流探讨.例1(1)如图1,已知△ABC和直线l,作出与△ABC关于直线l对称的图形.(2)将△ABC的位置移至图2,图3,图4时,再作出关于直线l对称的图形.并验证画法.【归纳总结】一个平面图形都是由一些点组成,点动成线,故要画一个图形经轴对称后的图形,只要找到一些特殊点,作出这些特殊点的对称点即可.【教学说明】利用轴对称变换,可以设计出精美的图案.有时,将平移和轴对称结合起来,可以设计出更美丽的图案.例2 操作并思考:如图所示,取一张薄的正方形纸,沿对角线对折后,得到一个等腰直角三角形,再沿斜边上的高线对折,将得到的三角形沿黑线剪开,去掉含90°角的部分,拆开折叠的纸,并将其铺开.(1)你会得到怎样的图案?先猜一猜,再做一做.(2)你能说明为什么会得到这样的图案吗?应用学过的轴对称的知识试一试.(3)如果将正方形纸按上面方式折3次,然后再去掉含90°角的部分展开后的结果又会怎样?为什么?解:(1)得到一个有2条对称轴的图形.(2)按照上面的做法,实际相当于折出了正方形的2条对称轴,因此图中得到的图案一定有2条对称轴.(3)按题中的方式将正方形对折3次,相当于折出了正方形的4条对称轴,因此得到的图案一定有4条对称轴.【教学说明】教师参与,与学生一起操作,力求使图案与花边完美.三、运用新知,深化理解1.把下列图形补成关于直线l对称的图形.2.如图,利用轴对称变换画出花瓶的另一半.3.如图,左边的旗子经过几次轴对称变换,可以变成右边的旗子?你能设计一种变换方案吗?4.如果我们把台球桌做成等边三角形形状,那么从AC中点D处出发的球,能否依次经BC,AB两条边反射后回到D处?如果认为不能,请说明理由;如果认为能,请作出球运动的路线.【教学说明】指导学生解答上述习题时,要注意引导学生:(1)画轴对称图形时,要先画好关键的对应点;(2)在已知成轴对称的图形时,利用成轴对称的图形的性质,找出对称轴.【答案】4.能.运动路线如图的D→E→F→D四、师生互动,课堂小结教师请学生回忆本节内容,学生发言谈收获,最后引导总结.1.由一个平面图形可以得到它关于一条直线l对称的图形,这个图形与原图形的形状、大小完全一样.2.经轴对称变换后的图形与原图形上的对应点连线被对称轴垂直平分.3.画一个图形经轴对称变换后的图形,关键是找到图形上的一些点,作出这些点的对称点.1.布置作业:从教材“习题13.2”中选取.2.完成练习册中本课时的练习.本课时教学时要尽量创设与学生生活环境、知识背景相关的教学情境,以生动活泼的形式呈现有关内容,重视学生的实际操作和观察发现与表述能力.教学时,根据本课内容特点,可依据其学科知识间联系(如例2)调动课堂气氛,培养学生学习兴趣.作者留言:非常感谢!您浏览到此文档。

人教版初中数学八年级上册 作轴对称图形 初中八年级上册数学教案教学设计课后反思 人教版

人教版初中数学八年级上册 作轴对称图形 初中八年级上册数学教案教学设计课后反思 人教版

《画轴对称图形》教学设计五、教学过程教学过程(环节)媒体名称、起止时间(’”—’”)及作用教学活动学生活动一活动引入0’0”- 0’0”借助“Focusky ”课件出示剪纸活动中的思考问题。

引领学生进行剪纸活动并出示思考题。

思考:1、展开后的图形是什么图形?2、折痕所在的直线是图形的什么?3、折痕两旁的部分形状、大小和位置有怎样的关系?4、对应点连线和折痕的位置关系是什么?动手设计剪纸并用圆规扎出一对对应点,然后剪下来,学生代表借助“希沃授课助手”展示作品,并解决思考题。

二知识梳理0’0”- 0’0”运用“Focusky ”制作的exe 课件进行知识的梳理。

1.引领回顾本章知识体系,由“平面图形是有线围成的”、“点动成线”引入轴对称图形的作图方法。

2.板书3.引领分析画轴对称图形最关键的一步:画画特殊点的对称点。

并启发运用尺规作图和三角板两种方法进行作图。

1.回顾本章知识体系。

2.归纳画轴对称图形的步骤。

3.理解并掌握作图方法。

如图,已知△直线,画出与△于直线对称的图形1.引导找出图形的关键点。

2.设疑:改变图形顶点的位置,你能发现一个点的对称点的位置有什么规律吗?1.引导探究关于坐标轴对称的点的坐标特点。

2.指导作图。

3.引导巩固平面直角坐标系内点的平移的坐标变化规律(向左或右平移n个单位:横坐标+n或-n;向上或下平移n个单位:纵坐标+n2、如图,由小正方形组成的L形图中,请你用三种指导合作探究和作图。

当堂完成“作业盒子”在线批阅。

最新人教版八年级数学上册《画轴对称图形》教案(精品教案)

最新人教版八年级数学上册《画轴对称图形》教案(精品教案)

画轴对称图形【教学目标】1.知识与能力:(1)能够作轴对称图形;(2)能够经过探索利用坐标来表示轴对称;(3)能够用轴对称的知识解决相应的数学问题.2.过程与方法:在探索问题的过程中体会知识间的关系,感受函数与生活的联系.3.情感、态度与价值观:培养学生的应用意识和探究精神.【教学重点】(1)能够作轴对称图形;(2)能够经过探索利用坐标来表示轴对称;(3)能够用轴对称的知识解决相应的数学问题.【教学难点】用轴对称知识解决相应的数学问题.【教学方法】创设情境-主体探究-合作交流-应用提高.【教学过程】1.创设情境,激发学生兴趣,引出本节课要研究的内容活动1观察图片操作:自己动手在纸上画一个图案,将这张纸折叠,描图,再打开纸,看看你得到了什么?改变折痕的位置再试一次,你又得到了什么?学生活动设计:学生观察图片,动手操作、观察所画图形,先独立思考,然后进行交流.教师活动设计:教师组织活动,引导学生作以下归纳:(1)由一个平面图形可以得到它关于一条直线l 成轴对称的图形,这个图形与原图形的形状、大小完全一样;(1) 新图形上一个点,都是原图形上的某一点关于直线l 的对称点;(2) 连接任意一对对应点的线段被对称轴垂直平分. 活动2问题如图(1),已知△ABC 和直线l ,你能作出△ABC 关于直线l 对称的图形吗?l ABCl O C'B'A'ABC图(1) 图(2) 学生活动设计:学生进行讨论,然后根据讨论的结果独立作图,最后交流想法.根据轴对称的性质,只需要作出点A 、B 、C 关于直线l 的对称点再连接就可以了.教师活动设计:在学生交流的过程中,引导学生探索作对称点的方法.如图(2),作点A 关于l 的对称点的方法是:(1)过A 作l 的垂线垂足为O ;(2)连接AO 并延长到A′,使A′O=AO ,则点A′就是点A 关于直线l 的对称点.最后进行归纳.几何图形都可以看作由点组成,只要分别作出这些点关于对称轴的对应点,再连接这些对应点,就可以得到原图形的轴对称图形;对于一些由直线、线段或射线组成的图形,只要作出图形中一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.活动3二、观察操作,主动探索,研究坐标系内的轴对称活动4问题在平面直角坐标系内画出下列已知点以及对称点,并把坐标填在表格中,你能发现坐标间有什么规律?已知点A(2,-3) B(-1,2)C(-6,-5)D(0.5,1)E(4,0)关于x轴对称的点关于y轴对称的点学生活动设计:学生动手画图,观察各个对称点与原来的点之间坐标的关系,经过讨论得出规律.点(x,y)关于x轴对称的点的作标是(x,-y);点(x,y)关于y轴对称的点的作标是(-x,y).教师活动设计:组织学生进行探索,观察猜测,然后进行归纳总结.活动5问题如图,四边形ABCD的四个顶点的坐标分别为A(-5,1),B(-2,1),C (-2,5),D (-5,4),分别作出四边形ABCD 关于y 轴和x 轴对称的图形. 53y x -1-2-3-4124-1-2-3-4-5654321D''C''B''A''D'C'B'A'O AB CD学生活动设计:学生根据活动4中发现的规律,首先求出点A 、B 、C 、D 关于x 轴、y 轴的对称点,然后再连接对称点即可.教师活动设计:本活动主要巩固加深学生对利用坐标表示轴对称的理解,所以要特别关注学生对对称点的坐标的求解过程.三、应用提高、拓展创新问题如图所示:要在街道旁修建一个奶站,向居民区A 、B 提供牛奶,奶站应建在什么地方,才能使从A 、B 到它的距离之和最短.教师和学生活动设计:分组讨论,让学生探索:在街道上找一点C,使得AC+BC为最小.通过学生活动,使他们懂得:只有A、C、B在一直线上时,才能使AC+BC最小,这时作点A关于直线“街道”的对称点A′,然后连接A′B,交“街道”于点C,则点C就是所求的点.学生自主探索其中的原因(原因:在直线l上取异于点C的点D,由于l垂直平分AA′,所以得到DA=DA′,所以DA+DB=DA′+DB,根据两点之间线段最短得到DA′+DB >A′B,而A′B=A′C+BC=AC+BC,于是有AD+DB>AC+BC.)四、归纳小结、布置作业小结:1.作轴对称图形;2.用坐标表示轴对称.。

人教初中数学八年级上册 13.2 画轴对称图形(第1课时)教案

人教初中数学八年级上册 13.2 画轴对称图形(第1课时)教案

13.2 画轴对称图形
教学目标
1. 能够画轴对称图形
2. 能够用轴对称的知识解决相应的数学问题
重点难点
重点:画轴对称图形
难点:用轴对称知识解决相应的数学问题
教学过程
一、创设情境
1、阅读教材
2、操作:自己动手在纸上画一个图案,将这张纸折叠,描图,再打开纸,看看你得到了什么?改变折痕的位置再试一次,你又得到了什么?
3、归纳:
(1)由一个平面图形可以得到它关于一条直线l成轴对称的图形,这个图形与原图形的、完全相同
(2)新图形上一个点,都是原图形上的某一点关于直线l的点
(3)连接任意一对对应点的线段被对称轴
二、画轴对称图形
1、如图,已知△ABC和直线l,你能作出△ABC关于直线l对称的图形.
l
2、归纳:阅读教材归纳
3、练习:教材练习第1题
三、用轴对称知识解决相应的数学问题
1、探究:要在燃气管道L上修建一个泵站,分别向A,B两镇供气,泵站修在管道的什
么地方,可使所用的输气管线最短?
四、总结
五、作业
1、把下列图形补成关于l对称的图形.
2、如图,A为马厩,B为帐篷,牧马人某一天要从马厩牵出马,先到草地边某一处牧马,再到河边饮水,然后回到帐篷,请你帮他确定这一天的最短路线.。

数学人教版八年级上册13.2.2画轴对称图形 教学设计

数学人教版八年级上册13.2.2画轴对称图形 教学设计

13.2.2画轴对称图形教学设计一、内容和内容解析1、教学内容:在平面直角坐标系中,用坐标表示轴对称。

本节主要研究两个方面的问题,一方面是探究点或图形的图形的轴对称引起的点的坐标的变化规律;另一方面是如何利用这种坐标的变化规律在平面直角坐标系中画出一个平面图形的轴对称图形。

2、内容解析:用坐标表示轴对称体现了轴对称在平面直角坐标系中的应用。

本节内容是在学生学习了平面直角坐标系,有序数对,和简单的平面图形关于给定对称轴的对称图形的一般画法之后,让学生尝试用坐标从数量关系的角度刻画轴对称。

把坐标思想和图形变换的思想联系起来,是学习函数和中心对称的基础.通过观察实验,归纳猜想一个点关于x轴或y轴对称的点的坐标规律,并进一步探讨如何利用这种规律在平面直角坐标系中画出一个图形关于x轴或y轴的轴对称图形。

让学生体会从数的角度刻画轴对称的内容,及关于坐标轴对称的点的坐标关系,让学生感受图形轴对称之后的点的坐标变化,把“形”和“数”紧密结合在一起,把坐标思想和图形变化的思想联系起来,也有助于培养学生的模型意识、应用意识和空间观念。

《课程标准(2011年版)》要求“在直角坐标系中,以坐标轴为对称轴,能写出一个已知顶点坐标的多边形的对称图形的顶点坐标,并知道对应顶点坐标之间的关系”,规定“以对称轴为轴”就控制了画图的难度。

本节课的教学重点是:在平面直角坐标系中关于x 轴或y 轴对称的点的变化规律和作出与一个图形关于x 轴或y 轴对称的图形。

二、学习目标和目标解析1、学习目标:(1)理解在平面直角坐标系中,已知点关于x 轴或y 轴对称的点的坐标的变化规律.(2)掌握在平面直角坐标系中作出一个图形的轴对称图形的方法.2、目标解析:(1)引导学生通过思考、探究,结合实例理解已知点关于x轴或y轴对称的点的坐标规律,(2)运用这些规律在平面角坐标系中画出一个图形关于x轴或y轴对称的图形。

(3)引导学生掌握本节知识与前后各部分知识间的衔接与联系,培养学生运用轴对称解决实际问题的基本能力。

画轴对称图形(八上人教版)教案

画轴对称图形(八上人教版)教案

13.2 画轴对称图形教案第二课时教学目标:1.理解在直角坐标系中,已知点A(a,b)关于x轴y轴对称的点的坐标变化规律。

2.掌握在直角坐标系中做一个图形的轴对称图形的方法。

3.培养学生用数学解决生活中的问题,继续培养学生的审美观,激励学生学好数学。

教学重点:直角坐标系中关于x轴y轴对称点的坐标变化规律及其应用。

教学难点:平面直角坐标系中关于直线x=m或关于直线y=n对称的点的坐标变化规律。

探究:已知点A(5,4)请在直角坐标系中分别找到点A关于x轴和y 轴的对称点,并且写出点A关于x轴和y轴的对称点的坐标。

小结:关于坐标轴对称的点的坐标变化规律是:点A(x,y)关于x轴对称的点的坐标为A(x,-y)点A(x,y)关于y轴对称的点的坐标为A(-x,y)简单的记为:关于哪条轴对称,那个坐标的值就不变,而另一个坐标值则互为相反数。

练习1:(1)分别写出A(3,7),B(-2,6),C(-4,-5),D(1,-9) 关于x轴对称的点的坐标A1,B1, C1, D1.关于y轴对称的点的坐标A2,B2,C2, D2. 解:关于x轴对称的点的坐标分别为:A1(3,-7),B1(-2,-6),C1(-4,5), D1(1,9).关于y轴对称的点的坐标分别为:A2(-3, 7),B2(2,6),C2(4,-5), D2(-1,-9) . (2)a.已知点A关于x轴对称的点的坐标A1(-5,6),则点A的坐标是什么?b.已知点B关于y轴对称的点的坐标B1(-2,-3),则点B的坐标是什么?解:(2)a.点A关于X轴对称的点的坐标A1(-5,6),则点A的坐标是:(-5,-6)。

b.已知点B关于y轴对称的点的坐标B1(-2,-3),则点B的坐标是:(2,-3)。

(3)若点A(2m+n,-3)与A1(5,-2n-1)关于y轴对称,试求出m,n的值。

解:(3)∵点A(2m+n,-3)与A1(5,-2n-1)关称于y轴对称∴2m+n = -5-2n-1 = -3∴m = -3n = 1答:m,n的值各为-3,1.(或m = -3,n = 1)练习2:如图(略),已知 ABC中,A(-2,4),B(-4,-2),C(0,2),分别求出点A,B,C关于x轴,y轴对称的点的坐标。

人教版初中八年级上册数学《画轴对称图形》精品教案

人教版初中八年级上册数学《画轴对称图形》精品教案

B
A
l
B′
A′
A (B ′) Bl
A′
B′ Bl
(图2)
(图3)
想一想:如果有一个图形和一条直线,如何画出与这个图形 关于这条直线对称的图形呢? 例3 如图,已知△ABC和直线l,作出与△ABC关于直线l 对称的图形.
B C
lA
分析:△ABC可以由三个顶点的位置确定,只要能分别画出 这三个顶点关于直线l的对称点,连接这些对称点,就能得到 要画的图形.
师生共同进行课堂小结
课后作业
1.从课后习题中选取; 2.完成练习册本课时的习题。
再见!
第十三章 轴对称
13.2 画轴对称图形
第1课时 画轴对称图形
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1.能够按要求画简单平面图形经过一次对称后的图形.(难点) 2.掌握作轴对称图形的方法.(重点)
导入新课
问题引入
我们前面学习了轴对称图形以及轴对称图形的一些相关的 性质.如果有一个图形和一条直线,如何画出这个图形关于这 条直线对称的图形呢?这节课我们一起来学习作轴对称图形的 方法.
即为所求.
方法归纳
作轴对称图形的方法
几何图形都可以看作由点组成.对于某些图形,只要作 出图形中一些特殊点(如线段端点)的对称点,连接这些对 称点,就可以得到原图形的轴对称图形.
当堂练习 1.如图,把下列图形补成关于直线l的对称图形.
2. 如图给出了一个图案的一半,其中的虚线 l 是这个图案的对 称轴.整个图案是个什么形状?请准确地画出它的另一半.
讲授新课
一 轴对称图形的画法
在一张半透明纸的左边部分,画一只左脚印,把这张纸对 折后描图,打开对折的纸,就能得到相应的右脚印,这时,右 脚印和左脚印成轴对称,折痕所在直线就是它们的对称轴,并 且连接任意一对对应点得到的线段被对称轴垂直平分.类似地, 请你再将一个图形做一做,看看能否得到同样的结论.

最新人教版初中八年级数学上册《画轴对称图形》精品教案

最新人教版初中八年级数学上册《画轴对称图形》精品教案

13.2 画轴对称图形第1课时画轴对称图形教学目标(一)教学知识点1.通过实际操作,了解什么叫做轴对称变换.2.如何作出一个图形关于一条直线的轴对称图形.(二)能力训练要求经历实际操作、认真体验的过程,发展学生的思维空间,并从实践中体会轴对称变换在实际生活中的应用.教学重点1.轴对称变换的定义.2.能够按要求作出简单平面图形经过轴对称后的图形.教学难点1.作出简单平面图形关于直线的轴对称图形.2.利用轴对称进行一些图案设计.设置情境,引入新课在前一个章节,我们学习了轴对称图形以及轴对称图形的一些相关的性质问题.在上节课的作业中,我们有个要求,让同学们自己思考一种作轴对称图形的方法,现在来看一下同学们完成的怎么样.[生甲]将一张纸对折后,用针尖在纸上扎出一个图案,将纸打开后铺平,•得到的两个图案是关于折痕成轴对称的图形.[生乙]准备一张质地较软,吸水性能好的纸或报纸,在纸的一侧上滴上一滴墨水,将纸迅速对折,压平,并且手指压出清晰的折痕.再将纸打开后铺平,•位于折痕两侧的墨迹图案也是对称的.[师]大家回答得太好了,•这节课我们就是来作简单平面图形经过轴对称后的图形.导入新课[师]刚才同学们说出了几种得到轴对称图形的方法,•由我们已经学过的知识知道,连结任意一对对应点的线段被对称轴垂直平分.类似地,我们也可以由一个图形得到与它成轴对称的另一个图形,重复这个过程,可以得到美丽的图案.(电脑演示下面图案的变化过程)大家看大屏幕.对称轴方向和位置发生变化时,得到的图形的方向和位置也会发生变化.大家看大屏幕,从电脑演示的图案变化中找出对称轴的方向和位置,体会对称轴方向和位置的变化在图案设计中的奇妙用途.[师]下面,同学们自己动手在一张纸上画一个图形,将这张纸折叠描图,•再打开看看,得到了什么?改变折痕的位置并重复几次,又得到了什么?同学们互相交流一下.(学生动手做)结论:由一个平面图形呆以得到它关于一条直线L对称的图形,•这个图形与原图形的形状、大小完全相同;新图形上的每一点,都是原图形上的某一点关于直线L的对称点;连结任意一对对应点的线段被对称轴垂直平分.[师]我们把上面由一个平面图形得到它的轴对称图形叫做轴对称变换.成轴对称的两个图形中的任何一个可以看作由另一个图形经过轴对称变换后得到.一个轴对称图形也可以看作以它的一部分为基础,经轴对称变换扩展而成的.动手做一做.取一张长30厘米,宽6厘米的纸条,将它每3厘米一段,•一正一反像“手风琴”那样折叠起来,并在折叠好的纸上画上字母E,用小刀把画出的字母E挖去,拉开“手风琴”,你就可以得到以字母E为图案的花边.回答下列问题.(1)在你所得的花边中,相邻两个图案有什么关系?•相间的两个图案又有什么关系?说说你的理由.(2)如果以相邻两个图案为一组,每一组图案之间有什么关系?•三个图案为一组呢?为什么?(3)在上面的活动中,如果先将纸条纵向对折,再折成“手风琴”,•然后继续上面的步骤,此时会得到怎样的花边?它是轴对称图形吗?先猜一猜,再做一做.注:为了保证剪开后的纸条保持连结,画出的图案应与折叠线稍远一些.投影仪演示学生的作品.[生甲]相邻两个图案成轴对称图形,相间的两个图案之间大小和方向完全一样.[生乙]都成轴对称关系.[生丙]得到与上面类似的两层花边,它仍然是轴对称图形.[师]下面我们做练习.随堂练习(课件演示)(一)如图(1),将一张正六边形纸沿虚线对折折3次,得到一个多层的60°角形纸,用剪刀在折叠好的纸上随意剪出一条线,如图(2).(1)猜一猜,将纸打开后,你会得到怎样的图形?(2)这个图形有几条对称轴?(3)如果想得到一个含有5条对称轴的图形,你应取什么形状的纸?应如何折叠?答案:(1)轴对称图形.(2)这个图形至少有3条对称轴.(3)取一个正十边形的纸,沿它通过中心的五条对角线折叠五次,•得到一个多层的36°角形纸,用剪刀在叠好的纸上任意剪出一条线,•打开即可得到一个至少含有5条对称轴的轴对称图形.课时小结本节课我们主要学习了如何通过轴对称变换来作出一个图形的轴对称图形,•并且利用轴对称变换来设计一些美丽的图案.在利用轴对称变换设计图案时,要注意运用对称轴位置和方向的变化,使我们设计出更新疑独特的美丽图案.活动与探究如果想剪出如下图所示的“小人”以及“十字”,你想怎样剪?设法使剪的次数尽可能少.过程:学生通过观察、分析设计自己的操作方法,教师提示学生利用轴对称变换的应用.结果:“小人”可以先折叠一次,剪出它的一半即可得到整个图.“十字”可以折叠两次,剪出它的四分之一即可.作者留言:非常感谢!您浏览到此文档。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

13.2画轴对称图形
第1课时画轴对称图形
教学目标
1.理解图形轴对称变换的性质.
2.能按要求作出一个平面图形关于某直线对称的图形.
教学重点
画轴对称图形.
教学难点
轴对称变换的性质.
教学设计一师一优课一课一名师(设计者:)
教学过程设计
一、创设情景,明确目标
播放多媒体课件,展示生活中与轴对称现象有关的美丽图案.如:剪纸艺术、服饰文化、几何图案、花边艺术等.
欣赏美丽图案,思考这些图案是怎样形成的?图案有什么特点?
二、自主学习,指向目标
1.自学教材第67至68页.
2.请完成“《学生用书》”相应部分.
三、合作探究,达成目标
探究点一轴对称图形的性质
活动一:在一张半透明的纸上画一个图形,将这张纸对折,描图后,再打开这张纸,你能发现什么现象?
展示点评:(1)画出的轴对称图形的形状与大小和原图形有何关系?对称轴在吗?这两个图形全等吗?
(2)画出的轴对称图形的点与原图形上的点有何关系?
小组讨论:对应点的连线与对称轴有何关系?
反思小结:由一个平面图形可以得到与它关于一条直线对称的图形,这个图形的形状、大小与原图形的形状、大小完全相同;新图形上的每一点都是原图形上的某一点关于直线的对称点;连接任意一对对应点的线段被对称轴垂直平分.
跟踪训练:见《学生用书》相应部分
探究点二画轴对称图形
活动二:如图,已知△ABC和直线l,画出△ABC关于直线l对称的图形.
展示点评:(1)三角形关于直线l 的对称图形是什么形状? (2)三角形的轴对称图形可以由哪几个点确定? (3)如何作一个已知点的对称点? 小组讨论:作轴对称图形的方法.
反思小结:几何图形都可以看作由点组成,对于某些图形,只要画出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.
跟踪训练:见《学生用书》相应部分 四、总结梳理,内化目标 1.本节课学习了哪些内容?
2.由一个平面图形得到与它成轴对称的另一个图形,两个图形之间有什么关系? 3.画轴对称图形的一般方法是什么?依据是什么?
实际问题―→轴对称变换的性质――→应用
画轴对称图形
五、达标检测,反思目标
1.将一张矩形的纸对折,然后用笔尖在上面扎出“B ”,再把它铺平,你可见到的是( C ) A. B.
C.
D.
2.把图中实线部分补成以虚线l 为对称轴的轴对称图形,看看会得到什么图案. 解:作图略,是蝴蝶.
3.如图,由三个小正方形组成的图形,请你在图中补画一个小正方形,使补画后的图形为轴对称图形.
,第2题图)
,)第3题图
答:
●布置作业,巩固目标教学难点
1.上交作业 教科书习题13.2第1题. 2.课后作业 见《学生用书》.
第2课时用坐标表示轴对称
教学目标
1.理解在平面直角坐标系中,已知点关于x轴或y轴对称的点的坐标的变化规律.2.掌握在平面直角坐标系中作出一个图形的轴对称图形的方法.
教学重点
在平面直角坐标系中关于x轴或y轴对称的点的坐标的变化规律和作出与一个图形关于x轴或y轴对称的图形.
教学难点
点的坐标变换规律的灵活运用.
教学设计一师一优课一课一名师(设计者:)
教学过程设计
一、创设情景,明确目标
同学们,你们去过北京吗?你知道老北京城是如何布局的吗?让我们一起看一看老北京城吧!
教师用多媒体出示教科书中图13.2-3的一幅老北京城的示意图,西直门和东直门是关于中轴线对称的.如果以天安门为原点,分别以长安街和中轴线为x轴和y轴建立平面直角坐标系,对应于如图所示的东直门的坐标,你能找到西直门的位置,说出西直门的坐标吗?
对于平面直角坐标系中任意一点,你能找出其关于x轴或y轴对称的点的坐标吗?它们之间有什么规律?
二、自主学习,指向目标
1.自学教材第68至70页.
2.请完成“《学生用书》”相应部分.
三、合作探究,达成目标
探究点一关于x轴,y轴对称的点的坐标的变化规律
活动一:按要求画出教科书中图13.2-4中的点,并填写表格.
展示点评:再找几个点,分别画出它们的对称点,检验你发现的规律?
小组讨论:每对对称点的坐标有什么变化规律?
反思小结:在平面直角体系中,关于x轴对称的点的横坐标不变,纵坐标互为相反数;关于y轴对称的点的横坐标互为相反数,纵坐标不变.点(x,y)关于x轴对称的点的坐标是
(x,-y),点(x,y)关于y轴对称的点的坐标是(-x,y).
跟踪训练:见《学生用书》相应部分
探究点二在平面直角坐标系中画出与一个图形关于x轴或y轴对称的图形
活动二:如图,四边形ABCD的四个顶点的坐标分别为A(-5,1),B(-2,1),C(-2,5),D(-5,4),分别画出与四边形ABCD关于x轴和y轴对称的图形.
展示点评:点(x,y)关于y轴对称的点的坐标为(-x,y),因此四边形ABCD的顶点A,B,C,D关于y轴对称的点分别为A′(__5__,__1__),B′(__2__,__1__),C′(__2__,__5__),D′(__5__,__4__),依次连接A′B′,B′C′,C′D′,D′A′,就可得到与四边形ABCD关于x轴对称的四边形A′B′C′D′.
类似地,请你在图上画出与四边形ABCD 关于x 轴对称的图形.
小组讨论:在平面直角坐标系中,画与一个图形关于x 轴或y 轴对称的图形的步骤. 反思小结:先求出已知图形中一些特殊点(多边形的顶点)的对称点的坐标,描出并连接这些点,就可以得到这个图形的轴对称图形,步骤简述为:①求特殊点的坐标;②描点;③连线.
跟踪训练:见《学生用书》相应部分 四、总结梳理,内化目标 1.本节课学习了哪些内容?
2.在平面直角坐标系中已知点关于x 轴或y 轴的对称点的坐标有什么变化规律及如何判断两个点是否关于x 轴或y 轴对称?
3.说一说画一个图形关于x 轴或y 轴对称的图形的方法和步骤.
实际问题―→关于x 轴和y 轴对称点的坐标变化规律――→应用
画关于x 轴和y 轴对称的图形
五、达标检测,反思目标
1.分别写下列各点关于x 轴和y 轴对称的点的坐标:(-2,6),(1,-2),(-1,3),(-4,-2),(1,0).
答:关于x 轴:(-2,-6),(1,2),(-1,-3),(-4,2),(1,0) 关于y 轴:(2,6),(-1,-2),(1,3),(4,-2),(-1,0) 2.平面内点A(-1,2)和点B(1,2)的对称轴是__y 轴__,点A 和点B 之间的距离是__2__;点A(2,-3)向上平移6个单位后的点关于x 轴对称的点的坐标是__(2,-3)__. 3.如图,以长方形ABCD 的中心为原点建立坐标系,点A 的坐标为(3,2),则点B 的坐标是__(3,-2)__,点C 的坐标是__(-3,-2)__,点D 的坐标是__(-3,2)__.
4.如图,在网格中作出△ABC 关于x 轴和y 轴对称的图形.
,第3题图)
,第4题图)
作图略.
●布置作业,巩固目标教学难点
1.上交作业教科书习题13.2第3,4,5题.2.课后作业见《学生用书》.。

相关文档
最新文档