车辆系统动力学复习重点
汽车系统动力学复习资料

行驶动力学汽车平顺性汽车平顺性的定义:汽车行驶过程中,振动与冲击环境对乘员舒适性的影响。
(发动机、传动系、不平路面等) 系统框图主要研究内容:评价、路面输入特性、振动系统分析 路面测量技术及数据处理 路面测量技术经典测量技术:水平仪和标尺测量 路面不平度测量仪 非接触式路面测量装置 倾斜测量装置 路面不平度路面不平度:通常把相对基准平面的高度q ,沿着道路走向长度l 的变化q(l) 称为道路不平度函数。
根据测量的路面不平度随机数据,在计算机上处理得到路面不平度功率谱)(n G q 或方差2q σ。
路面输入模型 频域模型 空间频率表达式 速度功率谱密度表达式加速度功率谱密度表达式空间与时间功率谱密度的关系 a)为空间频率谱密度b)速度不同时,空间与时间频率的关系 c)为时间频率谱密度时域模型对于线性车辆模型,S(f)表示的路面谱可以直接用来作为频域分析的输入。
当车辆模型中出现非线性元素时,需在时间域或距离域内来描述 1 积分白噪声 1200() () () p d d p d d n G n n n G n n G n n n --⎧≤⎪⎪=⎨⎪>⎪⎩200()(2)()q q G n n G n π=400()(2)()q q G n n G n π=()()2~2~021~000lim 11 11 ()limq n q n n pp q n pf G n n nf n uT T f n uG u f G f G n G fu u u f σσλλσ∆∆∆→--∆∆→=∆∆====⎛⎫====⎪∆⎝⎭为路面功率谱密度在内包含的功率又,,有 则022()up G f G f ==时,0()2()g Z t G uw t π=2 滤波白噪声路面对四轮汽车的输入功率谱密度 x(I)、y(I):左、右两个轮迹的不平度G xx (n)、G yy (n)、 G xy (n) 、 G yx (n) :分别为x(I)、y(I)的自谱和互谱 四轮的不平度函数分别为:q 1(I)=x(I) q 3(I)=y(I) q 2(I)=x(I-L) q 1(I)=y(I-L) 四轮输入时的考虑车辆在硬路面上直线行驶时,后轮的路面输入和前轮相比,只是时间上的滞后。
汽车系统动力学

汽车系统动力学1 轮胎侧偏特性:汽车在行驶过程中,由于路面的侧向倾斜,侧向风或者曲线行驶时的离心力等的作用,车轮中心沿车轴方向产生一个侧向力F。
因为车轮是有弹性的,所以,在侧向力F未达到车轮与地面间的最大摩擦力时,侧向力F使轮胎产生变形,使车轮倾斜,导致车轮行驶方向偏离预定的行驶路线。
影响因素:1 附着条件以及垂直载荷 2 轮胎花纹,材料,压力,结构2路面状况 4 车轮外倾角2 以车轮平面(垂直于车轮旋转轴线的轮胎中分平面)与地面的交线为X轴,方向向前,以车轮自转轴线在地平面上的垂直投影线为Y轴,方向向左,X轴和Y轴的交点O为原地,以过原点的铅垂线为z轴,方向向上,建立坐标系。
六分力:纵向力:地面对轮胎作用力沿轮胎坐标系x轴分量侧向力:地面对轮胎作用力沿轮胎坐标系Y轴分量垂直力:地面对轮胎作用力沿轮胎坐标系Z轴分量翻转力矩:地面对轮胎作用力矩沿轮胎坐标系x轴分量滚动阻力矩:地面对轮胎作用力矩沿轮胎坐标系Y轴分量回正力矩:地面对轮胎作用力矩沿轮胎坐标系Z轴分量3表征汽车瞬态响应的物理参数:(1)反应时间在方向盘角阶跃输入下,汽车的横摆角速度不能立即达到稳态横摆角速度,而要经过时间t后才能第一次达到稳态横摆角速度,滞后时间t称为反应时间(2)执行上的误差最大横摆角速度与稳态横摆角速的比值(3)横摆角速度的波动在瞬态响应中,横摆角速度在稳态横摆角速上下波动的频率(4)进入稳态所经历的时间横摆角速度达到稳态值95%-105%时进入稳态响应,这段时间即为稳态时间4 建立半车模型的运动方程(见手写)5说明ABS原理,系统组成,建立ABS力学模型原理:ABS防抱死制动系统,通过安装在车轮上的传感器发出车轮将被抱死的信号,控制器指令调节器降低该车轮制动缸的油压,减小制动力矩,经一定时间后,再恢复原有的油压,不断的这样循环(每秒可达5~10次),始终使车轮处于转动状态而又有最大的制动力矩。
组成:传感器,电子控制装置,执行器建立模型:先做如下假设:(1)车轮承受载荷为常数(2)忽略迎风阻力和车轮滚动阻力(3)附着系数与华东率关系曲线用两条直线近似表示车轮抱死过程中的动力学方程如下:然后根据现代控制理论,写出车轮控制系统的状态方程,推到得出结果。
车辆系统动力学讲义

车辆系统动力学讲义
平稳性指标
2.5
2.4
2.3
2.2
2.1
2.0
1.9
1.8
横向平稳性指标
垂向平稳性指标
1.7
1.6
1.5
1.4 40 60 80 100 120 140 160 180 200 220 240
运行速度/(km/h)
图 车辆平稳性指标和车速的关系
车辆系统动力学讲义
舒适性(Nmv)指标的计算流程 舒适性指标分简化方法和完全方法,一般仿真计算采 用简化方法。其测点如下图:
车辆系统动力学讲义
(b)横向稳定性模型 用于传统的稳定性分析,现在一般都建立横、垂耦合 模型或横、垂、纵向耦合模型用于稳定性分析。比单 独的横向和垂向模型考虑的自由度增加,增加了计算 时间,尤其是参数优化时,稳定性计算所占的时间很 长 。对动车组的稳定性一般分单车稳定性和列车稳定 性。
(c) 曲线通过模型 用于分析车辆曲线通过时的动力学性能。现在的曲线
车辆系统动力学讲义
2.3.2 车辆运动稳定性 车辆运行稳定性主要包括:抗蛇行运动稳定性、
防止脱轨的稳定性、车辆倾覆的稳定性。 1. 抗蛇行运动稳定性(图)
蛇行运动是轨道车辆在轮轨蠕滑力作用下,横 向自激振动而产生的失稳现象。蛇行运动分为车体 蛇行和构架蛇行。
车体蛇行的行车速度较低,且随着车速的提高 会消失。选择合适的悬挂参数和车轮踏面能避免或 减弱车体蛇行。
对N自由度的列车系统,其N维二阶非线性微分方程 组可降阶为2N维一阶非线性微分方程组,设x为状态矢
量、v为列车运行速度、t为时间,则
dx / dt = f ( x,v,t)
(4-6)
假设列车中各车辆的结构是对称的,则直线工况下x=0 就是系统的平衡位置。在不同的车速下由差分法计算 出系统的雅可比矩阵J(x),再由两步QR法得到其全部特 征值。由Hopf分叉理论,其最大特征值穿越虚轴时对 应的列车速度就是列车系统的线性临界速度。可采用
汽车系统动力学复习资料

、名词解释1. 状态变量:能够完全描述动态系统运动的最少的变量组称为系统的状态变量。
一个n阶微分方程描述的系统,就有n个状态变量,当他们的时间响应都求得时,系统的运动状态也就确定了。
2. ASR/TCS牵引力控制系统,其在驱动过程中通过调节驱动车轮牵引力实现驱动滑转控制,防止驱动车轮发生滑转。
3. 侧倾转向:在侧向力作用下,车厢发生侧倾,而引起车轮偏转,即车轮围绕垂直轴线或转向节主销转动。
4. 中性转向点:使汽车前,后轮产生同一侧偏角的侧向力作用点。
5. 附着椭圆:驱动力和制动力在不同侧偏角条件下的曲线的包络线是附着椭圆。
它确定了切向力与侧力或者制动力越大,侧偏力越小。
6.不足转向、中性转向、过多转向:7. 4WS :四轮转向,即后轮随动转向。
使后轮在前轮转向时,按照不冋要求随动转动一个转向角,用于提高车辆的操纵稳定性性能9. VDC :控制轮胎的侧向力,可以改善汽车转向操纵性能并提高抗侧向干扰能力10. ESP :车身电子稳定系统,ESP系统包含ABS (防抱死刹车系统)及ASR (驱动防滑转系统),是这两种系统功能上的延伸,它通过对从各传感器传来的车辆行驶状态信息进行分析,然后向ABS、ASR发出纠偏指令,来帮助车辆维持动态平衡。
11. 侧偏角、侧偏刚度:侧偏刚度为侧偏力与侧偏角的比值,实际上应为侧偏力与侧偏角构造曲线在侧偏角等于0度时曲线的斜率。
12. 侧倾中心:悬架侧倾中心定义为汽车车身侧倾时绕符合每个车轮滚动时瞬时中心约束运动的瞬时点。
13. 主动安全性、被动安全性:通过车辆的设计尽量减少或避免交通事故的发生;通过车辆设计师车辆发生事故时尽量减少对成员的伤害。
14. 操纵稳定性:在驾驶者不感到过分紧张、疲劳的条件下,汽车能遵循驾驶者通过转向系及转向车轮给定的方向行驶,且当遭遇外界干挠时,汽车能抵抗干挠而保持稳定行驶的能力。
第一章1■系统动力学的研究任务?主要研究内容?(1)研究任务:[1]系统设计:已知输入和设计系统的特性,使得它的输出满足一定的要求。
车辆动力学基础

车辆动力学基础第一章1.车体在空间的位置由6个自由度的运动系统描述。
浮沉、摇头、点头、横摆、伸缩、侧滚2.轴重:铁道车辆的轴重是指车辆每一根轮轴能够承受的允许静载。
3.轴距:是指同一转向架下两轮轴中心之间的纵向距离。
4.轴箱悬挂:是将轴箱和构架在纵向、横向以及垂向联结起来、并使两者在这三个方向的相对运动受到相互约束的装置。
5.中央悬挂:是将车体和构架/侧架联结在一起的装置,一般具有衰减车辆系统振动、提高车辆运行平稳性和舒适性的作用。
6.曲线通过:曲线通过是指车辆通过曲线时,曲线通过能力的大小,反映在系统指标上,主要表现为车辆轮轨横向力、轮对冲角以及轮轨磨耗指数等的大小上。
7.自由振动:是指在短时间内,由于某种瞬间或过渡性的外部干扰而产生的振动,其振动振幅如果逐渐变小,该系统将趋于稳定;相反,若振幅越来越大,则系统将不稳定。
第二章1.车辆的动力性能主要包括运行稳定性(安全性)、平稳性(舒适性)以及通过曲线能力等。
2.车辆脱轨根据过程不同大体可分为爬轨脱轨、跳轨脱轨、掉道脱轨。
3.目前我国车辆部门主要采用脱轨系数和轮重减载率两项指标。
4.当横向力作用时间t小于0.05s时,用0.04/t计算所得的值作为标准值。
5.不仅仅依靠脱轨系数来判断安全性的原因:(1)轮重较小时与其对应的横向力一般也较小,计算脱轨系数时受到轮重和横向力的测量误差的影响就较大,因此要获得正确的脱轨系数比较困难。
(2)垂向力较小时,使用该垂向力和与其对应的横向力得到的脱轨系数很容易达到脱轨限界值;另一方面,单侧车轮轮重减小时,另一侧车轮轮重一般会增大,此时极小的轮对冲角变化会导致较大的横向力,从而加大了脱轨的危险性。
(3)根据多次线路试验来看,与其说脱轨系数值较大容易导致列车脱轨,还不如说轮重减少的越多越容易导致列车脱轨。
6.评价铁道车辆乘坐舒适性最直接的指标就是车体振动加速度。
第三章1.轮对的组成:轮对由一根车抽和两个相同的车轮组成。
汽车系统动力学复习资料2

纵向动力学纵向动力学性能分析动力的需求与供应、动力性、燃油经济性、驱动与附着极限和驱动效率、制动性 汽车动力性能 最高车速、爬坡能力、加速能力。
动力的需求与供应车辆对动力的需求(行驶阻力)稳态匀速行驶阻力:车轮滚动阻力、空气阻力、坡度阻力 瞬态加速行驶阻力(加速阻力) 车辆对动力的需求旋转质量总等效转动惯量发动机、离合器;某特定传动比时的传动系统;驱动桥、差速器;车轮(包括制动鼓或制动盘及半轴) 加速阻力分量 旋转质量转动惯量 定义质量换算系数 有代表车辆动力需求的车辆总行驶阻力车辆的动力供应驱动轮毂的转矩 发动机额定工况下的转矩损失 动力供求平衡式若车辆出动系统的效率为ηt ,则驱动力为 则动力供求平衡式为 汽车驱动力-行驶阻力平衡图2))(()(20u A C g m m f i a m m r i i M F F F F F a D v c R G x c v i dTg e D G R f t ρδη+++++=+++=行驶方程式反映了汽车行驶时,驱动力和外界阻力之间的普遍情况。
当已知条件:为已知时m A C r i i D T g ,,,,,,0η,便可以分析汽车在附着条件良好路面上的行驶能力。
即在油门全开时,汽车可能达到最高车速、加速能力和爬坡能力。
动力性驱动力与行驶阻力平衡图定义为了清晰地描述汽车行驶时受力情况及其平衡关系,通常将平衡方程式用图解方式进行描述,即将驱动力F t和常见行驶阻()sin ()G v c G v c GF m m g m m gi α=+=+,R R Z WF f F =22aD D F C Au ρ=,,2() a twi a t v c x a r xd d dM F m m a F a r r r θ-ΘΘ=+=== ()a i v c x F m m a δ=+21i i d r δΘ=+22200()i w dr g e c Ti i i i Θ=Θ+Θ+Θ+Θ+Θ2()()()2Dem ai v c x G R v c D F Fa FG FR FDm m a i f m m g C Au ρδ=+++=+++++0()H e L gM M M i i =-00,000(1)(1)2L t e t P M M n ηηπ=-=-0//x H d n g dF M r M i i r==00//x n g d t e g d F M i i r M i i r η==02()()()2e t g a i v c x G R v c Dd M i i m m a i f m m g C A u r ηρδ=+++++力F D 和F f 绘在同一张图上。
车辆系统动力学知识点(二)2024

车辆系统动力学知识点(二)引言概述车辆系统动力学是研究车辆在各种运动状态下的力学性质和特性的学科领域。
在车辆系统动力学中,有一些重要的知识点需要了解和掌握。
本文将介绍车辆系统动力学的一些关键知识点,帮助读者深入理解车辆的运动和性能。
正文内容一、车辆质心与重心1. 了解质心和重心的概念2. 理解质心和重心在车辆运动中的作用3. 掌握计算质心和重心位置的方法4. 理解质心高度对车辆稳定性的影响5. 了解如何优化车辆的质心和重心位置二、车辆滚转与侧倾1. 了解车辆滚转和侧倾的概念2. 理解车辆在转弯过程中发生滚转和侧倾的原因3. 掌握计算车辆滚转和侧倾角度的方法4. 了解滚转和侧倾对车辆稳定性的影响5. 了解如何通过调整车辆悬挂系统来提高车辆的滚转和侧倾性能三、车辆悬挂系统1. 了解车辆悬挂系统的组成部分和功能2. 掌握车辆悬挂系统的工作原理3. 理解悬挂系统对车辆操控性和舒适性的影响4. 了解不同类型的悬挂系统及其特点5. 了解如何选择和调整悬挂系统以满足不同的需求四、车辆转向系统1. 了解车辆转向系统的组成部分和工作原理2. 掌握转向系统的调整和维护技巧3. 理解转向系统对车辆操纵性和稳定性的影响4. 了解不同类型的转向系统及其特点5. 了解如何选择和改进转向系统以提高车辆的操控性能五、车辆刹车系统1. 了解车辆刹车系统的组成部分和工作原理2. 掌握刹车系统的调整和维护技巧3. 理解刹车系统对车辆安全性和稳定性的影响4. 了解不同类型的刹车系统及其特点5. 了解如何选择和改进刹车系统以提高车辆的制动性能总结车辆系统动力学是车辆工程领域中一个重要的研究方向,了解和掌握车辆质心与重心、滚转与侧倾、悬挂系统、转向系统和刹车系统等知识点对于理解和提高车辆的性能至关重要。
通过优化车辆的动力学特性和系统设计,可以提高车辆的操纵性、稳定性和安全性,为驾驶员和乘客提供更加舒适和安全的乘车体验。
汽车系统动力学复习资料5

5车辆操纵稳定性汽车操纵稳定性的定义:在驾驶员不感觉过分紧张、疲劳的条件下,汽车能按照驾驶员通过转向系及转向车轮给定的方向行驶,且当受到外界干扰时,汽车能抵抗干扰而保持稳定行驶的能力。
意义:操纵方便性、高速安全性行驶方向:直线、转弯干扰:路不平、侧风、货物或乘客偏载汽车系统坐标系及运动形式汽车操纵稳定性输入、输出输入:转向盘角度输入。
响应:时域响应、频域响应。
汽车时域响应分为稳态响应和瞬态响应。
1、转向盘角阶跃输入下进入的稳态响应:等速直线行驶,急剧转动转向盘,然后维持转角不变,即对汽车施以转向盘角阶跃输入,汽车经短暂的过渡过程后进入等速圆周行驶工况。
2、转向盘角阶跃输入下的瞬态响应:等速直线行驶和等速圆周行驶两个稳态运动之间的过渡过程所对应的瞬间运动响应。
稳态响应特性分类:不足转向、中性转向、过度转向。
转向盘保持一个固定转角不变,缓慢加速或以不同车速等速行驶时,不足转向的汽车转向半径逐渐增大,中性转向的汽车转向半径不变,而过度转向的汽车转向半径逐渐减小。
驾驶员---汽车闭环系统汽车时域响应:把汽车作为开环控制系统的控制特性。
驾驶员-汽车系统闭环控制系统:在汽车行驶过程中,驾驶员根据需要,操纵转向盘使汽车做转向运动。
路面的凹凸不平、侧风、偏载等干扰因素会影响汽车的行驶。
驾驶员则根据道路、交通等情况,通过眼、手及身体感知的汽车运动状况(输出参数),经过头脑的分析、判断(反馈),修正其对转向盘的操纵。
如此不断地反复循环,使汽车能稳定行驶。
汽车操纵稳定性的评价方法1、客观评价法:通过道路试验,用测试仪器测量转向时的汽车系统的物理参数。
试验项目:(1)、蛇形试验:评价汽车的随动性、收敛性、方向操纵轻便性和事故可避性等。
(2)、响应试验(转向盘转角阶跃输入)转向瞬态:评价汽车的动态特性。
(3)、转向瞬态响应试验(转向盘转角脉冲输入):评价汽车的动态特性。
(4)、转向回正性能试验:评价汽车从曲线行驶自行回复到直线行驶的过渡过程和能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.系统动力学研究内容及发展趋势
研究内容
长期以来,人们一直在很大程度上习惯按纵向、垂向和横向分别独立研究车辆动力学问题;而实际中的车辆同时会受到三个方向的输入,各方向所表现的运动响应特性必然是相互作用、相互耦合的.
纵向动力学:纵向动力学研究车辆直线运动及其控制的问题,主要是车辆沿前进方向的受力与其运动的关系。
按车辆工况的不同,可分为驱动动力学和制动动力学两大部分。
行驶动力学:主要是研究由路面的不平激励,通过悬架和轮胎垂向力引起的车身跳动和俯仰以及车辆的运动。
操纵动力学:主要研究车辆的操纵特性,主要与轮胎侧向力有关,并由此引起车辆侧滑、横摆和侧倾运动。
操纵动力学的研究范围分为三个区域:线性域:侧向加速度越小于0.4kg时,通常意味着车辆在高附着路面做小转向运动;
非线性域:在超过线性域且小于极限侧向加速度(约为0.8kg)范围内;
非线性联合工况:通常指车辆在转弯制动或转弯加速时的情况。
发展趋势:
(1)车辆主动控制:ABS,TCS等逐步向车身侧倾控制,可切换阻尼的半主动悬架和四轮底盘控制系统的集成,转向等当面扩展。
通过控制算法、传感器技术和执行机构的开发实现的自动调节。
(2)车辆多体运动动力学:车辆的多刚体模型逐步向多柔体模型发型。
可以准确分析虚拟样机的性能,检查虚拟样机的缺陷从而缩短产品的设计周期,节约试制费用,同时提高物理样机与最终产品之间的相似性。
(3)“人—车—路”闭环系统:充分考虑驾驶员模型以及车辆本身的一些动力学问题来提高汽车稳定性。
2.轮胎滚动阻力概念及其分类:
概念:当充气的轮胎在理想路面(通常指平坦的干、硬路面)上直线滚动时,其外缘中心对称面与车轮滚动方向一致,所受到的滚动方向相反的阻力。
分类:弹性迟滞阻力、摩擦阻力和风扇效应阻力。
3.什么是滚动阻力系数?影响因素有哪些?
其值等于相应载荷作用下滚动阻力F R与车轮垂直载荷F X的比值。
影响因素:车轮载荷(反比)、胎压(反比)、车速(正比,先缓慢增加,再明显增加)、轮胎的结构设计、嵌入材料和橡胶混合物的选用。
4.滑动率S:表示车辆相对于纯滚动(或纯滑动)状态的偏离程度。
驱动工况时称为滑转率,被驱动(包括制动,常以下标b以示区别)时称为滑移率,二者统称为车轮的滑动率。
若车轮的转动半径为rd,轮心前进速度(等于车辆行驶速度)为uw,车轮角速度为ω,则
S在0~1之间变化。
当车轮做纯滚动时,及uw=rdω,此时s=0;当被驱动轮处于纯滑动状态
是,s=1.
5.轮胎纵向力与滑动率的关系
(1)与滑转率之间的关系
一般情况下,由于轮胎初始的滑转主要由胎面的弹性变形引起的,因而一开始车轮力矩
与驱动力随着滑转率呈线性关系增加,即OA 段。
当车轮力矩和驱动力进一步增加而导致部分轮胎胎面在地面上滑转时,驱动力和滑转率呈非线性关系,汽车行驶时驱动力迅速增加,即AB 段,并在滑转率为15%~20%时达到最大值,当滑转率进一步增加时,会导致轮胎的不稳定工况,驱动力系数从峰值很快下降到纯滑转时的饱和滑动值。
(2)与滑移率关系
车辆制动时,纵向制动力随着滑移率迅速增加,并达到最大值,然后随着滑移率增加,轮胎制动力开始逐渐下降或者显示平稳趋势,直到纯滑移达到饱和状态。
6.轮胎侧偏角:车轮回转平面与车轮中心运动方向的夹角,顺时针方向为正。
7.什么是轮胎侧偏刚度?影响因素有哪些?
轮胎侧偏角是影响轮胎侧向力的一个重要因素,定义为车轮平面与车轮中心运动方向的夹角,顺时针方向为正,用α表示。
在小侧偏角情况下,轮胎侧向力与侧偏角近似成比例,其比值称为轮胎侧偏刚度。
影响因素:侧向载荷的影响;车轮定位的影响(车轮前束角和车轮外倾角)。
补充:(1)轮胎尺寸(成正比),(2)子午线轮胎笔斜角轮胎侧偏刚度高,钢丝子午线轮胎比尼龙子午线轮胎高,(3)直径相同,轮胎宽度越宽越高,(4)载重越小,侧偏刚度越小,(5)车速快,载荷越小,侧偏刚度越小(6)轮胎气压,越低刚度越大。
(侧偏刚度越小,越容易甩尾)
8.影响轮胎侧向力的因素
侧偏角:轮胎运行条件决定,取决于车辆前进速度、侧向速度、横摆角速度和转向角。
垂向载荷:由车辆质量分布所决定,但随着载荷在纵向和侧向的重新分配。
垂向载荷会发生变化。
车轮外倾角:转向角和通过悬架杆系作用的车身侧倾所决定,但对非独立悬架车辆来说,外倾角只取决于车轴的侧倾角。
9.SAE 标准轮胎运动坐标系:
10.SAE 空气动力学坐标系
11.什么是空气阻力?包括哪些方面?
空气阻力:指汽车直线行驶时受到空气作用力在行驶方向的分力。
主要包括:压差阻力分量(形状阻力、内循环阻力、诱导阻力)和摩擦阻力两大部分组成,可能还受到侧向气流的影响。
)arctan(w w u v =α
12.减少油耗的途径
燃油经济性指标包括:百公里燃油消耗量,瞬时燃油消耗量
(1)交通管理因素:包括交通管理系统、信号灯控制系统、驾驶员等因素,实际上均影响了车辆的行驶速度。
(2)车辆行驶阻力因素:在保证汽车安全性、人机工程、经济学和舒适性的同时,尽可能降低车辆行驶阻力,如减小整车质量、轮胎滚动阻力系数、空气阻力系数和迎风面积等。
(3)尽可能降低附属设备(如空调,动力转向、动力制动等)的能耗;
(4)提高传动系效率,使发动机功率尽可能多地传递到驱动轮上。
13.车辆加速上坡受力分析
14.制动性评价
(1)制动效能即制动距离与制动减速度
(2)制动效能的稳定性即抗热衰退性,指车辆高速行驶或长下坡连续制动时保持一定制动效能的程度。
(3)制动时的方向稳定性即制动时车辆不发生跑偏、侧滑以及失去转向能力的性能。
通常用制动时车辆按给定路径行驶的能力来评价。
15.制动跑偏原因
(1)汽车左右轮制动力不相等
(2)制动时悬架导向杆系与转向系拉杆在运动学上不协调。
16.为什么后轮抱死比前轮抱死更危险?(需答出制动跑偏的原因)
前轮抱死丧失转向能力,后轮抱死侧滑甩尾。
如图a所示,后轮抱死拖滑,而前轮仍然处在滚动状态,可能由于路面倾斜坡度、侧风或者左右轮制动力不平衡等因素引起的侧向干扰力F y作用于车辆质心,由于后轮抱死拖滑,后轮已无法提供侧向力来平衡Fy,而此时前轮产生的侧向力F yf产生一个绕车辆质心的不稳定力矩F yrf a,该力矩是车辆侧偏角β继续增加,
导致车辆横摆加剧。
图b中,前轮先于后轮抱死,后轮能够产生侧向力来形成一个使车辆会整的稳定力矩F yr b,从而减小车辆的初始侧偏角β,因而是稳定工况。
但前轮抱死之后,由前轮不能产生侧向力,会使车辆失去转向能力。
因此时即使发生碰撞事故,从乘员保护系统的设计角度来看,正面碰撞导致的伤害一般比侧面碰撞要小得多。
17.为什么空载比满载更容易甩尾?
Β线和I线的交点为同步附着系数,从图中克制空载时同步附着系数小于满载时同步附着系数,因此空载时β曲线总是位于I曲线上方,φ>φ0, 制动时总是后轮先抱死,容易出现甩尾。
载重越小,侧偏刚度越小,更易发飘。
18.为什么操纵稳定性良好的汽车应具有适度的不足转向特性?
答:过多转向,转弯半径减小,易发生急转而侧滑或翻车,使汽车有失去稳定性的危险。
而中性转向汽车在使用条件变动时,有可能转变为过多转向特性。
19.过多转向特性如何改善?
横向稳定杆
20.为什么加入横向稳定杆后,由过多转向变为不足转向?
汽车转弯时,有一横向倾斜,会导致汽车出现过多转向,而加入横向稳定杆之后,当汽车转向时,会产生一个平衡力,阻止汽车的倾斜,使汽车在转弯时保持平衡,从而能消除汽车的过多转向。
汽车在稳态行驶时,车厢侧倾角取决于侧倾力矩和悬架总的角刚度,悬架总的角刚度为前后悬架及横向稳定杆的侧倾角刚度之和。
当增加横向稳定杆之后,前悬架的侧倾角刚度增大,后悬架侧倾角刚度不变,所以前悬架作用于车厢的恢复力矩增加(总侧倾力矩不变),由此汽车前轴左右轮载荷变化就较大。
在这种情况下,如果左右车轮轮胎的侧偏刚度在非线性区,则汽车区域增加不足转向量。
21.VSC基本组成和工作原理
组成:车辆稳定性控制系统(VSC)主要由ABS(防抱死控制系统),TCS(驱动力控制系统),YSC (横摆力矩控制)三个子系统组成。
前二在制动和加速时工作,直接来控制车轮的纵向滑动率,提高车辆的制动或驱动性能,同时间接控制车辆的侧向稳定性,YSC在车辆行驶的任何时刻都起作用,直接控制车辆的侧向稳定性(由车轮侧偏角和车辆横摆角速度表示)
作用:用来控制车辆的横摆力矩,限制车轮侧偏角在一定范围内,并在紧急情况下对车辆的行驶状态进行主动干预,防止车辆在高速行驶转弯或者制动过程中失控。
工作原理:由于车辆的行驶状态主要由行驶车速、侧向速度和横摆角速度反映,因而,VSC 系统的ECU能根据转向盘转交和制动主缸压力等信号判断驾驶员的驾驶意图。
计算出理想的车辆运行状态参数值,通过与各传感器测得的实际车辆状态信号值的比较,根据逻辑控制算法计算出期望的横摆力矩,然后通过控制液压调节系统,对各车轮施加制动力,以实现所需要的车辆横摆力矩。
同时,还可以根据需要与发动机管理系统进行通信,改变驱动轮的驱动力以实现车辆运行状态调节。
22.NVH
即:噪声(noise)、振动(vibration)、声振粗糙度(harshness)来描述汽车乘坐舒适性。
23.1/4主动悬架动力学方程,并简化为状态方程。