高升本课程复习资料-车辆工程高本-大学物理练习一答案
高升本课程复习资料-车辆工程高本-大学物理练习二(2)

练习二 电磁学(静电学、稳恒磁场、电磁感应)一、选择题:1.真空中有两个点电荷M 、N ,相互间作用力为F ,当另一点电荷Q 移近这两个点电荷时,M 、N 两点电荷之间的作用力F(A)大小不变,方向改变. (B)大小改变,方向不变.(C)大小和方向都不变. (D)大小和方向都改变.2.在一个带有正电荷的均匀带电球面外,放置一个电偶极子,其电矩p 的方向如图所示,当释放后,该电偶极子的运动主要是: (A)沿逆时针方向旋转,直至电矩p 沿径向指向球面而停止. (B)沿顺时针方向旋转,直至电矩p 沿径向朝外而停止. (C)沿顺时针方向旋转至电矩p 沿径向朝外,同时沿电力线远离球面移动. (D)沿顺时针方向旋转至电矩p 沿径向朝外,同时逆电力线方向向着球面移动.3.当一个带电导体达到静电平衡时:(A)表面上电荷密度较大处电势较高.(B)表面曲率较大处电势较高.(C)导体内部的电势比导体表面的电势高.(D)导体内任一点与其表面上任一点的电势差等于零.4.一个平行板电容器,充电后与电源断开,当用绝缘手柄将电容器两极板间距离拉大,则两极板间的电势差12U 、电场强度的大小E 、电场能量W 将发生如下变化:(A)12U 减小,E 减小,W 减小. (B)12U 增大,E 增大,W 增大.(C)12U 增大,E 不变,W 增大. (D)12U 减小,E 不变,W 不变.5.在磁感应强度为B 的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n 与B 的夹角为α,则通过半球面S 的磁通量为(A) B r 2π (B) B r 2π2 (C) B r 2π-αsin (D) B r 2π-αcos6.如图,边长为a 的正方形的四个角上固定有四个电量均为q 的点电荷。
此正方形以角速度ω绕AC 轴旋转时,在中心O 点产生的磁感应强度大小为1B ;此正方形同样以角速度ω绕过O 点垂直于正方形平面的轴旋转时,在O 点产生的磁感应强度的大小为2B ,则1B 与2B 间的关系为(A) 1B =2B (B) 1B =22B (C) 1B =212B (D) 1B =412B7.图为四个带电粒子在O 点沿相同方向垂直于磁力线射入均匀磁场后的偏转轨迹的照片.磁场方向垂直纸面向外,轨迹所对应的四个粒子的质量相等,电量大小也相等,则其中动能最大的带负电的粒子的轨迹是(A)Oa (B)Ob (C)Oc (D)Od8.一根长度为L 的铜棒,在均匀磁场B 中以匀角速度ω旋转着,B 的方向垂直铜棒转动的平面,如图.设0=t 时,铜棒与Ob 成θ角,则在任一时刻t这根铜棒两端之间的感应电动势是(A))cos(2θωω+t B L (B)tB L ωωcos 221 (C))cos(22θωω+t B L (D)B L 2ω (E)B L 21ω二、填空题:1.如图所示,真空中两个正点电荷,带电量都为Q ,相距R 2.若以其中点电荷所在处O 点为中心,以R 为半径作高斯球面S ,则通过该球面的电场强度通量=Φ______________;若以0r 表示高斯面外法线方向的单位矢量,则高斯面上a 、b 两点的电场强度分别为_______________________.2.真空中一半径为R 的均匀带电球面,总电量为Q (Q >0),今在球面上挖去一很小的面积S ∆(连同电荷),且假设不影响原来的电荷分布,则挖去S ∆后球心处电场强度的大小=E ______________,其方向为_______________.3.在一个带负电荷的金属球附近,放一个带正电的点电荷0q ,测得0q 所受的力为F ,则F /0q 的值一定_______________于不放0q 时该点原有的场强大小.(填大、等、小)4.如图所示,两块很大的导体平板平行放置,面积都是S ,有一定厚度,带电量分别为1Q 和2Q .如不计边缘效应,则A 、B 、C 、D 四个表面上的电荷面密度分别为________________, __________________, __________________,____________________.5.用力F 把电容器中的电介质(介电常数为r ε)板拉出,在图(a)和图(b)的两种情况下,电容器中储存的静电能量之比b a W W 为_________。
车辆工程考试科目一答案

车辆工程考试科目一答案一、单项选择题(每题2分,共20分)1. 车辆工程中,以下哪项不是汽车底盘的主要组成部分?A. 发动机B. 变速器C. 转向系统D. 车身答案:A2. 汽车的制动系统主要作用是什么?A. 提高车速B. 降低车速或停车C. 增加车辆稳定性D. 改善驾驶舒适性答案:B3. 车辆工程中,汽车的动力传输系统不包括以下哪一项?A. 发动机B. 离合器C. 变速器D. 轮胎答案:D4. 车辆工程中,汽车的悬挂系统主要功能是什么?A. 提供动力B. 支撑车身C. 减少震动D. 增加车辆重量5. 以下哪项不是汽车发动机的主要组成部分?A. 曲轴B. 连杆C. 气缸D. 变速器答案:D6. 车辆工程中,汽车的转向系统不包括以下哪一项?A. 转向盘B. 转向器C. 转向节D. 发动机答案:D7. 汽车的燃油供给系统主要作用是什么?A. 为发动机提供润滑B. 为发动机提供冷却C. 为发动机提供燃油D. 为发动机提供电力答案:C8. 车辆工程中,汽车的排放控制系统不包括以下哪一项?A. 催化转化器B. 氧传感器C. 燃油泵D. 排气管答案:C9. 车辆工程中,汽车的电气系统不包括以下哪一项?B. 发电机C. 变速器D. 起动机答案:C10. 汽车的轮胎主要作用是什么?A. 增加车辆重量B. 减少车辆震动C. 提供动力D. 支撑车身并提供抓地力答案:D二、多项选择题(每题3分,共15分)1. 车辆工程中,汽车底盘的主要组成部分包括以下哪些?A. 发动机B. 变速器C. 转向系统D. 车身答案:BCD2. 车辆工程中,汽车的动力传输系统包括以下哪些?A. 发动机B. 离合器C. 变速器D. 轮胎答案:ABC3. 车辆工程中,汽车的悬挂系统主要功能包括以下哪些?A. 提供动力B. 支撑车身C. 减少震动D. 增加车辆重量答案:BC4. 车辆工程中,汽车的制动系统包括以下哪些?A. 制动盘B. 制动鼓C. 制动液D. 变速器答案:ABC5. 车辆工程中,汽车的电气系统包括以下哪些?A. 电池B. 发电机C. 变速器D. 起动机答案:ABD三、判断题(每题1分,共10分)1. 汽车的转向系统是车辆行驶中必不可少的部分。
大学物理第一学期练习册答案概要

练习一 质点运动学一、选择题1.【 A 】2. 【 D 】3. 【 D 】4.【 C 】 二、填空题1. (1) 物体的速度与时间的函数关系为cos dyv A t dt ωω==; (2) 物体的速度与坐标的函数关系为222()vy A ω+=.2. 走过的路程是m 34π; 这段时间平均速度大小为:s /m 40033π;方向是与X 正方向夹角3πα=3.在第3秒至第6秒间速度与加速度同方向。
4.则其速度与时间的关系v=32031Ct dt Ct v v t==-⎰, 运动方程为x=400121Ct t v x x +=-. 三、计算题1. 已知一质点的运动方程为t ,r ,j )t 2(i t 2r 2ϖϖϖϖ-+=分别以m 和s 为单位,求:(1) 质点的轨迹方程,并作图;(2) t=0s 和t=2s 时刻的位置矢量;(3) t=0s 到t=2s 质点的位移?v ,?r ==ϖϖ∆(1)轨迹方程:08y 4x 2=-+; (2) j 2r 0ϖϖ=,j 2i 4r 2ϖϖϖ-=(3) j 4i 4r r r 02ϖϖϖϖϖ-=-=∆,j 2i 2tr v ϖϖϖϖ-==∆∆2. 湖中一小船,岸边有人用绳子跨过高出水面h 的滑轮拉船,如图5所示。
如用速度V 0收绳,计算船行至离岸边x 处时的速度和加速度。
选取如图5所示的坐标,任一时刻小船满足:222h x l +=,两边对时间微分dt dx x dt dl l=,dt dl V 0-=,dtdxV = 022V xh x V +-=方向沿着X 轴的负方向。
5图方程两边对时间微分:xa V V 220+=,xV V a 220-=3220xh V a -=,方向沿着X 轴的负方向。
3. 质点沿X 轴运动,其加速度和位置的关系是)SI (x 62a 2+=。
如质点在x=0处的速度为1s m 10-⋅,求质点在任意坐标x 处的速度。
由速度和加速度的关系式:dt dv a =,dxdv v dt dx dx dv a == vdv adx =,vdv dx )x 62(2=+,两边积分,并利用初始条件:0x =,10s m 10v -⋅=vdv dx )x 62(v102x⎰⎰=+,得到质点在任意坐标x 处的速度:25x x 2v 3++=练习二 曲线运动和相对运动一、 选择题1. 【 B 】2.【 D 】3. 【 C 】4.【 B 】 二、填空题其速度j t 5cos 50i t 5sin 50v ϖϖϖ+-=;其切向加速度0a =τ;该质点运动轨迹是100y x 22=+。
课程:大学物理(专升本)试题和答案

课程:大学物理(专升本)--试题和答案1. (单选题) 一个平面简谐波在弹性媒质中传播,媒质质元从最大位置回到平衡位置的过程中( )(本题3.5分)A、它的势能转化成动能;B、它的动能转化成势能;C、它从相邻的媒质质元获得能量,其能量逐渐增加;D、把自己的能量传给相邻的媒质质元,其能量逐渐减小。
学生答案:未答题标准答案:C解析:得分:2. (单选题) 一个平行板电容器,充电后与电源断开,当用绝缘手柄将电容器两极板间距离拉大,则两极板间的电势差、电场强度的大小E、电场能量W将发生如下变化: ( )(本题3.5分)A、减小,E减小,W减小。
B、增大,E增大,W增大。
C、增大,E不变,W增大。
D、减小,E不变,W不变。
学生答案:未答题标准答案:C解析:得分:3. (单选题) 如图所示,任一闭合曲面S内有一点电荷q,O为S面上任一点,若将q由闭合曲面内的P点移到T点,且OP=OT,那么 ( )(本题3.5分)A、穿过S面的电通量改变,O点的场强大小不变;B、穿过S面的电通量改变,O点的场强大小改变;C、穿过S面的电通量不变,O点的场强大小改变;D、穿过S面的电通量不变,O点的场强大小不变。
学生答案:未答题标准答案:D解析:得分:4. (单选题)将形状完全相同的铜环和木环静止放置,并使通过两环面的磁通量随时间的变化率相等,则不计自感时,()(本题3.5分)A、铜环中有感应电动势,木环中无感应电动势;B、铜环中感应电动势大,木环中感应电动势小;C、铜环中感应电动势小,木环中感应电动势大;D、两环中感应电动势相等。
学生答案:未答题标准答案:D解析:得分:5. (单选题) 某种介子静止时的寿命为,质量为。
如它在实验室中的速度为,则它的一生中能飞行多远(以m为单位)? ( )(本题3.5分)A、;B、2;C、;D、;E、学生答案:未答题标准答案:D解析:得分:6. (单选题) 一质量为0.02kg的弹簧振子, 振幅为0.12m, 周期为2s,此振动系统的机械能为( )(本题3.5分)A、0.00014JB、0.0014JC、0.014JD、0.14J学生答案:未答题标准答案:C解析:得分:7. (单选题) 一个质点作圆周运动时,则有( )(本题3.5分)A、切向加速度一定改变,法向加速度也改变。
(完整word)大学物理练习册习题及答案1-1

习题及参考答案第一章 运动学x1—1一质点在xy 平面上运动,已知质点的位置矢量为j bt i at r 22+=(其中a 、b 为常量),则该质点作 (A)匀速直线运动 (B )变速直线运动(C)抛物线运动 (D )圆周运动x1—2一质点在xy 平面内运动,其运动方程为)(5sin 105cos 10SI j t i t r +=,则时刻t 质点切向加速度的大小为 (A) (A) 250(m/s 2) (B) )j t 5sin i t 5(cos 250-+(m/s 2) (C ))(m/s j t 5cos 50i t 5sin 502 +- (D )0x1-3质点作曲线运动,r 表示位置矢量,S 表示路程,u 表示速度的大小, a 表示加速度的大小,a t 表示切向加速度的大小,下列表达式中,正确的是 (A)dt ds =υ (B )dt d a υ= (C ) dt dr =υ (D) dt d a t υ =x1—4一运动质点在某瞬时位于矢径),(y x r 的端点处,其速度大小为(A)dt dr (B)dt r d (C)dt r d (D )22)()(dt dy dt dx +x1—5质点作半径为R 的变速圆周运动时的加速度的大小为(设任一时刻质点的速率为u )(A )dt d a υ= (B)R a 2υ= (C )R dt d a 2υυ+= (D)222)()(dt d R a υυ+=x1—6于沿曲线运动的物体,以下几种说法中哪一种是正确的?(A) (A) 切向加速度必不为零。
(B)法向加速度必不为零(除拐点外)。
(C)由于速度沿切线方向,法向分速度为零,因此法向加速度必为零。
(D )若物体作匀速率运动,则其总加速度必为零。
x1—7一质点的运动方程为x =6t-t 2(SI ),则在t 由0至4s 的时间内质点走过的路程为(A) (A ) 10m (B)8 m (C )9 m (D)6 mx1-8某物体的运动规律为t k dt d 2υυ-=,式中的k 为大于零的常数。
车辆工程培训考试复习题及答案汇总-更新版

习题答案第一讲一、填空1、当今世界上,铁路速度的分档一般定为:(时速100-120km)为常速;(时速120-160km)为中速;(时速160-200km)为准高速;(时速200-400km)为高速;(时速400km以上)为特高速;2、1964年10月1日,世界上第一条高速铁路(日本的东海道新干线)正式投入运营,时速达(210km)。
3、法国第一条高速铁路(TGV东南线)于1981年建成,时速达(270km)。
4、高速铁路技术在世界上已经成熟,(高速化)已经成为当今世界铁路发展的共同趋势。
二、判断(正确的划√,错误的划×)1、时速在160km/h—200 km/h称为高速。
(×)2、时速在120km/h—160 km/h称为中速。
(√)3、世界上第一条告诉铁路于1964年10月1日在法国诞生。
(×)4、列车在主要的区间以180km/h以上速度运行的干线铁道,称为高速铁路。
(×)5、德国ICE模式就是全部修建新线,旅客列车专用。
(×)三、简答1、简述铁路发展经历过哪两个时代?见教材第2页2、什么是高速铁路?见课件3、建设高速铁路有哪几种模式?见教材第6页4、简述世界高速铁路的发展概况。
见教材第2-6页5、和其他运输方式相比,高速铁路具有哪些优势?见教材第6页四、论述高速铁路在中国修建的可行性。
参考教材11-19页五、计算某客运专线,列车追踪间隔5min,天窗时间为5h,如果每列车旅客定员1000人,区间能力利用系数为0.8,试求该线年输送能力(单向)。
解:每天可开行的旅客列车数为(1440-5*60)*0.8/5=182列如果每列车定员1000人,则该线单向输送能力为:1000*182*365=6643万人第二讲一、填空1、铁路线路由(路基)、(桥隧建筑物)、(轨道)组成。
2、铁路线路平面是由(直线)和(曲线)组成,曲线是由(圆曲线)和(缓和曲线)组成的。
大学物理学上册习题解答完整版

大学物理学上册习题解答HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】大学物理学习题答案习题一答案习题一1.1 简要回答下列问题:(1)位移和路程有何区别在什么情况下二者的量值相等在什么情况下二者的量值不相等(2) 平均速度和平均速率有何区别在什么情况下二者的量值相等(3) 瞬时速度和平均速度的关系和区别是什么瞬时速率和平均速率的关系和区别又是什么(4)质点的位矢方向不变,它是否一定做直线运动质点做直线运动,其位矢的方向是否一定保持不变(5) (6)r ∆和r ∆有区别吗?v ∆和v ∆有区别吗?0dv dt =和0d v dt=各代表什么运动? (7)设质点的运动方程为:()x x t =,()y y t =,在计算质点的速度和加速度时,有人先求出r =dr v dt= 及 22d r a dt =而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v = 及 a = 你认为两种方法哪一种正确两者区别何在(7) 如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性的?(8)“物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此其法向加速度也一定为零.”这种说法正确吗?(9)(9) 任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么?(10) 质点沿圆周运动,且速率随时间均匀增大,n a 、t a 、a 三者的大小是否随时间改变?(11) 一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中如果石子抛出后,火车以恒定加速度前进,结果又如何1.2 一质点沿x 轴运动,坐标与时间的变化关系为224t t x -=,式中t x ,分别以m 、s 为单位,试计算:(1)在最初s 2内的位移、平均速度和s 2末的瞬时速度;(2)s 1末到s 3末的平均加速度;(3)s 3末的瞬时加速度。
大学物理习题集加答案解析

大学物理习题集(一)大学物理教研室2010年3月目录部分物理常量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄2练习一库伦定律电场强度┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄3练习二电场强度(续)电通量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄4练习三高斯定理┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄5练习四静电场的环路定理电势┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6练习五场强与电势的关系静电场中的导体┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄8练习六静电场中的导体(续)静电场中的电介质┄┄┄┄┄┄┄┄┄┄┄┄9练习七静电场中的电介质(续)电容静电场的能量┄┄┄┄┄┄┄┄┄┄10练习八恒定电流┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄11练习九磁感应强度洛伦兹力┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄13练习十霍尔效应安培力┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄14练习十一毕奥—萨伐尔定律┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄16练习十二毕奥—萨伐尔定律(续)安培环路定律┄┄┄┄┄┄┄┄┄┄┄┄17练习十三安培环路定律(续)变化电场激发的磁场┄┄┄┄┄┄┄┄┄┄┄18练习十四静磁场中的磁介质┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄20练习十五电磁感应定律动生电动势┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄21练习十六感生电动势互感┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄23练习十七互感(续)自感磁场的能量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄24练习十八麦克斯韦方程组┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄26练习十九狭义相对论的基本原理及其时空观┄┄┄┄┄┄┄┄┄┄┄┄┄27练习二十相对论力学基础┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄28练习二十一热辐射┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄29练习二十二光电效应康普顿效应热辐射┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄30练习二十三德布罗意波不确定关系┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄32练习二十四薛定格方程氢原子┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄33部分物理常量万有引力常量G=×1011N·m2·kg2重力加速度g=s2阿伏伽德罗常量N A=×1023mol1摩尔气体常量R=·mol1·K1玻耳兹曼常量k=×1023J·K1斯特藩玻尔兹曼常量= ×10-8 W·m2·K4标准大气压1atm=×105Pa真空中光速c=×108m/s基本电荷e=×1019C电子静质量m e=×1031kg质子静质量m n=×1027kg中子静质量m p=×1027kg真空介电常量0= ×1012 F/m真空磁导率0=4×107H/m=×106H/m普朗克常量h = ×1034 J·s维恩常量b=×103m·K说明:字母为黑体者表示矢量练习一库伦定律电场强度一.选择题1.关于试验电荷以下说法正确的是(A) 试验电荷是电量极小的正电荷;(B) 试验电荷是体积极小的正电荷;(C) 试验电荷是体积和电量都极小的正电荷;(D) 试验电荷是电量足够小,以至于它不影响产生原电场的电荷分布,从而不影响原电场;同时是体积足够小,以至于它所在的位置真正代表一点的正电荷(这里的足够小都是相对问题而言的).2.关于点电荷电场强度的计算公式E = q r / (4 0 r3),以下说法正确的是(A) r→0时, E→∞;(B) r→0时,q不能作为点电荷,公式不适用;(C) r→0时,q仍是点电荷,但公式无意义;(D) r→0时,q已成为球形电荷,应用球对称电荷分布来计算电场.3.关于电偶极子的概念,其说法正确的是(A) 其电荷之间的距离远小于问题所涉及的距离的两个等量异号的点电荷系统;(B) 一个正点电荷和一个负点电荷组成的系统;(C) 两个等量异号电荷组成的系统;(D) 一个正电荷和一个负电荷组成的系统.(E) 两个等量异号的点电荷组成的系统4.试验电荷q0在电场中受力为f , 其电场强度的大小为f / q0 , 以下说法正确的是(A) E正比于f;(B) E反比于q0;(C) E正比于f 且反比于q0;(D) 电场强度E是由产生电场的电荷所决定的,不以试验电荷q0及其受力的大小决定.5.在没有其它电荷存在的情况下,一个点电荷q1受另一点电荷q2的作用力为f12,当放入第三个电荷Q后,以下说法正确的是(A) f12的大小不变,但方向改变, q1所受的总电场力不变;(B) f12的大小改变了,但方向没变, q1受的总电场力不变;(C) f12的大小和方向都不会改变, 但q1受的总电场力发生了变化;(D) f12的大小、方向均发生改变, q1受的总电场力也发生了变化.二.填空题1.如图所示,一电荷线密度为的无限长带电直线垂直通过图面上的A点,一电荷为Q的均匀球体,其球心为O点,ΔAOP是边长为a的等边三角形,为了使P点处场强方向垂直于OP, 则和Q的数量关系式为,且与Q为号电荷(填同号或异号) .2.在一个正电荷激发的电场中的某点A,放入一个正的点电荷q ,测得它所受力的大小为f1;将其撤走,改放一个等量的点电荷q,测得电场力的大小为f2 ,则A点电场强度E的大小满足的关系式为.3.一半径为R的带有一缺口的细圆环, 缺口宽度为d (d<<R)环上均匀带正电, 总电量为q ,如图所示, 则圆心O处的场强大小E = ,场强方向为.三.计算题1.一“无限长”均匀带电的半圆柱面,半径为R, 设半圆柱面沿轴线单位长度上的电量为,如图所示.试求轴线上一点的电场强度.2.一带电细线弯成半径为R的半圆形, 电荷线密度为= 0 sin, 式中0为一常数, 为半径R与X 轴所成的夹角, 如图所示,试求环心O处的电场强度.练习二电场强度(续)电通量一.选择题1. 以下说法错误的是(A) 电荷电量大,受的电场力可能小;(B)电荷电量小,受的电场力可能大;(C)电场为零的点,任何点电荷在此受的电场力为零;(D)电荷在某点受的电场力与该点电场方向一致.2.在点电荷激发的电场中,如以点电荷为心作一个球面,关于球面上的电场,以下说法正确的是(A) 球面上的电场强度矢量E处处不等;(B) 球面上的电场强度矢量E处处相等,故球面上的电场是匀强电场;(C) 球面上的电场强度矢量E的方向一定指向球心;(D) 球面上的电场强度矢量E的方向一定沿半径垂直球面向外.3.关于电场线,以下说法正确的是(A) 电场线上各点的电场强度大小相等;(B) 电场线是一条曲线,曲线上的每一点的切线方向都与该点的电场强度方向平行;(A) 开始时处于静止的电荷在电场力的作用下运动的轨迹必与一条电场线重合;(D) 在无电荷的电场空间,电场线可以相交.4.如图,一半球面的底面园所在的平面与均强电场E的夹角为30°,球面的半径为R,球面的法线向外,则通过此半球面的电通量为(A)R2E/2 .(B) R2E/2.(C) R2E.(D) R2E.5.真空中有AB两板,相距为d ,板面积为S(S>>d2),分别带+q和q,在忽略边缘效应的情况下,两板间的相互作用力的大小为(A)q2/(40d2 ) .(B) q2/(0 S) .(C) 2q2/(0 S).(D) q2/(20 S) .二.填空题1.真空中两条平行的无限长的均匀带电直线,电荷线密度分别为+ 和,点P1和P2与两带电线共面,其位置如图所示,取向右为坐标X正向,则= ,= .2.为求半径为R带电量为Q的均匀带电园盘中心轴线上P点的电场强度, 可将园盘分成无数个同心的细园环, 园环宽度为d r,半径为r,此面元的面积d S= ,带电量为d q = ,此细园环在中心轴线上距圆心x的一点产生的电场强度E = .3.如图所示,均匀电场E中有一袋形曲面,袋口边缘线在一平面S内,边缘线所围面积为S0,袋形曲面的面积为S ,法线向外,电场与S面的夹角为,则通过袋形曲面的电通量为.三.计算题1.一带电细棒弯曲线半径为R的半圆形,带电均匀,总电量为Q,求圆心处的电场强度E.2.真空中有一半径为R的圆平面,在通过圆心O与平面垂直的轴线上一点P处,有一电量为q 的点电荷,O、P间距离为h ,试求通过该圆平面的电通量.练习三高斯定理一.选择题1.如果对某一闭合曲面的电通量为=0,以下说法正确的是(A) S面上的E必定为零;(B) S面内的电荷必定为零;(C) 空间电荷的代数和为零;(D) S面内电荷的代数和为零.2.如果对某一闭合曲面的电通量0,以下说法正确的是(A) S面上所有点的E必定不为零;(B) S面上有些点的E可能为零;(C) 空间电荷的代数和一定不为零;(D) 空间所有地方的电场强度一定不为零.3.关于高斯定理的理解有下面几种说法,其中正确的是(A) 如高斯面上E处处为零,则该面内必无电荷;(B) 如高斯面内无电荷,则高斯面上E处处为零;(C) 如高斯面上E处处不为零,则高斯面内必有电荷;(D) 如高斯面内有净电荷,则通过高斯面的电通量必不为零;(E) 高斯定理仅适用于具有高度对称的电场.4.图示为一轴对称性静电场的E~r关系曲线,请指出该电场是由哪种带电体产生的(E表示电场强度的大小, r表示离对称轴的距离)(A) “无限长”均匀带电直线;(B) 半径为R的“无限长”均匀带电圆柱体;(C) 半径为R的“无限长”均匀带电圆柱面;(D) 半径为R的有限长均匀带电圆柱面.5.如图所示,一个带电量为q 的点电荷位于立方体的A角上,则通过侧面a b c d 的电场强度通量等于:(A) q / 240.(B) q / 120.(C) q / 6 0 .(D) q / 480.二.填空题1.两块“无限大”的均匀带电平行平板,其电荷面密度分别为( 0)及2 ,如图所示,试写出各区域的电场强度EⅠ区E的大小,方向;Ⅱ区E的大小,方向;Ⅲ区E的大小,方向.2.如图所示,真空中两个正点电荷,带电量都为Q,相距2R,若以其中一点电荷所在处O点为中心,以R为半径作高斯球面S,则通过该球面的电场强度通量= ;若以r0表示高斯面外法线方向的单位矢量,则高斯面上a、b 两点的电场强度的矢量式分别为,.3.点电荷q1、q2、q3和q4在真空中的分布如图所示,图中S为闭合曲面,则通过该闭合曲面的电通量= ,式中的E是哪些点电荷在闭合曲面上任一点产生的场强的矢量和答:是.三.计算题1.厚度为d的无限大均匀带电平板,带电体密度为,试用高斯定理求带电平板内外的电场强度.2.半径为R的一球体内均匀分布着电荷体密度为的正电荷,若保持电荷分布不变,在该球体内挖去半径r的一个小球体,球心为O′ , 两球心间距离= d, 如图所示, 求:(1) 在球形空腔内,球心O处的电场强度E0;(2) 在球体内P点处的电场强度E.设O、O、P三点在同一直径上,且= d .练习四静电场的环路定理电势一.选择题1.真空中某静电场区域的电力线是疏密均匀方向相同的平行直线,则在该区域内电场强度E和电位U是(A) 都是常量.(B) 都不是常量.(C) E是常量, U不是常量.(D) U是常量, E不是常量.2.电量Q均匀分布在半径为R的球面上,坐标原点位于球心处,现从球面与X轴交点处挖去面元S, 并把它移至无穷远处(如图,若选无穷远为零电势参考点,且将S移走后球面上的电荷分布不变,则此球心O点的场强E0与电位U0分别为(注:i为单位矢量)(A)-i QS/[(4 R2 )20 ];[Q/(40R)][1-S/(4R2)].(B) i QS/[(4 R2 )20 ];[Q/(40R)][1-S/(4R2)].(C) i QS/[(4 R2 )20 ];[Q/(40R)][1-S/(4R2)].(D) -i QS/[(4 R2 )20 ];[Q/(40R)][1-S/(4R2)].3.以下说法中正确的是(A) 沿着电力线移动负电荷,负电荷的电势能是增加的;(B) 场强弱的地方电位一定低,电位高的地方场强一定强;(C) 等势面上各点的场强大小一定相等;(D) 初速度为零的点电荷, 仅在电场力作用下,总是从高电位处向低电位运动;(E) 场强处处相同的电场中,各点的电位也处处相同.4.如图,在点电荷+q的电场中,若取图中P点处为电势零点,则M点的电势为(A) .(B) .(C) .(D) .5.一电量为q的点电荷位于圆心O处,A、B、C、D为同一圆周上的四点,如图所示,现将一试验电荷从A点分别移动到B、C、D各点,则(A) 从A到B,电场力作功最大.(B) 从A到各点,电场力作功相等.(C) 从A到D,电场力作功最大.(D) 从A到C,电场力作功最大.二.填空题1.电量分别为q1 , q2 , q3的三个点电荷分别位于同一圆周的三个点上,如图所示,设无穷远处为电势零点,圆半径为R, 则b点处的电势U = .2.如图,在场强为E的均匀电场中,A、B两点距离为d, AB连线方向与E方向一致, 从A点经任意路径到B点的场强线积分= .3.如图所示,BCD是以O点为圆心, 以R为半径的半圆弧, 在A点有一电量为+q的点电荷, O点有一电量为–q的点电荷, 线段= R, 现将一单位正电荷从B点沿半圆弧轨道BCD移到D点,则电场力所作的功为.三.计算题1.电量q均匀分布在长为2 l的细杆上, 求在杆外延长线上与杆端距离为a的P点的电势(设无穷远处为电势零点) .2.一均匀带电的球层, 其电荷体密度为, 球层内表面半径为R1 , 外表面半径为R2 ,设无穷远处为电势零点, 求空腔内任一点的电势.练习五场强与电势的关系静电场中的导体一.选择题1.以下说法中正确的是(A) 电场强度相等的地方电势一定相等;(B) 电势梯度绝对值大的地方场强的绝对值也一定大;(C) 带正电的导体上电势一定为正;(D) 电势为零的导体一定不带电2.以下说法中正确的是(A) 场强大的地方电位一定高;(B) 带负电的物体电位一定为负;(C) 场强相等处电势梯度不一定相等;(D) 场强为零处电位不一定为零.3. 如图,真空中有一点电荷Q及空心金属球壳A, A处于静电平衡, 球内有一点M, 球壳中有一点N, 以下说法正确的是(A) E M≠0, E N=0 ,Q在M处产生电场,而在N处不产生电场;(B) E M =0, E N≠0 ,Q在M处不产生电场,而在N处产生电场;(C) E M =E N =0 ,Q在M、N处都不产生电场;(D) E M≠0,E N≠0,Q在M、N处都产生电场;(E) E M =E N =0 ,Q在M、N处都产生电场.4.如图,原先不带电的金属球壳的球心处放一点电荷q1, 球外放一点电荷q2,设q2、金属内表面的电荷、外表面的电荷对q1的作用力分别为F1、F2、F3 , q1受的总电场力为F, 则(A) F1=F2=F3=F=0.(B) F1= q1 q2 / ( 4 0d2 ) ,F2 = 0 , F3 = 0, F=F1 .(C) F1= q1 q2 / ( 4 0d2 ) , F2 = 0,F3 = q1 q2 / ( 4 0d2 ) (即与F1反向), F=0 .(D) F1= q1 q2 / ( 4 0d2 ) ,F2 与F3的合力与F1等值反向,F=0 .(E) F1= q1 q2 / ( 4 0d2 ) , F2= q1 q2 / ( 4 0d2 ) (即与F1反向), F3 = 0, F=0 .5.如图,一导体球壳A,同心地罩在一接地导体B上,今给A球带负电Q, 则B球(A)带正电.(B) 带负电.(C) 不带电.(D) 上面带正电,下面带负电.二.填空题1.一偶极矩为P的电偶极子放在电场强度为E的均匀外电场中, P与E的夹角为角,在此电偶极子绕过其中心且垂直于P与E组成平面的轴沿角增加的方向转过180°的过程中,电场力作功为A = .2.若静电场的某个立体区域电势等于恒量, 则该区域的电场强度分布是;若电势随空间坐标作线性变化, 则该区域的场强分布是.3.一“无限长”均匀带电直线,电荷线密度为,在它的电场作用下,一质量为m,带电量为q 的质点以直线为轴线作匀速圆周运动,该质点的速率v = .三.计算题1.如图所示,三个“无限长”的同轴导体圆柱面A、B和C,半径分别为R A、R B、R C,圆柱面B上带电荷,A和C 都接地,求B的内表面上电荷线密度1,和外表面上电荷线密度之比值1/2.22.已知某静电场的电势函数U=-+ ln x(SI) ,求点(4,3,0)处的电场强度各分量值.练习六静电场中的导体(续)静电场中的电介质一.选择题1.一孤立的带正电的导体球壳有一小孔,一直导线AB穿过小孔与球壳内壁的B点接触,且与外壁绝缘,如图、D分别在导体球壳的内外表面上,A、C、D三点处的面电荷密度分别为A、C、D , 电势分别为U A、U C、U D ,其附近的电场强度分别为E A、E C、E D , 则:(A) A>D ,C = 0 , E A> E D , E C = 0 , U A = U C = U D .(B) A>D ,C = 0 , E A> E D , E C = 0 , U A > U C = U D .(C) A=C ,D≠0 , E A= E C=0, E D ≠0 , U A = U C =0 , U D≠0.(D) D>0 ,C <0 ,A<0 , E D沿法线向外, E C沿法线指向C ,E A平行AB指向外,U B >U C > U A .2.如图,一接地导体球外有一点电荷Q,Q距球心为2R,则导体球上的感应电荷为(A)0.(B) Q.(C) +Q/2.(D) –Q/2.3.导体A接地方式如图,导体B带电为+Q,则导体A(A) 带正电.(B) 带负电.(C) 不带电.(D) 左边带正电,右边带负电.4.半径不等的两金属球A、B ,R A = 2R B ,A球带正电Q ,B球带负电2Q,今用导线将两球联接起来,则(A) 两球各自带电量不变.(B) 两球的带电量相等.(C) 两球的电位相等.(D) A球电位比B球高.5. 如图,真空中有一点电荷q , 旁边有一半径为R的球形带电导体,q距球心为d ( d > R ) 球体旁附近有一点P ,P在q与球心的连线上,P点附近导体的面电荷密度为.以下关于P点电场强度大小的答案中,正确的是(A) / (20 ) + q /[40 ( d-R )2 ];(B) / (20 )-q /[40 ( d-R )2 ];(C) / 0 + q /[40 ( d-R )2 ];(D)/ 0-q /[40 ( d-R )2 ];(E)/ 0;(F) 以上答案全不对.二.填空题1.如图,一平行板电容器, 极板面积为S,,相距为d,若B板接地,,且保持A板的电势U A=U0不变,,如图, 把一块面积相同的带电量为Q的导体薄板C平行地插入两板中间, 则导体薄板C的电势U C = .2.地球表面附近的电场强度约为100N/C ,方向垂直地面向下,假设地球上的电荷都均匀分布在地表面上,则地面的电荷面密度= , 地面电荷是电荷(填正或负).3.如图所示,两块很大的导体平板平行放置,面积都是S,有一定厚度,带电量分别为Q1和Q2,如不计边缘效应,则A、B、C、D四个表面上的电荷面密度分别为、、、.三.计算题1.半径分别为r1 = cm 和r2 = cm 的两个球形导体, 各带电量q = ×108C, 两球心相距很远, 若用细导线将两球连接起来, 并设无限远处为电势零点,求: (1)两球分别带有的电量;(2)各球的电势.2.如图,长为2l的均匀带电直线,电荷线密度为,在其下方有一导体球,球心在直线的中垂线上,距直线为d,d大于导体球的半径R,(1)用电势叠加原理求导体球的电势;(2)把导体球接地后再断开,求导体球上的感应电量.练习七静电场中的电介质(续)电容静电场的能量一.选择题1.极化强度P是量度介质极化程度的物理量, 有一关系式为P = 0(r1)E , 电位移矢量公式为D = 0E + P ,则(A) 二公式适用于任何介质.(B) 二公式只适用于各向同性电介质.(C) 二公式只适用于各向同性且均匀的电介质.(D) 前者适用于各向同性电介质, 后者适用于任何电介质.2.电极化强度P(A) 只与外电场有关.(B) 只与极化电荷产生的电场有关.(C) 与外场和极化电荷产生的电场都有关.(D) 只与介质本身的性质有关系,与电场无关.3.真空中有一半径为R, 带电量为Q的导体球, 测得距中心O为r 处的A点场强为E A =Q r /(40r3) ,现以A为中心,再放上一个半径为,相对电容率为r的介质球,如图所示,此时下列各公式中正确的是(A) A点的电场强度E A=E A / r;(B) ;(C) =Q/0;(D) 导体球面上的电荷面密度= Q /( 4R2 ).4.平行板电容器充电后与电源断开,然后在两极板间插入一导体平板,则电容C, 极板间电压V,极板空间(不含插入的导体板)电场强度E以及电场的能量W将(↑表示增大,↓表示减小)(A) C↓,U↑,W↑,E↑.(B) C↑,U↓,W↓,E不变.(C) C↑,U↑,W↑,E↑.(D) C↓,U↓,W↓,E↓.5.如果某带电体电荷分布的体电荷密度增大为原来的2倍,则电场的能量变为原来的(A) 2倍.(B) 1/2倍.(C) 1/4倍.(D) 4倍.二.填空题1.一平行板电容器,充电后断开电源, 然后使两极板间充满相对介电常数为r的各向同性均匀电介质, 此时两极板间的电场强度为原来的倍, 电场能量是原来的倍.2.在相对介电常数r= 4 的各向同性均匀电介质中,与电能密度w e=2×106J/cm3相应的电场强度大小E = .3.一平行板电容器两极板间电压为U,其间充满相对介电常数为r的各向同性均匀电介质,电介质厚度为d , 则电介质中的电场能量密度w = .三.计算题1.一电容器由两个很长的同轴薄圆筒组成,内外圆筒半径分别为R 1=2cm ,R2= 5cm,其间充满相对介电常数为r的各向同性、均匀电介质、电容器接在电压U=32V的电源上(如图所示为其横截面),试求距离轴线R=处的A点的电场强度和A点与外筒间的电势差.2.假想从无限远处陆续移来微电荷使一半径为R的导体球带电.(1) 球上已带电荷q时,再将一个电荷元dq从无限远处移到球上的过程中,外力作多少功(2) 使球上电荷从零开始加到Q的过程中,外力共作多少功练习八恒定电流一.选择题1.两个截面不同、长度相同的用同种材料制成的电阻棒,串联时如图(1)所示,并联时如图(2)所示,该导线的电阻忽略,则其电流密度J与电流I应满足:(A) I1 =I2 J1 = J2 I1 = I2 J1 = J2.(B) I1 =I2 J1 >J2 I1<I2 J1 = J2.(C) I1<I2 J1 = J2 I1 = I2 J1>J2.(D) I1<I2 J1 >J2 I1<I2 J1>J2.2.两个截面相同、长度相同,电阻率不同的电阻棒R1 、R2(1>2)分别串联(如上图)和并联(如下图)在电路中,导线电阻忽略,则(A) I1<I2 J1<J2 I1= I2 J1 = J2.(B)I1 =I2 J1 =J2 I1= I2 J1 = J2.(C)I1=I2 J1 = J2 I1<I2 J1<J2.(D)I1<I2 J1<J2 I1<I2 J1<J2.3.室温下,铜导线内自由电子数密度为n= × 1028个/米3,电流密度的大小J= 2×106安/米2,则电子定向漂移速率为:(A)×10-4米/秒.(B) ×10-2米/秒.(C) ×102米/秒.(D) ×105米/秒.4.在一个长直圆柱形导体外面套一个与它共轴的导体长圆筒,两导体的电导率可以认为是无限大,在圆柱与圆筒之间充满电导率为的均匀导电物质,当在圆柱与圆筒上加上一定电压时,在长度为l的一段导体上总的径向电流为I,如图所示,则在柱与筒之间与轴线的距离为r 的点的电场强度为:(A) 2rI/ (l2).(B) I/(2rl).(C) Il/(2r2).(D) I/(2rl).5.在如图所示的电路中,两电源的电动势分别为1、2、,内阻分别为r1、r2,三个负载电阻阻值分别为R1、R2、R,电流分别为I1、I2、I3 ,方向如图,则由A到B的电势增量U B-U A为:(A) 2-1-I1 R1+I2 R2-I3 R .(B) 2+1-I1(R1 + r1)+I2(R2 + r2)-I3 R.(C) 2-1-I1(R1-r1)+I2(R2-r2) .(D) 2-1-I1(R1 + r1)+I2(R2 + r2) .二.填空题1.用一根铝线代替一根铜线接在电路中,若铝线和铜线的长度、电阻都相等,那么当电路与电源接通时铜线和铝线中电流密度之比J1:J2 = .(铜电阻率×106·cm , 铝电阻率×106 · cm , )2.金属中传导电流是由于自由电子沿着与电场E相反方向的定向漂移而形成, 设电子的电量为e , 其平均漂移率为v , 导体中单位体积内的自由电子数为n , 则电流密度的大小J = , J的方向与电场E的方向.3.有一根电阻率为、截面直径为d、长度为L的导线,若将电压U加在该导线的两端,则单位时间内流过导线横截面的自由电子数为;若导线中自由电子数密度为n,则电子平均漂移速率为.(导体中单位体积内的自由电子数为n)三.计算题1.两同心导体球壳,内球、外球半径分别为r a , r b,其间充满电阻率为的绝缘材料,求两球壳之间的电阻.2.在如图所示的电路中,两电源的电动势分别为1=9V和2 =7V,内阻分别为r1 = 3和r2= 1,电阻R=8,求电阻R两端的电位差.练习九磁感应强度洛伦兹力一.选择题1.一个动量为p电子,沿图所示的方向入射并能穿过一个宽度为D、磁感应强度为B(方向垂直纸面向外)的均匀磁场区域,则该电子出射方向和入射方向间的夹角为(A) =arccos(eBD/p).(B) =arcsin(eBD/p).(C) =arcsin[BD /(ep)].(D) =arccos[BD/(e p)].2.一均匀磁场,其磁感应强度方向垂直于纸面,两带电粒子在该磁场中的运动轨迹如图所示,则(A)两粒子的电荷必然同号.(B) 粒子的电荷可以同号也可以异号.(C) 两粒子的动量大小必然不同.(D) 两粒子的运动周期必然不同.3.一运动电荷q,质量为m,以初速v0进入均匀磁场,若v0与磁场方向的夹角为,则(A)其动能改变,动量不变.(B) 其动能和动量都改变.(C) 其动能不变,动量改变.(D) 其动能、动量都不变.4.两个电子a和b同时由电子枪射出,垂直进入均匀磁场,速率分别为v和2v,经磁场偏转后,它们是(A)a、b同时回到出发点.(B) a、b都不会回到出发点.(C) a先回到出发点.(D) b先回到出发点.5. 如图所示两个比荷(q/m)相同的带导号电荷的粒子,以不同的初速度v1和v2(v1v2)射入匀强磁场B中,设T1、T2分别为两粒子作圆周运动的周期,则以下结论正确的是:(A) T1 = T2,q1和q2都向顺时针方向旋转;(B) T1 = T 2,q1和q2都向逆时针方向旋转(C) T1T2,q1向顺时针方向旋转,q2向逆时针方向旋转;(D) T1 = T2,q1向顺时针方向旋转,q2向逆时针方向旋转;二.填空题1. 一电子在B=2×10-3T的磁场中沿半径为R=2×10-2m、螺距为h=×10-2m的螺旋运动,如图所示,则磁场的方向, 电子速度大小为.2. 磁场中某点处的磁感应强度B=-(T), 一电子以速度v=×106i+×106j (m/s)通过该点,则作用于该电子上的磁场力F= .3.在匀强磁场中,电子以速率v=×105m/s作半径R=的圆周运动.则磁场的磁感应强度的大小B= .三.计算题1.如图所示,一平面塑料圆盘,半径为R ,表面均匀带电,电荷面密度为,假定盘绕其轴线OO以角速度转动,磁场B垂直于轴线OO,求圆盘所受磁力矩的大小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习一 力学(质点和刚体、运动学和动力学)一、选择题:1.某质点的运动方程为6533+-=t t x (SI),则该质点作(A)匀加速直线运动,加速度沿X 轴正方向. (B)匀加速直线运动,加速度沿X 轴负方向. (C)变加速直线运动,加速度沿X 轴正方向.(D )变加速直线运动,加速度沿X 轴负方向.参考解答: 速度2153d d t t x v -==,加速度t tv a 30d d -== 加速度随时间变化,为变加速运动;当t >0后,a <0,开始时v >0,为减速运动;后来v <0,为加速运动。
2.某物体的运动规律为t kv t v a 2d d -==,式中的k 为大于零的常数.当0=t 时,初速为0v ,则速度v 与时间t 的函数关系是 (A)0221v kt v +=(B)0221v kt v +-= (C )021211v kt v += (D)021211v kt v +-=.参考解答: 分离变量积分。
t kv t v 2d d -=,分离变量成t kt v v d d 2-=,两边积分⎰⎰-=tv v t t k v v 02d d 0,得202111kt v v -=⎪⎪⎭⎫ ⎝⎛-- 整理可得结果。
3.如图所示,质量为m 的物体用细绳水平拉住,静止在倾角为θ的固定的光滑斜面上,则斜面给物体的支持力为 (A)θcos mg . (B)θsin mg . (C )θcos mg . (D) θsin mg.参考解答:物体受力分析。
由于物体静止,合力为零。
列牛二力学方程 水平方向:0sin =-θN T 垂直方向:0cos =-mg N θ根据垂直关系可求结果,根据水平关系可求细绳中的张力。
4.如图,物体A 、B 质量相同,B 在光滑水平桌面上,滑轮与绳的质量以及空气阻力均不计,滑轮与其轴之间的摩擦也不计.系统无初速地释放,则物体A 下落的加速度是(A)g . (B)2/g . (C)3/g . (D )5/4g .参考解答:隔离物体受力分析。
假设加速度a A 和a B 。
列牛二定律方程 B 物体方程:B 2ma T = A 物体方程:A 1ma T mg =-附属关系:122T T =,B A 2a a =联立求解上述方程,可以得到各物理量,其中a A 即为答案。
5.对于一个物体系来说,在下列条件中,那种情况下系统的机械能守恒? (A)合外力为0. (B)合外力不作功.(C )外力和非保守内力都不作功. (D)外力和保守内力都不作功.参考解答:动量守恒的条件:合外力为零,其冲量即为零,内力的合力为零。
外力做功,内力也做功,无论它们的合力是否为零,因为各力有不同的作用点,各作用点有不同的位移,故做功可能不为零。
当把内保守力的功归结为系统的势能后,保守力的功不再计算。
机械能守恒的条件:外力做功和内非保守力做功均为零或不做功。
6.质量为m 的一艘宇宙飞船关闭发动机返回地球时,可认为该飞船只在地球的引力场中运动.已知地球质量为M ,万有引力恒量为G .则当它从距地球中心1R 处下降到2R 处时,飞船增加的动能应等于 (A)2R GMm (B)22R GMm(C )2121R R R R GMm - (D)2121R R R GMm - (E)222121R R R R GMm -参考解答:系统间只有万有引力,为保守力,系统的机械能守恒。
两个状态的机械能11k 1p 1k 1R Mm GE E E E -=+=和22k 2p 2k 2R MmG E E E E -=+=相等。
后式减去前式得动能增量2121121k 2k k R R R R GMm R Mm G R Mm G E E E -=-=-=∆7.如图所示,有一个小块物体,置于一个光滑的水平桌面上,有一绳其一端连结此物体,另一端穿过桌面中心的小孔,该物体原以角速度ω在距孔为R 的圆周上转动,今将绳从小孔缓慢往下拉.则物体(A)动能不变,动量改变. (B)动量不变,动能改变. (C)角动量不变,动量不变.(D)角动量改变,动量改变. (E )角动量不变,动能、动量都改变.参考解答:由于绳拉物体的力不为零,所以物体动量不守恒。
由于绳拉物体的力总是通过转动中心,故其力矩为零。
所以物体角动量守恒。
由于物体运动半径逐步缩小,其位移方向不与半径垂直,故绳中的外力要做功,物体动能改变。
8.光滑的水平桌面上有长为l 2、质量为m 的匀质细杆,可绕过其中点O 且垂直于桌面的竖直固定轴自由转动。
起初杆静止.有一质量为m 的小球沿桌面正对着杆的一端,在垂直于杆长的方向上,以速率v 运动,如图所示.当小球与杆端发生碰撞后,就与杆粘在一起随杆转动.则这一系统碰撞后的转动角速度是 (A)12lv . (B)lv 32. (C )l v 73. (D)l v 43.参考解答:这是一个质点与刚体碰撞的问题。
无论是完全弹性还是完全非弹性碰撞,系统的角动量总是守恒的,因为关于转轴的合外力矩等于零,内力矩的和总是等于零的。
角动量守恒()ωωω22121l m l ml J l v m mvl +=+'= 或者 ()ωJ ml mvl +=2 解得ωωωl l l v 37431=+=二、填空题:1.已知质点运动方程为(S I) j )4(i )25(331221 t t t t r ++-+=,当t = 2s 时,=a .参考解答:加速度是位置矢量的二阶导数。
求导时注意到直角坐标系中的单位矢量是不变的。
(SI) j )4(i )2(d d 2t t t r v ++-==(SI) j )2(i )1(d d t tv a +-==将t = 2s 代入上式得到(S I) j )4(i )1(+-=a 或者2m/s j 4i +-2.试说明质点作何种运动时,将出现下述各种情况(0≠v ):(1)0,0≠≠n t a a ; .(2)0,0=≠n t a a ; .t a 、n a 分别表示切向加速度和法向加速度.参考解答:切向加速度和速度方向相同,该加速度用来改变速度的大小。
法向加速度和速度方向垂直,该加速度仅用来改变速度的方向。
速度大小和方向都不改变的运动是匀速直线运动;速度大小和方向都改变的运动是变速曲线运动,变速圆周运动是个特例; 速度大小改变而方向不变的运动是变速直线运动。
3.质量为m 的小球,用轻绳AB 、BC 连接,如图.剪断绳AB 前后的瞬间,绳BC 中的张力比T :='T .参考解答:物体受力分析。
剪断前是个力平衡问题。
水平方向:0sin =-F T θ 垂直方向:0cos =-mg T θ剪断后,小球下摆,做圆弧运动。
切向方向:Rv m m g 2sin =θ法向方向:0cos =-'θmg T根据上述垂直方向和法向方向的两个方程,可解得θ2cos 1='T T 。
4.一小珠可以在半径为R 的铅直圆环上作无摩擦滑动,今使圆环以角速度ω绕圆环竖直直径转动.要使小珠离开环的底部而停在环上某一点,则角速度ω最小应大于 .参考解答:这是一个质点动力学问题。
质点做水平面内的圆周运动。
分析受力,列出方程。
水平方向:2sin ωθmr N = 垂直方向:0cos =-mg N θ 其中θsin R r =。
两个方向的式子相除,解得θωcos R g=:其最小值为0=θ时,Rg =ω 其最大值为︒=90θ时,∞=ω,为什么?有摩擦力时如何?5.一吊车底板上放一质量为10kg 的物体,若吊车底板加速上升,加速度大小为t a 53+=(SI),则2秒内吊车底板给物体的冲量大小I =_________;2秒内物体动量的增量大小p ∆=_________.参考解答:物体与底板一同上升,受合力为F = ma ,其中包含底板给的向上的支持力N 和向下的重力mg ,即F = N-mg 。
底板支持力N 的冲量()s N 35628.92252310253d d 2202221⋅=⎥⎦⎤⎢⎣⎡⨯+⎪⎭⎫⎝⎛⨯+⨯⨯=⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+=+==⎰⎰gt t t m t mg ma t N I t t根据质点的冲量动量定理s N 1602252310253d d 22022021⋅=⎪⎭⎫⎝⎛⨯+⨯⨯=⎪⎭⎫ ⎝⎛+===∆⎰⎰t t m t m a t F p t t6.质量1=m kg 的物体,在坐标原点处从静止出发在水平面内沿X 轴运动,其所受合力方向与运动方向相同,合力大小为F=3+2x (SI),那么,物体在开始运动的3m 内,合力所作功W =__________;且m 3=x 时,其速率v =__________.参考解答: 物体受合力做功()()()J 183333d 23d 232321=+⨯=+=+==⎰⎰x x x x x F W x x根据质点的动能定理W mv E =-=∆0212k ,解得 s /m 611822=⨯==m W v 从加速度到速度,用一次积分?7.半径为20cm 的主动轮,通过皮带拖动半径为50cm 的被动轮转动,皮带与轮之间无相对滑动.主动轮从静止开始作匀角加速转动。
在4s 内被动轮的角速度达到-1s rad π8⋅,则主动轮在这段时间内转过了 圈.参考解答:(1)匀加速转动,有()020220002 ,21 ,θθαωωαωθθαωω-+=++=+=t t t从静止开始t αω=得到tωα=,被动轮转过的角度t t t t ωωαθθθ212121220===-=∆被或者π164π8212122 220=⨯⨯====-=∆t t ωωωαωθθθ被 (2)皮带没有滑动,传动时主动轮和被动轮的边缘速度大小相同被被主主ωωr r =,也即转过的弧长相同,有被被主主θθ∆=∆R R 或者π40π162050=⨯=∆=∆被主被主θθR R 主动轮转过的圈数圈主 20π20π4π2==∆=θn8.一长为l 、重W 的均匀梯子,靠墙放置,如图.梯子下端连一倔强系数为k 的弹簧,当梯子靠墙竖直放置时,弹簧处于自然长度.墙和地面都是光滑的.当梯子依墙而与地面成θ角且处于平衡状态时,(1)地面对梯子的作用力的大小为 .(2)墙对梯子的作用力的大小为 .(3)W 、k 、l 、θ应满足的关系式为 .参考解答:这是一个刚体平衡问题。
刚体平衡(静止)要求合外力为零,且合外力矩也为零。
需要受力分析,列方程求解。
墙面给予的支持力总是垂直于墙面的,力平衡 水平方向:022=-=-N kx N F 垂直方向:01=-W N力矩平衡(可任意假设一个转轴点),取A 点为转轴0cos 2sin 2=-θθlW l N 其它关系θcos l x =联立解得:θθsin 2 ,cos ,21kl W kl N W N ===三、证明题:1.质量为m 的小球,在水中受的浮力为常力F ,当它从静止开始沉降时,受到水的粘滞阻力为kv f -=(k 为常数).证明小球在水中竖直沉降的速度v 与t 的关系为)1(/m kt e kFmg v ---=,式中t 为从沉降开始计算的时间.1.证:质点动力学问题。