数学建模的方法和步骤
数学建模之方法(五步法)ppt课件

120 若要x≥0,只要0<r≤0.014, 110 最佳售猪时间可由x=(7- 100 500r) /25r给出,对r>0.014 , 90 0
5
10
15
20
在[0,+∞)上都有 f‘(x)<0, 最佳售猪时间为x=0. 图 1-5给出了r =0.015的情况.
变量、单位、等式、不等式、假设和目标表达式 等构成完整的问题。
数模方法之五步法 ※2018/11/25※
5/25
①例1.1中,全部的变量包括:猪的重量w(磅), 从现在到出售猪期间经历的时间t(天), t天饲养猪的花费C(美元), 猪的市场价格 p(美元/磅),售出生猪所获得的收益R(美元), 我们最终获得的净收益P(美元)。 其他相关的参(非变)量:如猪的初始重量(200磅)等。 ②写出关于上述变量所做的假设,考虑到参量在模型 中的影响。猪的重量从初始的200磅按每天5磅增加有
表1-1 售猪问题中最佳售猪时间x关于价格的下降速率r的灵敏性 r (美元/天) 0.008 0.009 0.01 x (天 ) 15.0 11.1 8.0 r (美元/天) 0.011 0.012 ※2018/11/25※ x (天 ) 5.5 3.3
数模方法之五步法
16/25
将上表1-1中的数据绘制在如下图1-4中。 x(天) 16
第二步、选择建模方法.
第三步、推导模型的公式:
⑴把第一步中得到的问题重新表达成第二步选定的建模 方法需要的形式; 图1-3 五步方法图 数模方法之五步法 ※2018/11/25※
13/25
⑵你可能需要将第一步中的一些变量名改成与第二步所用 的记号一致; ⑶记下任何补充假设,这些假设是为了使在第一步中描述 的问题与第二步中选定的数学结构相适应而做的。
建立数学模型的一般过程或步骤

1.问题识别和定义建立数学模型的第一步是明确识别和定义需要解决的实际问题。
这个阶段包括:a) 确定研究对象: 明确我们要研究的系统、现象或过程是什么。
b) 明确目标: 确定我们希望通过模型解决什么问题,或得到什么样的结果。
c) 界定范围: 确定模型的适用范围和限制条件。
d) 收集背景信息: 了解问题的背景,包括已有的相关研究和理论。
e) 提出假设: 根据对问题的初步理解,提出一些合理的假设。
这个阶段的关键是要尽可能清晰、准确地描述问题,为后续的模型构建奠定基础。
2.变量选择和定义在明确问题后,下一步是确定模型中的关键变量:a) 识别相关变量: 列出所有可能影响问题的变量。
b) 分类变量: 将变量分为自变量、因变量、参数等。
c) 定义变量: 明确每个变量的含义、单位和取值范围。
d) 简化变量: 去除次要变量,保留最关键的变量以简化模型。
e) 考虑变量间关系: 初步分析变量之间可能存在的关系。
变量的选择直接影响模型的复杂度和准确性,需要在简化和精确之间找到平衡。
3.数据收集和分析为了构建和验证模型,我们需要收集相关数据:a) 确定数据需求: 根据选定的变量,明确需要收集哪些数据。
b) 选择数据来源: 可以是实验、观察、文献资料或已有数据库。
c) 设计数据收集方案: 包括采样方法、实验设计等。
d) 数据预处理: 对原始数据进行清洗、标准化等处理。
e) 探索性数据分析: 使用统计方法和可视化技术初步分析数据特征和规律。
f) 识别异常值和缺失值: 处理数据中的异常情况。
高质量的数据对于构建准确的模型至关重要。
4.模型结构选择基于问题定义、变量选择和数据分析,我们可以开始选择适当的模型结构:a) 考虑问题类型: 如静态或动态、确定性或随机性、线性或非线性等。
b) 研究已有模型: 调研该领域是否已有成熟的模型可以借鉴。
c) 选择数学工具: 如微分方程、概率论、优化理论等。
d) 确定模型类型: 如回归模型、微分方程模型、状态空间模型等。
数学建模之方法(五步法)ppt课件

数模方法之五步法
※2018/11/25※
11/25
⑸回答问题:回答第一步提问“何时售猪可以达到 最大净收益. 由第四步我们得到的答案是在8天之后,可以获 得净收益133.20美元。只要第一步假设成立,这一 结果就是正确的。 相关的问题及其他不同的假设可以按照第一步 中的做法调整得到。由于我们处理的是一个实际问 题(一个农民决定何时出售他饲养的生猪),在第 一步中会有一个风险因素存在,因此通常有必要研 究一些不同的可能,这一过程称为灵敏性分析。我 们将在下一节进行讨论。 本节主要介绍五步方法,下面将这一方法总结归 纳成如下图表, 以便以后参考.
图1-4 售 猪问题中 最佳售猪 时间x关 于价格的 下降速率 r 的曲线
14 12 10 8 6 40.008 2 0.008
14 12 10 8 6
0.009
0.011
01 0.012 r(美元/天)
我们可以看到售猪的最优时间 x 对参数 r 是很敏感的. ⑶x对价格下降速率r灵敏性的系统分析 将r作为未知的参数,仍按前面的步骤求解(见下页):
变量、单位、等式、不等式、假设和目标表达式 等构成完整的问题。
数模方法之五步法 ※2018/11/25※
5/25
①例1.1中,全部的变量包括:猪的重量w(磅), 从现在到出售猪期间经历的时间t(天), t天饲养猪的花费C(美元), 猪的市场价格 p(美元/磅),售出生猪所获得的收益R(美元), 我们最终获得的净收益P(美元)。 其他相关的参(非变)量:如猪的初始重量(200磅)等。 ②写出关于上述变量所做的假设,考虑到参量在模型 中的影响。猪的重量从初始的200磅按每天5磅增加有
5 磅 ( w 磅 ) ( 200 磅 ) ( )( t 天 ). 天
数学建模的基本步骤

数学建模的基本步骤一、数学建模题目1)以社会,经济,管理,环境,自然现象等现代科学中出现的新问题为背景,一般都有一个比较确切的现实问题。
2)给出若干假设条件:1. 只有过程、规则等定性假设;2. 给出若干实测或统计数据;3. 给出若干参数或图形等。
根据问题要求给出问题的优化解决方案或预测结果等。
根据问题要求题目一般可分为优化问题、统计问题或者二者结合的统计优化问题,优化问题一般需要对问题进行优化求解找出最优或近似最优方案,统计问题一般具有大量的数据需要处理,寻找一个好的处理方法非常重要。
二、建模思路方法1、机理分析根据问题的要求、限制条件、规则假设建立规划模型,寻找合适的寻优算法进行求解或利用比例分析、代数方法、微分方程等分析方法从基本物理规律以及给出的资料数据来推导出变量之间函数关系。
2、数据分析法对大量的观测数据进行统计分析,寻求规律建立数学模型,采用的分析方法一般有:1). 回归分析法(数理统计方法)-用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式。
2). 时序分析法--处理的是动态的时间序列相关数据,又称为过程统计方法。
3)、多元统计分析(聚类分析、判别分析、因子分析、主成分分析、生存数据分析)。
3、计算机仿真(又称统计估计方法):根据实际问题的要求由计算机产生随机变量对动态行为进行比较逼真的模仿,观察在某种规则限制下的仿真结果(如蒙特卡罗模拟)。
三、模型求解:模型建好了,模型的求解也是一个重要的方面,一个好的求解算法与一个合适的求解软件的选择至关重要,常用求解软件有m atlab,mathema tica,lingo,lindo,spss,sas等数学软件以及c/c++等编程工具。
Lingo、lindo一般用于优化问题的求解,spss,sas一般用于统计问题的求解,matlab,mathema tica功能较为综合,分别擅长数值运算与符号运算。
数学建模的方法和步骤

数学建模的方法和步骤数学建模(Mathematical modeling)是指运用数学方法及理论来描述某一实际问题,并在此基础上构建数学模型,进而对问题进行分析和求解的过程。
数学建模是一个综合应用学科,它将数学、物理、化学、工程、统计学、计算机科学等学科有机结合起来,用数学语言对现实世界进行描述,可用于各种领域的问题求解,如经济、金融、环境、医学等多个领域。
下面我将从数学建模的方法和步骤两方面来探讨这一学科。
一、数学建模的方法数学建模方法是指解决某一具体问题时所采用的数学建模策略和概念。
数学建模方法可分为以下几类:1.现象模型法:这种方法总是从某一实际问题的具体现象入手,把事物之间的关系量化为一种数学模型。
2.实验模型法:这种方法通过一些特定的实验,首先收集实验数据,然后通过分析数据建立一种数学模型,模型中考虑实验误差的影响。
3.参数优化法:这种方法通常是指通过找到最优参数的一种方法建立一个数学模型。
4.时间序列模型法:这种方法主要是通过观察时间内某一变量的变化,构建该变量的时间序列特征,从而建立一个时间序列模型。
二、数学建模的步骤数学建模步骤是指解决一个实际问题时所采用的数学建模过程,根据一些经验和规律推导出一个可行的模型。
数学建模步骤通常分为以下几步:1.钟情问题的主要方面并进行分析:首先要分析问题的背景和主要的影响因素,以便制定一个可行的局部策略。
2.建立初步模型:通过向原问题中引入某些常数或替换一些符号为某一特定变量,以使模型更方便或更加精确地描述问题。
3.策略选择和评估:要选择一个最优的策略,需要在模型的基础上进行评估,包括确定哪个方案更优等。
4.内容不断完善:在初步模型的基础上,不断加深对问题的理解,以逐步提高模型描述问题的准确度和逼真度。
5.模型的验证和验证:要验证模型,需要将模型应用到一些简单问题中,如比较不同方案的结果,并比较模型结果与实际情况。
总之,数学建模是一种复杂的、长期的、有启发性的过程,它要求从一个模糊的、自由的问题开始,通过有计划、有方法的工作,构建出一个能够解决实际问题的数学模型。
数学建模的基本方法

数学建模的基本方法数学建模是一种将现实问题转化为数学模型并进行求解的方法。
它通过建立数学模型来描述问题的要素和关系,利用数学的方法进行分析和求解,从而得出与实际问题相对应的数学结果。
数学建模的基本方法主要包括问题分析、建立数学模型、求解模型和模型验证等几个步骤。
问题分析是数学建模的第一步。
在问题分析阶段,需要对实际问题进行深入的研究和分析,理解问题的背景、要素和关系,并确定问题的目标和约束条件。
在问题分析过程中,需要综合运用数学、统计学、物理学等相关知识,对问题进行全面的思考和分析。
建立数学模型是数学建模的核心步骤。
在建立数学模型时,需要根据问题的具体要求和已知条件,选择合适的数学方法和理论,将问题转化为数学表达式或方程组。
数学模型可以是线性模型、非线性模型、概率模型、优化模型等不同类型的数学表达式,具体的选择取决于问题的特点和求解的要求。
接下来,求解模型是数学建模的关键步骤。
在求解模型时,可以利用数值方法、符号计算、优化算法等不同的数学工具和技术进行求解。
根据问题的特点和求解的需求,可以选择适当的求解方法,进行计算和分析。
在求解过程中,需要注意对结果的合理解释和实际意义的分析,确保结果的可靠性和有效性。
模型验证是数学建模的最后一步。
在模型验证阶段,需要对建立的数学模型进行验证和评估,检查模型的合理性和有效性。
可以通过与实际数据的对比、模型的稳定性分析、敏感性分析等方法来进行模型的验证。
如果模型的预测结果与实际情况相符,说明模型具有一定的准确性和可靠性。
数学建模是一种将现实问题转化为数学模型并进行求解的方法。
它通过问题分析、建立数学模型、求解模型和模型验证等步骤,将实际问题抽象为数学问题,并利用数学的方法进行求解和分析。
数学建模能够帮助我们更好地理解和解决实际问题,提高问题求解的效率和精度,具有广泛的应用前景和深远的影响。
数学建模理论与方法

数学建模理论与方法数学建模是指将实际问题抽象成数学模型,通过数学方法对问题进行分析和求解的过程。
它是数学与现实问题相结合的一种应用形式,涉及数学、物理、工程、计算机科学等多个领域。
数学建模的目的是为了解决实际问题,并为决策提供科学依据。
它可以帮助我们更准确地理解问题的本质,发现问题中的规律和关系,从而提出解决问题的方法。
在数学建模中,我们通常需要完成以下几个步骤:1. 问题调研和分析:首先明确问题的背景和目标,了解问题的具体情况,对问题进行分析。
这一步骤需要对问题进行细致的研究和了解,明确问题的条件和限制,以及问题所涉及的变量和参数。
2. 建立数学模型:将实际问题转化为数学模型。
数学模型是对问题进行抽象和简化的结果,可以是代数方程、微分方程、概率模型等。
建立数学模型是数学建模的核心环节,它要求将问题的特性与数学工具相结合,选取合适的数学方法和模型形式。
3. 模型求解:根据建立的数学模型,运用数学方法对模型进行求解。
常用的数学方法包括解析方法、数值方法、优化方法等。
求解的过程可能需要编写程序、进行数值计算等,这就需要借助计算机和数学软件进行计算和模拟。
4. 模型检验和优化:对求解结果进行检验和评估,比较模型的预测结果与实际情况,评估模型的准确性和可行性。
如果模型的预测结果与实际情况不符,需要对模型进行修正和优化,直至得到满意的结果。
5. 结果分析和解释:对模型的结果进行解释和分析,得出结论,并将结果以可视化的形式进行展示。
结果分析是数学建模的最后一步,它可以帮助我们理解问题的本质,指导实际决策。
在数学建模的过程中,我们还需要掌握一些常用的数学工具和方法。
比如,微积分、线性代数、概率论、优化理论等都是数学建模中常用的工具。
此外,我们还需要具备一定的计算机编程和数学建模软件的使用能力。
数学建模在科学研究、工程技术、经济管理等领域都具有重要的应用价值。
通过数学建模,我们能够对问题进行全面的分析和研究,得到精确和可靠的结果,为决策提供参考。
数学建模步骤及过程

数学建模步骤及过程以数学建模步骤及过程为标题,写一篇文章。
一、引言数学建模是一种通过数学方法解决实际问题的过程。
它将实际问题抽象化,转化为数学模型,并利用数学工具进行分析和求解。
本文将介绍数学建模的一般步骤及具体过程。
二、问题定义数学建模的第一步是明确问题,并将问题转化为数学语言。
在这一步,需要仔细研究问题的背景和条件,并明确问题的目标和约束。
通过对问题进行分析和理解,确定所要建立的数学模型的类型。
三、建立数学模型在问题定义的基础上,需要建立数学模型来描述问题。
数学模型由变量、参数和约束等组成。
变量是模型中需要求解的未知量,参数是已知的常数,约束是模型中的限制条件。
根据问题的特点,可以选择不同的数学方法和工具,如微积分、线性代数、概率论等来建立模型。
四、模型求解建立数学模型后,需要对模型进行求解。
求解的方法根据模型的类型和复杂程度而定。
可以采用解析解法、数值解法或优化算法等来求解模型。
在求解过程中,需要选择合适的算法,并进行计算和验证。
五、模型分析在模型求解完成后,需要对结果进行分析和评估。
分析结果的合理性和可行性,并与实际问题进行比较。
如果结果符合实际情况,那么模型就是有效的。
如果结果与实际情况存在差异,需要对模型进行调整和改进。
六、模型验证为了保证模型的准确性和可靠性,需要对模型进行验证。
验证的方法可以是对模型进行实验或与实际数据进行比较。
通过验证可以检验模型的有效性,并发现模型中存在的不足和改进的空间。
七、模型应用经过验证的模型可以应用于实际问题中。
根据模型的结果和分析,可以得出问题的解决方案,并进行决策和实施。
在应用过程中,需要考虑模型的局限性和可行性,并及时进行调整和优化。
八、模型评价在模型应用的过程中,需要对模型进行评价。
评价的指标可以是模型的精确度、稳定性、可解释性等。
通过评价可以判断模型的优劣,并为后续的建模工作提供参考。
九、总结数学建模是一种重要的工具和方法,可以帮助我们解决实际问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学建模的方法和步骤
建立数学模型没有固定的模式,通常它与实际问题的性质、建模的目的等有关.当然,建模的过程也有共性,一般来说大致可以分为以下的几个步骤:
1.形成问题
要建立现实问题的数学模型,首先要对所要解决的问题有一个十分明晰的提法.只有明确问题的背景,尽量弄清对象的特征,掌握有关的数据,确切地了解建立数学模型要达到的目的,才能形成一个比较明晰的“问题”.
2.假设和简化
根据对象的特征和建模的目的,对问题进行必要的、合理的假设和简化.如前所述,现实问题通常是纷繁复杂的,我们必须紧抓住本质的因素(起支配作用的因素),忽略次要的因素.此外,一般地说,一个现实问题不经过假设和简化,很难归结成数学问题.因此有必要对现实问题作一些简化,有时甚至是理想化.
3.模型的构建
根据所作的假设,分析对象的因果关系,用适当的数学语言刻画对象的内在规律,构建现实问题中各个量之间的数学结构,得到相应的数学模型。
这里,有一个应遵循的原则:即尽量采用简单的数学工具.
4.检验和评价
数学模型能否反映原来的现实问题,必须经受多种途径的检验.这里包括:①数学结构的正确性,即有没有逻辑上自相矛盾的地方;②适合求解,即是否会有多解或无解的情况出现;③数学方法的可行性,即迭代方法是否收敛,以及算法的复杂性等.而最重要和最困难的问题是检验模型是否真正反映原来的现实问题.模型必须反映现实,但又不等同于现实;模型必须简化,但过分的简化则使模型远离现实,无法解决现实问题.因此检验模型的合理性和适用性,对于建模的成败是非常重要的.评价模型的根本是看它能否准确地解决现实问题.此外,是否容易求解也是评价模型的一个重要标准.
5.模型的改进
模型在不段检验过程中经过不断修正,逐步趋向完善,这是建模必须遵循的重要规律,一旦在检验中发现问题,人们必须重新审视在建模时所作的假设和简化的合理性,检查是否正确刻画对象内在的量之间的相互关系和服从的客观的规律.针对发现的问题作出相应的修正.然后,再重复上述检验修改的过程,直到获得某种程度的满意模型为止.
6.模型的求解
经过检验,能比较好地反映原现实问题的数学模型.最后将通过求解得到数学上的结果;再通过“翻译”回到现实问题,得到相应的结论.模型若能获得解的确切表达式固然最好,但现实中多数场合需依靠电子计算机数值求解.电子计算技术的飞速发展,使数学模型这一有效的工具得以发扬光大.。