九年级数学矩形的判定练习题
矩形的判定专项练习30题(有答案)ok

矩形的判定专项练习30题(有答案)ok1.在四边形ABCD中,AD∥BC,E、F为AB上两点,且△DAF≌△XXX。
证明:(1)∠A=90°;(2)四边形ABCD 是矩形。
2.平行四边形ABCD中,∠ABC,∠BCD的平分线BE、CF分别交AD于E、F,BE、CF交于点G,点H为BC的中点,GH的延长线交GB的平行线CM于点M。
证明:(1)∠BGC=90°;(2)四边形GBMC是矩形。
3.O是菱形ABCD对角线的交点,作DE∥AC,CE∥BD,DE、CE交于点E。
问:(1)四边形OCDE是矩形吗?说明理由;(2)将菱形改为另一种四边形,其它条件都不变,能得出什么结论?根据改编后的题目画出图形,并说明理由。
4.△ABC中,AD⊥BC于D,点E、F分别是△ABC中AB、AC中点,什么条件下四边形AEDF是矩形?说明理由。
5.菱形ABCD的对角线AC、BD交于点O。
问:(1)用尺规作图的方法,作出△AOB平移后的△DEC,其中平移的方向为射线AD的方向,平移的距离为线段AD的长;(2)观察图形,判断四边形DOCE是什么特殊四边形,并证明。
6.平行四边形ABCD中,对角线AC、BD相交于点O,延长OA到N,ON=OB,再延长OC至M,使CM=AN。
证明四边形NDMB为矩形。
7.点O是菱形ABCD对角线的交点,过点C作BD的平行线CE,过点D作AC的平行线DE,CE与DE相交于点E。
证明四边形OCED是矩形。
8.已知梯形ABCD中,AD∥BC,AB⊥BC,点E、F分别是边BC、CD的中点,直线EF交边AD的延长线于点M,连接BD。
证明:(1)四边形DBEM是平行四边形;(2)若BD=DC,证明四边形ABCM为矩形。
9.在△ABC中,点O是AC边上的中点,过点O的直线MN∥BC,且MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,点P是BC延长线上一点。
证明四边形AECF是矩形。
九年级数学矩形的判定(基础)(含答案)

矩形的判定(基础)一、单选题(共10道,每道10分)1.下列识别图形不正确的是( )A.有一个角是直角的平行四边形是矩形B.有三个角是直角的四边形是矩形C.对角线相等的四边形是矩形D.对角线互相平分且相等的四边形是矩形答案:C解题思路:1.解题要点:矩形的判定:有一个角是直角的平行四边形叫做矩形;对角线相等的平行四边形是矩形;有三个角是直角的四边形是矩形.2.解题过程:A,B选项都是正确的C选项是错误的D选项:对角线互相平分的四边形是平行四边形,对角线相等的平行四边形是矩形,故对角线互相平分且相等的四边形是矩形;正确试题难度:三颗星知识点:略2.已知平行四边形ABCD,对角线交于点O,下列条件不一定能确定为矩形的是( )A.∠ABC=90°B.OA=OBC.AB=BCD.AC=BD答案:C解题思路:1.解题要点:矩形的判定:有一个角是直角的平行四边形叫做矩形;对角线相等的平行四边形是矩形;有三个角是直角的四边形是矩形.2.解题过程:A选项:有一个角是直角的平行四边形叫做矩形;正确B选项:对角线相等的平行四边形是矩形;正确D选项:对角线相等的平行四边形是矩形;正确C选项:有一组邻边相等的平行四边形叫做菱形;错误试题难度:三颗星知识点:略3.如图所示,在平行四边形ABCD中,已知下列条件:①AC=BD,②AB=AD,③∠1=∠2,④AB⊥BC.其中能说明平行四边形ABCD是矩形的有( )A.①④B.②④C.①②④D.①③④答案:A解题思路:1.解题要点:矩形的判定:有一个角是直角的平行四边形叫做矩形;对角线相等的平行四边形是矩形;有三个角是直角的四边形是矩形.2.解题过程:①对角线相等的平行四边形是矩形;正确②有一组邻边相等的平行四边形叫做菱形;错误③由∠1=∠2只能得到AD∥BC;错误④有一个角是直角的平行四边形叫做矩形;正确故①④能说明平行四边形ABCD是矩形试题难度:三颗星知识点:略4.在等腰三角形ABC中,AB=AC,分别延长BA,CA到点D,E,使DA=AB,EA=CA,则四边形BCDE是( )A.菱形B.矩形C.正方形D.任意的平行四边形答案:B解题思路:1.解题要点:平行四边形的判定:对角线互相平分的四边形是平行四边形矩形的判定:对角线相等的平行四边形是矩形2.解题过程:如图,∵DA=AB,EA=AC∴CE与BD相互平分∴四边形BCDE是平行四边形∵AB=AC∴DA=AB=EA=AC∴CE=BD∴平行四边形BCDE是矩形试题难度:三颗星知识点:略5.如图,在平行四边形ABCD中,AC,BD是它的两条对角线,下列条件中,能判断这个平行四边形是矩形的是( )A.∠BAC=∠ACBB.∠BAC=∠ACDC.∠BAC=∠DACD.∠BAC=∠ABD答案:D解题思路:1.解题要点:矩形的判定:对角线相等的平行四边形是矩形2.解题过程:A选项:由∠BAC=∠ACB得到AB=BC;有一组邻边相等的平行四边形叫做菱形;错误B选项:由∠BAC=∠ACD只能得到AB∥CD;错误C选项:由∠BAC=∠DAC得到∠BAC=∠ACB,与A选项一致;错误D选项:由∠BAC=∠ABD得到AC=BD;对角线相等的平行四边形是矩形;正确故D选项能判断这个平行四边形是矩形试题难度:三颗星知识点:略6.如图,在四边形ABCD中,AC与BD相交于点O,AD∥BC,AC=BD,那么下列条件中不能判断四边形ABCD是矩形的是( )A.AD=BCB.AB=CDC.∠DAB=∠ABCD.∠DAB=∠DCB答案:B解题思路:1.解题要点:矩形的判定:有一个角是直角的平行四边形叫做矩形;对角线相等的平行四边形是矩形;有三个角是直角的四边形是矩形.平行四边形的判定:一组对边平行且相等的四边形是平行四边形两组对边分别平行的四边形叫做平行四边形2.解题过程:A选项:由AD∥BC,AD=BC得到平行四边形ABCD,由AC=BD得到平行四边形ABCD是矩形;正确B选项:不能判断四边形ABCD是矩形;错误C选项:由AD∥BC,∠DAB=∠ABC得到∠DAB=∠ABC=90°,由AC=BD,AB=AB得到△ABC≌△BAD,进而得到AD=BC,四边形ABCD是平行四边形,由AC=BD得到平行四边形ABCD是矩形;正确D选项:由AD∥BC,∠DAB=∠DCB得到∠ABC+∠DCB=180°,进而得到AB∥CD,四边形ABCD 是平行四边形,由AC=BD得到平行四边形ABCD是矩形;正确故B选项不能判断四边形ABCD是矩形试题难度:三颗星知识点:略7.如图,在□ABCD中,M,N是BD上两点,BM=DN,连接AM,MC,CN,NA,添加一个条件,使四边形AMCN是矩形,这个条件是( )A.OM=ACB.MB=MOC.BD⊥ACD.∠AMB=∠CND答案:A解题思路:1.解题要点:矩形的判定:对角线相等的平行四边形是矩形平行四边形的判定:对角线互相平分的四边形是平行四边形2.解题过程:在□ABCD中OA=OC,OB=OD∵BM=DN∴OM=ON∴四边形AMCN是平行四边形∴平行四边形AMCN只需满足AC=MN或者四个顶角中有直角即可判断四边形AMCN是矩形A选项OM=AC可得到AC=MN,可判断四边形AMCN是矩形试题难度:三颗星知识点:略8.如图,在△ABC中,AB=AC.将△ABC沿着BC方向平移得到△DEF,其中点E在边BC上,DE与AC相交于点O.连接AE,DC,AD,则下列说法不正确的是( )A.平移至点O为AC中点时,四边形AECD为矩形B.平移至点E为BC中点时,四边形AECD为矩形C.平移过程中,ED=ABD.平移过程中,AD∥CE且AD=CE答案:D解题思路:1.解题要点:平移的性质:一个图形和它经过平移所得的图形中,对应点所连的线段平行(或在一条直线上)且相等;对应线段平行(或在一条直线上)且相等,对应角相等矩形的判定:有一个角是直角的平行四边形叫做矩形;对角线相等的平行四边形是矩形;有三个角是直角的四边形是矩形.2.解题过程:A选项:由平移可知,DE=AC,∠OCE=∠OEC,则点O为AC中点时,DE与AC相互平分,四边形AECD为矩形;正确B选项:点E为BC中点时,AD=CE且AD∥CE,又DE=AC,四边形AECD为矩形;正确C选项:由平移可知,ED=AB;正确D选项:由平移可知,平移过程中,AD∥CE且AD=BE,当点E为BC中点时,才有AD∥CE 且AD=CE;错误试题难度:三颗星知识点:略9.如图,在平行四边形ABCD中,点O是边BC的中点,连接DO并延长,交AB延长线于点E,连接BD,CE.若∠A=50°,则当∠BOD=_______时,四边形BECD是矩形.( )A.50°B.80°C.90°D.100°答案:D解题思路:在平行四边形ABCD中,AB∥CD∴∠CBE=∠BCD=∠A=50°∵点O是BC的中点∴OB=OC∵∠BOE=∠COD∴△BOE≌△COD(ASA)∴BE=CD∴四边形BECD是平行四边形若四边形BECD是矩形,则∠DBE=90°,OB=OD∴∠OBD=∠ODB=40°∴∠BOD=100°试题难度:三颗星知识点:略10.如图,DB∥AC,且DB=AC,E是AC的中点,连接AD,BE.下列说法:①四边形AEBD 是平行四边形;②AB=BC时,四边形AEBD是矩形;③当∠C=90°时,四边形DBCE是矩形.正确说法的个数是( )A.0个B.1个C.2个D.3个答案:D解题思路:①∵DB∥AC,且,E是AC的中点∴DB=AE=CE∴四边形AEBD和四边形DBCE是平行四边形,①正确②∵四边形DBCE是平行四边形∴BC=DE∴当AB=BC时,AB=DE∴平行四边形AEBD是矩形,②正确③由①知,四边形DBCE是平行四边形∴当∠C=90°时,四边形DBCE是矩形,③正确故正确说法的个数是3个试题难度:三颗星知识点:略。
九年级数学上册《1.2矩形的性质与判定》同步练习含答案解析

《1.2 矩形的性质与判定》一、选择题(本大题共10小题,每小题4分,满分40分)1.矩形具有而菱形不具有的性质是()A.对角线相等B.两组对边分别平行C.对角线互相平分D.两组对角分别相等2.下列关于矩形的说法中正确的是()A.对角线相等的四边形是矩形B.矩形的对角线相等且互相平分C.对角线互相平分的四边形是矩形D.矩形的对角线互相垂直且平分3.如图,矩形ABCD的对角线交于点O,若∠ACB=30°,AB=2,则OC的长为()A.2 B.3 C.2 D.44.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形OCED的周长为()A.4 B.8 C.10 D.125.如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是()A.△AFD≌△DCE B.AF=AD C.AB=AF D.BE=AD﹣DF6.如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB、BC的长分别是6和8,则点P 到矩形的两条对角线AC和BD的距离之和是()A.4.8 B.5 C.6 D.7.27.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()A.B.C.D.8.如图,矩形ABCD的顶点A、C分别在直线a、b上,且a∥b,∠1=60°,则∠2的度数为()A.30° B.45° C.60° D.75°9.如图,矩形ABCD的对角线AC与BD相交于点O,CE∥BD,DE∥AC,AD=2,DE=2,则四边形OCED 的面积()A.2 B.4 C.4 D.810.如图,在矩形ABCD中,AD=AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有()A.2个B.3个C.4个D.5个二、填空题11.如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为.12.如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE= 度.13.如图,在平行四边形ABCD中,延长AD到点E,使DE=AD,连接EB,EC,DB请你添加一个条件,使四边形DBCE是矩形.14.如图,在矩形ABCD中,AD=4,点P是直线AD上一动点,若满足△PBC是等腰三角形的点P有且只有3个,则AB的长为.15.已知矩形的对角线AC与BD相交于点O,若AO=1,那么BD= .16.如图,矩形ABCD中,对角线AC=2,E为BC边上一点,BC=3BE,将矩形ABCD沿AE所在的直线折叠,B点恰好落在对角线AC上的B′处,则AB= .17.如图,延长矩形ABCD的边BC至点E,使CE=BD,连结AE,如果∠ADB=30°,则∠E= 度.18.如图,在Rt△ABC中,∠C=90°,BC=3,AC=4,M为斜边AB上一动点,过M作MD⊥AC,过M作ME⊥CB于点E,则线段DE的最小值为.三、解答题19.如图,菱形ABCD的对角线AC,BD相交于点O,且DE∥AC,AE∥BD.求证:四边形AODE是矩形.20.如图,已知BD是矩形ABCD的对角线.(1)用直尺和圆规作线段BD的垂直平分线,分别交AD、BC于E、F(保留作图痕迹,不写作法和证明).(2)连结BE,DF,问四边形BEDF是什么四边形?请说明理由.21.已知:如图,在矩形ABCD中,点E在边AB上,点F在边BC上,且BE=CF,EF⊥DF,求证:BF=CD.22.如图,矩形ABCD的对角线AC,BD相交于点O,若AB=AO,求∠ABD的度数.23.如图,将▱ABCD的边AB延长到点E,使BE=AB,连接DE,交边BC于点F.(1)求证:△BEF≌△CDF;(2)连接BD、CE,若∠BFD=2∠A,求证:四边形BECD是矩形.24.如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N处.(1)求证:四边形AECF是平行四边形;(2)若AB=6,AC=10,求四边形AECF的面积.25.如图,矩形ABCD中,延长AB至E,延长CD至F,BE=DF,连接EF,与BC、AD分别相交于P、Q 两点.(1)求证:CP=AQ;(2)若BP=1,PQ=2,∠AEF=45°,求矩形ABCD的面积.26.阅读下面材料:在数学课上,老师请同学思考如下问题:如图1,我们把一个四边形ABCD的四边中点E,F,G,H依次连接起来得到的四边形EFGH是平行四边形吗?小敏在思考问题是,有如下思路:连接AC.结合小敏的思路作答(1)若只改变图1中四边形ABCD的形状(如图2),则四边形EFGH还是平行四边形吗?说明理由;参考小敏思考问题方法解决一下问题:(2)如图2,在(1)的条件下,若连接AC,BD.①当AC与BD满足什么条件时,四边形EFGH是菱形,写出结论并证明;②当AC与BD满足什么条件时,四边形EFGH是矩形,直接写出结论.《1.2 矩形的性质与判定》参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)1.矩形具有而菱形不具有的性质是()A.对角线相等B.两组对边分别平行C.对角线互相平分D.两组对角分别相等【考点】矩形的性质;菱形的性质.【分析】根据矩形与菱形的性质求解即可求得答案.注意矩形与菱形都是平行四边形.【解答】解:∵矩形具有的性质是:对角线相等且互相平分,两组对边分别平行,两组对角分别相等;菱形具有的性质是:两组对边分别平行,对角线互相平分,两组对角分别相等;∴矩形具有而菱形不具有的性质是:对角线相等.故选A.【点评】此题考查了矩形与菱形的性质.注意熟记定理是解此题的关键.2.下列关于矩形的说法中正确的是()A.对角线相等的四边形是矩形B.矩形的对角线相等且互相平分C.对角线互相平分的四边形是矩形D.矩形的对角线互相垂直且平分【考点】矩形的判定与性质.【分析】根据矩形的性质和判定定理逐个判断即可.【解答】解:A、对角线相等的平行四边形才是矩形,故本选项错误;B、矩形的对角线相等且互相平分,故本选项正确;C、对角线互相平分的四边形是平行四边形,不一定是矩形,故本选项错误;D、矩形的对角线互相平分且相等,不一定垂直,故本选项错误;故选B.【点评】本题考查了矩形的性质和判定的应用,能熟记矩形的性质和判定定理是解此题的关键.3.如图,矩形ABCD的对角线交于点O,若∠ACB=30°,AB=2,则OC的长为()A.2 B.3 C.2 D.4【考点】矩形的性质.【分析】根据直角三角形30°角所对的直角边等于斜边的一半可得AC=2AB=4,再根据矩形的对角线互相平分解答.【解答】解:在矩形ABCD中,∠ABC=90°,∵∠ACB=30°,AB=2,∴AC=2AB=2×2=4,∵四边形ABCD是矩形,∴OC=OA=AC=2.故选A.【点评】本题考查了矩形的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟记各性质是解题的关键.4.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形OCED的周长为()A.4 B.8 C.10 D.12【考点】矩形的性质;菱形的判定与性质.【专题】计算题;矩形菱形正方形.【分析】由四边形ABCD为矩形,得到对角线互相平分且相等,得到OD=OC,再利用两对边平行的四边形为平行四边形得到四边形DECO为平行四边形,利用邻边相等的平行四边形为菱形得到四边形DECO为菱形,根据AC的长求出OC的长,即可确定出其周长.【解答】解:∵四边形ABCD为矩形,∴OA=OC,OB=OD,且AC=BD,∴OA=OB=OC=OD=2,∵CE∥BD,DE∥AC,∴四边形DECO为平行四边形,∵OD=OC,∴四边形DECO为菱形,∴OD=DE=EC=OC=2,则四边形OCED的周长为2+2+2+2=8,故选B【点评】此题考查了矩形的性质,以及菱形的判定与性质,熟练掌握判定与性质是解本题的关键.5.如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是()A.△AFD≌△DCE B.AF=AD C.AB=AF D.BE=AD﹣DF【考点】矩形的性质;全等三角形的判定.【分析】先根据已知条件判定△AFD≌△DCE(AAS),再根据矩形的对边相等,以及全等三角形的对应边相等进行判断即可.【解答】解:(A)由矩形ABCD,AF⊥DE可得∠C=∠AFD=90°,AD∥BC,∴∠ADF=∠DEC.又∵DE=AD,∴△AFD≌△DCE(AAS),故(A)正确;(B)∵∠ADF不一定等于30°,∴直角三角形ADF中,AF不一定等于AD的一半,故(B)错误;(C)由△AFD≌△DCE,可得AF=CD,由矩形ABCD,可得AB=CD,∴AB=AF,故(C)正确;(D)由△AFD≌△DCE,可得CE=DF,由矩形ABCD ,可得BC=AD ,又∵BE=BC ﹣EC ,∴BE=AD ﹣DF ,故(D )正确;故选B .【点评】本题主要考查了矩形和全等三角形,解决问题的关键是掌握矩形的性质:矩形的四个角都是直角,矩形的对边相等.解题时注意:在直角三角形中,若有一个锐角等于30°,则这个锐角所对的直角边等于斜边的一半.6.如图,点P 是矩形ABCD 的边AD 上的一动点,矩形的两条边AB 、BC 的长分别是6和8,则点P 到矩形的两条对角线AC 和BD 的距离之和是( )A .4.8B .5C .6D .7.2【考点】矩形的性质.【分析】首先连接OP ,由矩形的两条边AB 、BC 的长分别为3和4,可求得OA=OD=5,△AOD 的面积,然后由S △AOD =S △AOP +S △DOP =OA •PE+OD •PF 求得答案.【解答】解:连接OP ,∵矩形的两条边AB 、BC 的长分别为6和8,∴S 矩形ABCD =AB •BC=48,OA=OC ,OB=OD ,AC=BD=10,∴OA=OD=5,∴S △ACD =S 矩形ABCD =24,∴S △AOD =S △ACD =12,∵S △AOD =S △AOP +S △DOP =OA •PE+OD •PF=×5×PE+×5×PF=(PE+PF )=12,解得:PE+PF=4.8.故选:A.【点评】此题考查了矩形的性质以及三角形面积问题.此题难度适中,注意掌握辅助线的作法以及掌握整体数学思想的运用是解题的关键.7.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()A.B.C.D.【考点】矩形的性质;翻折变换(折叠问题).【分析】连接BF,根据三角形的面积公式求出BH,得到BF,根据直角三角形的判定得到∠BFC=90°,根据勾股定理求出答案.【解答】解:连接BF,∵BC=6,点E为BC的中点,∴BE=3,又∵AB=4,∴AE==5,∴BH=,则BF=,∵FE=BE=EC,∴∠BFC=90°,∴CF==.故选:D.【点评】本题考查的是翻折变换的性质和矩形的性质,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.8.如图,矩形ABCD的顶点A、C分别在直线a、b上,且a∥b,∠1=60°,则∠2的度数为()A.30° B.45° C.60° D.75°【考点】矩形的性质;平行线的性质.【分析】首先过点D作DE∥a,由∠1=60°,可求得∠3的度数,易得∠ADC=∠2+∠3,继而求得答案.【解答】解:过点D作DE∥a,∵四边形ABCD是矩形,∴∠BAD=∠ADC=90°,∴∠3=90°﹣∠1=90°﹣60°=30°,∵a∥b,∴DE∥a∥b,∴∠4=∠3=30°,∠2=∠5,∴∠2=90°﹣30°=60°.故选C.【点评】此题考查了矩形的性质以及平行线的性质.注意准确作出辅助线是解此题的关键.9.如图,矩形ABCD的对角线AC与BD相交于点O,CE∥BD,DE∥AC,AD=2,DE=2,则四边形OCED 的面积()A.2 B.4 C.4 D.8【考点】矩形的性质;菱形的判定与性质.【专题】计算题;矩形菱形正方形.【分析】连接OE,与DC交于点F,由四边形ABCD为矩形得到对角线互相平分且相等,进而得到OD=OC,再由两组对边分别平行的四边形为平行四边形得到ODEC为平行四边形,根据邻边相等的平行四边形为菱形得到四边形ODEC为菱形,得到对角线互相平分且垂直,求出菱形OCEF的面积即可.【解答】解:连接OE,与DC交于点F,∵四边形ABCD为矩形,∴OA=OC,OB=OD,且AC=BD,即OA=OB=OC=OD,∵OD∥CE,OC∥DE,∴四边形ODEC为平行四边形,∵OD=OC,∴四边形ODEC为菱形,∴DF=CF,OF=EF,DC⊥OE,∵DE∥OA,且DE=OA,∴四边形ADEO为平行四边形,∵AD=2,DE=2,∴OE=2,即OF=EF=,在Rt△DEF中,根据勾股定理得:DF==1,即DC=2,=OE•DC=×2×2=2.则S菱形ODEC故选A【点评】此题考查了矩形的性质,菱形的判定与性质,以及勾股定理,熟练掌握矩形的性质是解本题的关键.10.如图,在矩形ABCD中,AD=AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有()A.2个B.3个C.4个D.5个【考点】矩形的性质;全等三角形的判定与性质;角平分线的性质;等腰三角形的判定与性质.【专题】几何图形问题.【分析】①根据角平分线的定义可得∠BAE=∠DAE=45°,然后利用求出△ABE是等腰直角三角形,根据等腰直角三角形的性质可得AE=AB,从而得到AE=AD,然后利用“角角边”证明△ABE和△AHD 全等,根据全等三角形对应边相等可得BE=DH,再根据等腰三角形两底角相等求出∠ADE=∠AED=67.5°,根据平角等于180°求出∠CED=67.5°,从而判断出①正确;②求出∠AHB=67.5°,∠DHO=∠ODH=22.5°,然后根据等角对等边可得OE=OD=OH,判断出②正确;③求出∠EBH=∠OHD=22.5°,∠AEB=∠HDF=45°,然后利用“角边角”证明△BEH和△HDF全等,根据全等三角形对应边相等可得BH=HF,判断出③正确;④根据全等三角形对应边相等可得DF=HE,然后根据HE=AE﹣AH=BC﹣CD,BC﹣CF=BC﹣(CD﹣DF)=2HE,判断出④正确;⑤判断出△ABH不是等边三角形,从而得到AB≠BH,即AB≠HF,得到⑤错误.【解答】解:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴AE=AB,∵AD=AB,∴AE=AD,在△ABE和△AHD中,,∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=(180°﹣45°)=67.5°,∴∠CED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠CED,故①正确;∵AB=AH,∵∠AHB=(180°﹣45°)=67.5°,∠OHE=∠AHB(对顶角相等),∴∠OHE=67.5°=∠AED,∴OE=OH,∵∠DHO=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,∴∠DHO=∠ODH,∴OH=OD,∴OE=OD=OH,故②正确;∵∠EBH=90°﹣67.5°=22.5°,∴∠EBH=∠OHD,在△BEH和△HDF中,,∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正确;∵HE=AE﹣AH=BC﹣CD,∴BC﹣CF=BC﹣(CD﹣DF)=BC﹣(CD﹣HE)=(BC﹣CD)+HE=HE+HE=2HE.故④正确;∵AB=AH,∠BAE=45°,∴△ABH不是等边三角形,∴AB≠BH,∴即AB≠HF,故⑤错误;综上所述,结论正确的是①②③④共4个.故选:C.【点评】本题考查了矩形的性质,全等三角形的判定与性质,角平分线的定义,等腰三角形的判定与性质,熟记各性质并仔细分析题目条件,根据相等的度数求出相等的角,从而得到三角形全等的条件或判断出等腰三角形是解题的关键,也是本题的难点.二、填空题11.如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为3.【考点】矩形的性质;线段垂直平分线的性质;等边三角形的判定与性质.【分析】由矩形的性质和线段垂直平分线的性质证出OA=AB=OB=3,得出BD=2OB=6,由勾股定理求出AD即可.【解答】解:∵四边形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵AE垂直平分OB,∴AB=AO,∴OA=AB=OB=3,∴BD=2OB=6,∴AD===3;故答案为:3.【点评】此题考查了矩形的性质、等边三角形的判定与性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.12.如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE= 22.5 度.【考点】矩形的性质.【分析】首先证明△AEO是等腰直角三角形,求出∠OAB,∠OAE即可.【解答】解:∵四边形ABCD是矩形,∴AC=BD,OA=OC,OB=OD,∴OA=OB═OC,∴∠OAD=∠ODA,∠OAB=∠OBA,∴∠AOE=∠OAC+∠OCA=2∠OAC,∵∠EAC=2∠CAD,∴∠EAO=∠AOE,∵AE⊥BD,∴∠AEO=90°,∴∠AOE=45°,∴∠OAB=∠OBA==67.5°,∴∠BAE=∠OAB﹣∠OAE=22.5°.故答案为22.5°.【点评】本题考查矩形的性质、等腰直角三角形的性质等知识,解题的关键是发现△AEO是等腰直角三角形这个突破口,属于中考常考题型.13.如图,在平行四边形ABCD中,延长AD到点E,使DE=AD,连接EB,EC,DB请你添加一个条件EB=DC ,使四边形DBCE是矩形.【考点】矩形的判定;平行四边形的性质.【分析】利用平行四边形的判定与性质得到四边形DBCE为平行四边形,结合“对角线相等的平行四边形为矩形”来添加条件即可.【解答】解:添加EB=DC.理由如下:∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC,∴DE∥BC,又∵DE=AD,∴DE=BC,∴四边形DBCE为平行四边形.又∵EB=DC,∴四边形DBCE是矩形.故答案是:EB=DC.【点评】本题考查了矩形的判定,平行四边形的判定与性质.解题时,也可以根据“有一内角为直角的平行四边形为矩形”填空.14.如图,在矩形ABCD中,AD=4,点P是直线AD上一动点,若满足△PBC是等腰三角形的点P有且只有3个,则AB的长为4或2.【考点】矩形的性质;等腰三角形的性质;勾股定理.【专题】分类讨论.【分析】要求直线AD上满足△PBC是等腰三角形的点P有且只有3个时的AB长,则需要分类讨论:①当AB=AD时;②当AB<AD时,③当AB>AD时.【解答】解:①如图,当AB=AD时满足△PBC是等腰三角形的点P有且只有3个,△P1BC,△P2BC是等腰直角三角形,△P3BC是等腰直角三角形(P3B=P3C),则AB=AD=4.②当AB<AD,且满足△PBC是等腰三角形的点P有且只有3个时,如图,∵P2是AD的中点,∴BP2==,易证得BP1=BP2,又∵BP1=BC,∴=4∴AB=2.③当AB>AD时,直线AD上只有一个点P满足△PBC是等腰三角形.故答案为:4或2.【点评】本题考查矩形的性质,等腰三角形的性质等知识,解题的关键是理解题意,属于中考常考题型.15.已知矩形的对角线AC与BD相交于点O,若AO=1,那么BD= 2 .【考点】矩形的性质.【分析】根据矩形的性质:矩形的对角线互相平分且相等,求解即可.【解答】解:在矩形ABCD中,∵角线AC与BD相交于点O,AO=1,∴AO=CO=BO=DO=1,∴BD=2.故答案为:2.【点评】本题考查了矩形的性质,解答本题的关键是掌握矩形的对角线互相平分且相等的性质.16.如图,矩形ABCD中,对角线AC=2,E为BC边上一点,BC=3BE,将矩形ABCD沿AE所在的直线折叠,B点恰好落在对角线AC上的B′处,则AB= .【考点】矩形的性质;翻折变换(折叠问题).【分析】先根据折叠得出BE=B′E,且∠AB′E=∠B=90°,可知△EB′C是直角三角形,由已知的BC=3BE得EC=2B′E,得出∠ACB=30°,从而得出AC与AB的关系,求出AB的长.【解答】解:由折叠得:BE=B′E,∠AB′E=∠B=90°,∴∠EB′C=90°,∵BC=3BE,∴EC=2BE=2B′E,∴∠ACB=30°,在Rt△ABC中,AC=2AB,∴AB=AC=×2=,故答案为:.【点评】本题考查了矩形的性质和翻折问题,明确翻折前后的图形全等是本题的关键,同时还运用了直角三角形中如果一条直角边是斜边的一半,那么这条直角边所对的锐角是30°这一结论,是常考题型.17.如图,延长矩形ABCD的边BC至点E,使CE=BD,连结AE,如果∠ADB=30°,则∠E= 15 度.【考点】矩形的性质.【分析】连接AC,由矩形性质可得∠E=∠DAE、BD=AC=CE,知∠E=∠CAE,而∠ADB=∠CAD=30°,可得∠E度数.【解答】解:连接AC,∵四边形ABCD是矩形,∴AD∥BE,AC=BD,且∠ADB=∠CAD=30°,∴∠E=∠DAE,又∵BD=CE,∴CE=CA,∴∠E=∠CAE,∵∠CAD=∠CAE+∠DAE,∴∠E+∠E=30°,即∠E=15°,故答案为:15.【点评】本题主要考查矩形性质,熟练掌握矩形对角线相等且互相平分、对边平行是解题关键.18.如图,在Rt△ABC中,∠C=90°,BC=3,AC=4,M为斜边AB上一动点,过M作MD⊥AC,过M作ME⊥CB于点E,则线段DE的最小值为.【考点】矩形的判定与性质;垂线段最短.【分析】连接CM,先证明四边形CDME是矩形,得出DE=CM,再由三角形的面积关系求出CM的最小值,即可得出结果.【解答】解:连接CM,如图所示:∵MD⊥AC,ME⊥CB,∴∠MDC=∠MEC=90°,∵∠C=90°,∴四边形CDME是矩形,∴DE=CM,∵∠C=90°,BC=3,AC=4,∴AB===5,当CM⊥AB时,CM最短,此时△ABC的面积=AB•CM=BC•AC,∴CM的最小值==,∴线段DE的最小值为;故答案为:.【点评】本题考查了矩形的判定与性质、勾股定理、直角三角形面积的计算方法;熟练掌握矩形的判定与性质,并能进行推理论证与计算是解决问题的关键.三、解答题19.如图,菱形ABCD的对角线AC,BD相交于点O,且DE∥AC,AE∥BD.求证:四边形AODE是矩形.【考点】矩形的判定;菱形的性质.【专题】证明题.【分析】根据菱形的性质得出AC⊥BD,再根据平行四边形的判定定理得四边形AODE为平行四边形,由矩形的判定定理得出四边形AODE是矩形.【解答】证明:∵四边形ABCD为菱形,∴AC⊥BD,∴∠AOD=90°,∵DE∥AC,AE∥BD,∴四边形AODE为平行四边形,∴四边形AODE是矩形.【点评】本题考查了矩形的判定以及菱形的性质,还考查了平行四边形的判定,掌握平行四边形的判定方法是解题的关键.20.如图,已知BD是矩形ABCD的对角线.(1)用直尺和圆规作线段BD的垂直平分线,分别交AD、BC于E、F(保留作图痕迹,不写作法和证明).(2)连结BE,DF,问四边形BEDF是什么四边形?请说明理由.【考点】矩形的性质;作图—基本作图.【专题】矩形菱形正方形.【分析】(1)分别以B、D为圆心,比BD的一半长为半径画弧,交于两点,确定出垂直平分线即可;(2)连接BE,DF,四边形BEDF为菱形,理由为:由EF垂直平分BD,得到BE=DE,∠DEF=∠BEF,再由AD与BC平行,得到一对内错角相等,等量代换及等角对等边得到BE=BF,再由BF=DF,等量代换得到四条边相等,即可得证.【解答】解:(1)如图所示,EF为所求直线;(2)四边形BEDF为菱形,理由为:证明:∵EF垂直平分BD,∴BE=DE,∠DEF=∠BEF,∵AD∥BC,∴∠DEF=∠BFE,∴∠BEF=∠BFE,∴BE=BF,∵BF=DF,∴BE=ED=DF=BF,∴四边形BEDF为菱形.【点评】此题考查了矩形的性质,菱形的判定,以及作图﹣基本作图,熟练掌握性质及判定是解本题的关键.21.已知:如图,在矩形ABCD中,点E在边AB上,点F在边BC上,且BE=CF,EF⊥DF,求证:BF=CD.【考点】矩形的性质;全等三角形的判定与性质.【专题】证明题;图形的全等;矩形菱形正方形.【分析】由四边形ABCD为矩形,得到四个角为直角,再由EF与FD垂直,利用平角定义得到一对角互余,利用同角的余角相等得到一对角相等,利用ASA得到三角形BEF与三角形CFD全等,利用全等三角形对应边相等即可得证.【解答】证明:∵四边形ABCD是矩形,∴∠B=∠C=90°,∵EF⊥DF,∴∠EFD=90°,∴∠EFB+∠CFD=90°,∵∠EFB+∠BEF=90°,∴∠BEF=∠CFD,在△BEF和△CFD中,,∴△BEF≌△CFD(ASA),∴BF=CD.【点评】此题考查了矩形的性质,以及全等三角形的判定与性质,熟练掌握矩形的性质是解本题的关键.22.如图,矩形ABCD的对角线AC,BD相交于点O,若AB=AO,求∠ABD的度数.【考点】矩形的性质.【分析】首先证明OA=OB,再证明△ABO是等边三角形即可解决问题.【解答】解:∵四边形ABCD是矩形,∴OA=OC,OB=OD,AC=BD,∴AO=OB,∵AB=AO,∴AB=AO=BO,∴△ABO是等边三角形,∴∠ABD=60°.【点评】本题考查矩形的性质、等边三角形的判定和性质等知识,熟练掌握矩形的性质是解题的关键,属于基础题,中考常考题型.23.如图,将▱ABCD的边AB延长到点E,使BE=AB,连接DE,交边BC于点F.(1)求证:△BEF≌△CDF;(2)连接BD、CE,若∠BFD=2∠A,求证:四边形BECD是矩形.【考点】矩形的判定;全等三角形的判定与性质;平行四边形的性质.【专题】证明题.【分析】(1)先根据平行四边形的性质得出AB=CD,AB∥CD,再由BE=AB得出BE=CD,根据平行线的性质得出∠BEF=∠CDF,∠EBF=∠DCF,进而可得出结论;(2)根据平行四边形的性质可得AB∥CD,AB=CD,∠A=∠DCB,再由AB=BE,可得CD=EB,进而可判定四边形BECD是平行四边形,然后再证明BC=DE即可得到四边形BECD是矩形【解答】(1)证明:∵四边形ABCD是平行四边形,∵AB=CD,AB∥CD.∵BE=AB,∴BE=CD.∵AB∥CD,∴∠BEF=∠CDF,∠EBF=∠DCF,在△BEF与△CDF中,∵,∴△BEF≌△CDF(ASA);(2)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∠A=∠DCB,∵AB=BE,∴CD=EB,∴四边形BECD是平行四边形,∴BF=CF,EF=DF,∵∠BFD=2∠A,∴∠BFD=2∠DCF,∴∠DCF=∠FDC,∴DF=CF,∴DE=BC,∴四边形BECD是矩形.【点评】此题主要考查的值矩形的判定及平行四边形的性质,关键是掌握平行四边形的对边相等;对角相等;对角线互相平分.24.如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N处.(1)求证:四边形AECF是平行四边形;(2)若AB=6,AC=10,求四边形AECF的面积.【考点】矩形的性质;平行四边形的判定与性质;翻折变换(折叠问题).【分析】(1)首先由矩形的性质和折叠的性质证得AB=CD,AD∥BC,∠ANF=90°,∠CME=90°,易得AN=CM,可得△ANF≌△CME(ASA),由平行四边形的判定定理可得结论;(2)由AB=6,AC=10,可得BC=8,设CE=x,则EM=8﹣x,CM=10﹣6=4,在Rt△CEM中,利用勾股定理可解得x,由平行四边形的面积公式可得结果.【解答】(1)证明:∵折叠,∴AM=AB,CN=CD,∠FNC=∠D=90°,∠AME=∠B=90°,∴∠ANF=90°,∠CME=90°,∵四边形ABCD为矩形,∴AB=CD,AD∥BC,∴AM=CN,∴AM﹣MN=CN﹣MN,即AN=CM,在△ANF和△CME中,,∴△ANF≌△CME(ASA),∴AF=CE,又∵AF∥CE,∴四边形AECF是平行四边形;(2)解:∵AB=6,AC=10,∴BC=8,设CE=x,则EM=8﹣x,CM=10﹣6=4,在Rt△CEM中,(8﹣x)2+42=x2,解得:x=5,∴四边形AECF的面积的面积为:EC•AB=5×6=30.【点评】本题主要考查了折叠的性质、矩形的性质、平行四边形的判定定理和勾股定理等,综合运用各定理是解答此题的关键.25.如图,矩形ABCD中,延长AB至E,延长CD至F,BE=DF,连接EF,与BC、AD分别相交于P、Q 两点.(1)求证:CP=AQ;(2)若BP=1,PQ=2,∠AEF=45°,求矩形ABCD的面积.【考点】矩形的性质;全等三角形的判定与性质.【分析】(1)由矩形的性质得出∠A=∠ABC=∠C=∠ADC=90°,AB=CD,AD=BC,AB∥CD,AD∥BC,证出∠E=∠F,AE=CF,由ASA证明△CFP≌△AEQ,即可得出结论;(2)证明△BEP、△AEQ是等腰直角三角形,得出BE=BP=1,AQ=AE,求出PE=BP=,得出EQ=PE+PQ=3,由等腰直角三角形的性质和勾股定理得出AQ=AE=3,求出AB=AE﹣BE=2,DQ=BP=1,得出AD=AQ+DQ=4,即可求出矩形ABCD的面积.【解答】(1)证明:∵四边形ABCD是矩形,∴∠A=∠ABC=∠C=∠ADC=90°,AB=CD,AD=BC,AB∥CD,AD∥BC,∴∠E=∠F,∵BE=DF,∴AE=CF,在△CFP和△AEQ中,,∴△CFP≌△AEQ(ASA),∴CP=AQ;(2)解:∵AD∥BC,∴∠PBE=∠A=90°,∵∠AEF=45°,∴△BEP、△AEQ是等腰直角三角形,∴BE=BP=1,AQ=AE,∴PE=BP=,∴EQ=PE+PQ=+2=3,∴AQ=AE=3,∴AB=AE﹣BE=2,∵CP=AQ,AD=BC,∴DQ=BP=1,∴AD=AQ+DQ=3+1=4,∴矩形ABCD的面积=AB•AD=2×4=8.【点评】本题考查了矩形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理等知识;熟练掌握矩形的性质,证明三角形全等是解决问题的关键.26.阅读下面材料:在数学课上,老师请同学思考如下问题:如图1,我们把一个四边形ABCD的四边中点E,F,G,H依次连接起来得到的四边形EFGH是平行四边形吗?小敏在思考问题是,有如下思路:连接AC.结合小敏的思路作答(1)若只改变图1中四边形ABCD的形状(如图2),则四边形EFGH还是平行四边形吗?说明理由;参考小敏思考问题方法解决一下问题:(2)如图2,在(1)的条件下,若连接AC,BD.①当AC与BD满足什么条件时,四边形EFGH是菱形,写出结论并证明;②当AC与BD满足什么条件时,四边形EFGH是矩形,直接写出结论.【考点】矩形的判定与性质;平行四边形的判定;菱形的判定与性质.【分析】(1)如图2,连接AC,根据三角形中位线的性质得到EF∥AC,EF=AC,然后根据平行四边形判定定理即可得到结论;(2)由(1)知,四边形EFGH是平行四边形,且FG=BD,HG=AC,于是得到当AC=BD时,FG=HG,即可得到结论;(3)根据平行线的性质得到GH⊥BD,GH⊥GF,于是得到∠HGF=90°,根据矩形的判定定理即可得到结论.【解答】解:(1)是平行四边形,证明:如图2,连接AC,∵E是AB的中点,F是BC的中点,∴EF∥AC,EF=AC,同理HG∥AC,HG=AC,综上可得:EF∥HG,EF=HG,故四边形EFGH是平行四边形;(2)AC=BD.理由如下:由(1)知,四边形EFGH是平行四边形,且FG=BD,HG=AC,∴当AC=BD时,FG=HG,∴平行四边形EFGH是菱形,(3)当AC⊥BD时,四边形EFGH为矩形;理由如下:同(2)得:四边形EFGH是平行四边形,∵AC⊥BD,GH∥AC,∴GH⊥BD,∵GF∥BD,∴GH⊥GF,∴∠HGF=90°,∴四边形EFGH为矩形.【点评】此题主要考查了中点四边形,关键是掌握三角形中位线定理,三角形的中位线平行于第三边且等于第三边的一半.。
九年级数学 第一章 特殊平行四边形2 矩形的性质与判定第2课时 矩形的判定作业

A.4 B.4.8 C.5.2 D.6
第10题图
11.如图,在△ABC 中,AC 的垂直平分线分别交 AC,AB 于点 D, F,BE⊥DF 交 DF 的延长线于点 E,已知∠A=30°,BC=2,AF=BF, 则四边形 BCDE 的面积是_2___3____.
第11题图
12.如图,在矩形ABCD中,AE=AF,过点E作EH⊥EF交DC于点H,过F 作FG⊥EF交BC于点G,连接GH,当AD,AB满足______A__B_=__A(D关系)时, 四边形EFGH为矩形.
第12题图
13.如图,AB∥CD,PM,PN,QM,QN分别为∠APQ,∠BPQ,∠CQP, ∠DQP的平分线.求证:四边形PMQN是矩形.
证明:∵PM,PN,QM 分别平分∠APQ,∠BPQ,∠CQP,∴∠MPQ
=21 ∠APQ,∠NPQ=21 ∠BPQ,∠MQP=21 ∠CQP.∵∠APQ+∠BPQ =180°,∴∠MPQ+∠NPQ=90°,即∠MPN=90°.同理可证∠MQN =90°.∵AB∥CD,∴∠APQ+∠CQP=180°,∴∠MPQ+∠MQP=90 °,即∠PMQ=90°,∴四边形 PMQN 是矩形
9.如图,顺次连接四边形ABCD各边的中点,得到四边形EFGH,在下列
条件中,能使四边形EFGH为矩形的是( C)
A.AB=CD B.AC=BD C.AC⊥BD D.AD∥BC
第9题图
10.如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点(且 点P不与点B,C重合),PE⊥AB于点E,PF⊥AC于点F,则EF的最小值为
第5题图
6.(2019·江西)如图,四边形ABCD中,AB=CD,AD=BC,对角线AC, BD相交于点O,且OA=OD.求证:四边形ABCD是矩形.
2020北师大版九年级数学上《矩形的判定》常考题(含有详细的解析)

【文库独家】矩形的判定常考题1一、选择题(共13小题)1、下列说法错误的是()A、Rt△ABC中AB=3,BC=4,则AC=5B、极差仅能反映数据的变化范围C、经过点A(2,3)的双曲线一定经过点B(﹣3,﹣2)D、连接菱形各边中点所得的四边形是矩形2、如图所示,已知四边形ABCD是平行四边形,下列结论中,不一定正确的是()A、AB=CDB、AC=BDC、当AC⊥BD时,它是菱形D、当∠ABC=90°时,它是矩形3、如图,在△ABC中,点E、D、F分别在边AB、BC、CA上,且DE∥CA,DF∥BA.下列四个判断中,不正确的是()A、四边形AEDF是平行四边形B、如果∠BAC=90°,那么四边形AEDF是矩形C、如果AD平分∠BAC,那么四边形AEDF是矩形D、如果AD⊥BC且AB=AC,那么四边形AEDF是菱形4、下列命题中,错误的是()A、矩形的对角线互相平分且相等B、对角线互相垂直的四边形是菱形C、等腰梯形的两条对角线相等D、等腰三角形底边上的中点到两腰的距离相等5、如图,顺次连接四边形ABCD各边中点得四边形EFGH,要使四边形EFGH为矩形,应添加的条件是()A、AB∥DCB、AC=BDC、AC⊥BDD、AB=DC6、如图,四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是()A、AB=CDB、AD=BCC、AB=BCD、AC=BD7、下列命题中错误的是()A、平行四边形的对边相等B、两组对边分别相等的四边形是平行四边形C、矩形的对角线相等D、对角线相等的四边形是矩形8、平行四边形ABCD中,AC、BD是两条对角线,如果添加一个条件,即可推出平行四边形ABCD是矩形,那么这个条件是()A、AB=BCB、AC=BDC、AC⊥BDD、AB⊥BD9、顺次连接菱形的各边中点所得到的四边形是()A、平行四边形B、菱形C、矩形D、正方形10、在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是()A、测量对角线是否相互平分B、测量两组对边是否分别相等C、测量一组对角线是否都为直角D、测量其中三角形是否都为直角11、已知AB、CD是⊙O的两条直径,则四边形ADBC一定是()A、等腰梯形B、正方形C、菱形D、矩形12、下列命题中正确的是()A、对角线互相垂直的四边形是菱形B、对角线相等的四边形是矩形C、对角线相等且互相垂直的四边形是菱形D、对角线相等的平行四边形是矩形13、甲、乙、丙、丁四位同学到木工厂参观时,一木工师傅要他们拿尺子帮助检测一个窗框是否是矩形,他们各自做了如下检测:检测后,他们都说窗框是矩形,你认为最有说服力的是()A、甲量得窗框两组对边分别相等B、乙量得窗框的对角线相等C、丙量得窗框的一组邻边相等D、丁量得窗框的两组对边分别相等且两条对角线也相等二、填空题(共5小题)14、用两块完全重合的等腰三角形纸片能拼出什么图形_________.15、在四边形ABCD中,对角线AC与BD互相平分,交点为O.在不添加任何辅助线的前提下,要使四边形ABCD 成为矩形,还需添加一个条件,这个条件可以是_________.16、如图,四边形ABCD是平行四边形,使它为矩形的条件可以是_________.17、如图,从下列图中选择四个拼图板,可拼成一个矩形,正确的选择方案为_________.(只填写拼图板的代码)18、如图,将矩形纸ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,若EH=3厘米,EF=4厘米,则边AD的长是_________厘米.三、解答题(共12小题)19、如图,在△ABC中,∠ACB=90°,BC的垂直平分线交BC于D,交AB于点E,F在DE上,并且AF=CE.(1)求证:四边形ACEF是平行四边形;(2)当∠B的大小满足什么条件时,四边形ACEF是菱形?请证明你的结论;(3)四边形ACEF有可能是矩形吗?为什么?20、如图,在ABCD中,对角线AC,BD交于O点(BD>AC),E、F是BD上的两点.(1)当点E、F满足条件:_________时,四边形AECF是平行四边形(不必证明);(2)若四边形AECF是矩形,那么点E、F的位置应满足什么条件?并给出证明.21、如图所示,在四边形ABCD中,点E、F是对角线BD上的两点,且BE=FD.(1)若四边形AECF是平行四边形,求证:四边形ABCD是平行四边形;(2)若四边形AECF是菱形,那么四边形ABCD也是菱形吗?为什么?(3)若四边形AECF是矩形,试判断四边形ABCD是否为矩形,不必写理由.22、如图,△ABC中,AB=AC,AD、AE分别是∠BAC和∠BAC和外角的平分线,BE⊥AE.(1)求证:DA⊥AE;(2)试判断AB与DE是否相等?并证明你的结论.23、如图,在平行四边形ABCD中,E,F为BC上两点,且BE=CF,AF=DE.求证:(1)△ABF≌△DCE;(2)四边形ABCD是矩形.24、将两块全等的含30°角的三角尺如图1摆放在一起,设较短直角边为1,另一直角边的长为.(1)四边形ABCD是平行四边形吗?说出你的结论和理由:_________.(2)如图2,将Rt△BCD沿射线BD方向平移到Rt△B1C1D1的位置,四边形ABC1D1是平行四边形吗?说出你的结论和理由:_________.(3)在Rt△BCD沿射线BD方向平移的过程中,当点B的移动距离为_________时,四边形ABC1D1为矩形,其理由是_________;当点B的移动距离为_________时,四边形ABC1D1为菱形,其理由是_________.(图3、图4用于探究)25、直角三角形通过剪切可以拼成一个与该直角三角形面积相等的矩形.方法如下:请你用上面图示的方法,解答下列问题:(1)对任意三角形,设计一种方案,将它分成若干块,再拼成一个与原三角形面积相等的矩形;(2)对任意四边形,设计一种方案,将它分成若干块,再拼成一个与原四边形面积相等的矩形.26、如图,AB=CD=ED,AD=EB,BE⊥DE,垂足为E.(1)求证:△ABD≌△EDB;(2)只需添加一个条件,即_________等,可使四边形ABCD为矩形.请加以证明.27、已知:如图,在△ABC中,D是AC的中点,E是线段BC延长线上一点,过点A作BE的平行线与线段ED的延长线交于点F,连接AE,CF.(1)求证:AF=CE;(2)若AC=EF,试判断四边形AFCE是什么样的四边形,并证明你的结论.28、如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)求证:BD=CD;(2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论.29、如图,O是菱形ABCD对角线的交点,作DE∥AC,CE∥BD,DE、CE交于点E,四边形OCED是矩形吗?说说你的理由.30、如图,平行四边形ABCD中,EF过AC的中点O,与边AD、BC分别相交于点E、F.(1)试说明四边形AECF是平行四边形;(2)若EF与AC垂直,试说明四边形AECF是菱形;(3)当EF与AC有怎样的数量和位置关系时,四边形AECF是矩形(不必证明).答案与评分标准一、选择题(共13小题)1、下列说法错误的是()A、Rt△ABC中AB=3,BC=4,则AC=5B、极差仅能反映数据的变化范围C、经过点A(2,3)的双曲线一定经过点B(﹣3,﹣2)D、连接菱形各边中点所得的四边形是矩形考点:勾股定理;反比例函数图象上点的坐标特征;矩形的判定;极差。
1.2 矩形的性质和判定 课时练习(含答案解析)

北师大版数学九年级上册第一章第二节矩形的性质与判定课时练习一、单选题(共15题)1.如图,小贤为了体验四边形的不稳定性,将四根木条用钉子钉成一个矩形框架ABCD,B 与D两点之间用一根橡皮筋拉直固定,然后向右扭动框架,观察所得四边形的变化,下列判断错误的是()A.四边形ABCD由矩形变为平行四边形B.BD的长度增大C.四边形ABCD的面积不变D.四边形ABCD的周长不变答案:C解析:解答:∵矩形框架ABCD,B与D两点之间用一根橡皮筋拉直固定,然后向右扭动框架,∴AD=BC,AB=DC,∴四边形变成平行四边形,故A正确;BD的长度增加,故B正确;∵拉成平行四边形后,高变小了,但底边没变,∴面积变小了,故C错误;∵四边形的每条边的长度没变,∴周长没变,故D正确,故选C.分析: 由将四根木条用钉子钉成一个矩形框架ABCD,B与D两点之间用一根橡皮筋拉直固定,然后向右扭动框架,由平行四边形的判定定理知四边形变成平行四边形,由于四边形的每条边的长度没变,所以周长没变;拉成平行四边形后,高变小了,但底边没变,所以面积变小了,BD的长度增加了2.如图,在矩形ABCD中,对角线AC、BD交于点O,以下说法错误的是()A.∠ABC=90°B.AC=BD C.OA=OB D.OA=AD 答案:D解析:解答: ∵四边形ABCD是矩形,∴∠ABC=∠BCD=∠CDA=∠BAD=90°,AC=BD,OA=12AC,OB=12BD,∴OA=OB,∴A、B、C正确,D错误,故选:D.分析: 矩形的性质:四个角都是直角,对角线互相平分且相等;由矩形的性质容易得出结论3.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,AD=12,则四边形ABOM的周长为()A.17 B.18 C.19 D.20答案:D解析:解答: ∵O是矩形ABCD的对角线AC的中点,M是AD的中点,∴∠ABC=∠D=90°,CD=AB=5,BC=AD=12,OA=OB,OM为△ACD的中位线,∴OM=12CD=2.5,AC=22512=13,∵O是矩形ABCD的对角线AC的中点,∴BO=12AC=6.5,∴四边形ABOM的周长为AB+AM+BO+OM=5+6+6.5+2.5=20,故选:D.分析: 本题考查了矩形的性质、三角形的中位线的性质以及直角三角形斜边上的中线等于斜边的一半这一性质,题目的综合性很好4. 如图,矩形的两条对角线的一个交角为60°,两条对角线的长度的和为20cm,则这个矩形的一条较短边的长度为()A.10cm B.8cm C.6cm D.5cm 答案:D解析:解答: ∵四边形ABCD是矩形,∴OA=OC=12AC,OD=OB=12BD,AC=BD,∴OA=OB,∵AC+BD=20,∴AC=BD=10cm,∴OA=OB=5cm,∵OA=OB,∠AOB=60°,∴△OAB是等边三角形,∴AB=OA=5cm,故选D.分析:根据矩形的性质求出OA=OB,AC=BD,求出AC的长,求出OA和OB的长,推出等边三角形OAB,求出AB=OA,代入求出即可5.如图,矩形ABCD的两条对角线交于点O,若∠AOD=120°,AB=6,则AC等于()A.8 B.10 C.12 D.18答案:C解析:解答: ∵矩形ABCD的两条对角线交于点O,∴OA=OB=12 AC,∵∠AOD=120°,∴∠AOB=180°-∠AOD=180°-120°=60°,∴△AOB是等边三角形,∴OA=AB=6,∴AC=2OA=2×6=12.故选C.分析: 本题考查了矩形的性质,等边三角形的判定与性质,熟记矩形的对角线互相平分且相等是解题的关键6.如图,在矩形ABCD中,对角线AC、BD相交于点O,若∠ACB=30°,AB=2,则BD的长为()A.4 B.3 C.2 D.1答案:A解析:解答: 在矩形ABCD中,∠ABC=90°,∵∠ACB=30°,AB=2,∴AC=2AB=2×2=4,∵四边形ABCD是矩形,∴BD=AC=4.故选A.分析: 根据直角三角形30°角所对的直角边等于斜边的一半可得AC=2AB,再根据矩形的对角线相等解答7.一个矩形被分成不同的4个三角形,其中绿色三角形的面积占矩形面积的15%,黄色的三角形的面积是212,则该矩形的面积为()A.602B.702 C.1202 D.1402答案:A解析:解答:∵黄色三角形与绿色三角形面积之和是矩形面积的50%;∴矩形的面积=21÷(50%-15%)=21÷35%=60(2).故选:A.分析: 黄色三角形与绿色三角形面积之和是矩形面积的50%,而绿色三角形面积占矩形面积的15%,所以黄色三角形面积占矩形面积的(50%-15%)=35%,已知黄色三角形面积是21平方厘米,用除法即可得出矩形的面积8.如图,矩形ABCD中,AC交BD于点O,∠AOD=60°,OE⊥AC.若AD=3,则OE=()A.1 B.2 C.3 D.4答案:A解析:解答: ∵四边形ABCD是矩形,∠AOD=60°,∴△ADO是等边三角形,∴OA=3,∠OAD=60°,∴∠OAE=30°,∵OE⊥AC,∴△OAE是一个含30°的直角三角形,∴OE=1,故选A分析: 先根据等边三角形的性质得出OA=3,根据△OAE是一个含30°的直角三角形,进而得出OE的长度9.矩形的一内角平分线把矩形的一条边分成3和5两部分,则该矩形的周长是()A.16 B.22或16 C.26 D.22或26答案:D解析:解答: ∵四边形ABCD是矩形,∴AD=BC,AB=CD,AD∥BC,∴∠AEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠AEB=∠ABE,∴AE=AB,①当AE=3,DE=5时,AD=BC=3+5=8,AB=CD=AE=3,即矩形ABCD的周长是AD+AB+BC+CD=8+3+8+3=22;②当AE=5,DE=3时,AD=BC=3+5=8,AB=CD=AE=5,即矩形ABCD的周长是AD+AB+BC+CD=8+5+8+5=26;即矩形的周长是22或26分析: 根据矩形性质得出AD=BC,AB=CD,AD∥BC,求出AE=AB,分为当AE=3或AE=5两种情况,求出即可10.矩形具有而菱形不具有的性质是()A.对角线相等B.两组对边分别平行C.对角线互相平分D.两组对角分别相等答案:A解析:解答: ∵矩形具有的性质是:对角线相等且互相平分,两组对边分别平行,两组对角分别相等;菱形具有的性质是:两组对边分别平行,对角线互相平分,两组对角分别相等;∴矩形具有而菱形不具有的性质是:对角线相等.故选A.分析: 根据矩形与菱形的性质求解即可求得答案.注意矩形与菱形都是平行四边形.11.矩形的一内角平分线把矩形的一条边分成3cm和5cm的两部分,则此矩形的周长为()A.16cm B.22cm C.26cm D.22cm或26cm答案:D解析:解答: ∵四边形ABCD是矩形,∴AD=BC,AB=CD,AD∥BC,∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠AEB=∠ABE,∴AB=AE,当AE=3cm时,AB=AE=3=CD,AD=3cm+5cm=8cm=BC,∴此时矩形ABCD的周长是AB+BC+CD+AD=3cm+8cm+3cm+8cm=22cm;当AE=5cm时,AB=AE=5cm=CD,AD=3cm+5cm=8cm=BC,∴此时矩形ABCD的周长是AB+BC+CD+AD=5cm+8cm+5cm+8cm=26cm;故选D.分析: 根据矩形的性质得出AD=BC,AB=CD,AD∥BC,推出∠AEB=∠CBE,求出∠ABE=∠CBE=∠AEB,推出AB=AE=CD,分为两种情况,代入求出即可12. 矩形的对角线所成的角之一是65°,则对角线与各边所成的角度是()A.57.5°B.32.5°C.57.5°,23.5°D.57.5°,32.5°答案:D解析:解答: ∵四边形ABCD是矩形,∴∠ABC=90°,AD∥BC,AB∥CD,AC=BD,AO=OC,OB=OD,∴OB=OA=OC=OD,∠OAB=∠OCD,∠DAO=∠OCB,∴∠OAD=∠ODA,∠OCB=∠OBC,∠ODC=∠OCD,∠OAB=∠OBA=12×(180°-∠AOB)=12×(180°-65°)=57.5°,∵∠ABC=90°,∴∠ACB=90°-57.5°=32.5°,即∠OAD=∠ODA=∠OBC=∠OCB=32.5°,∠OAB=∠OBA=∠ODC=∠OCD=57.5°,对角线与各边所成的角度是57.5°和32.5°,故选D.分析: 根据矩形的性质得出∠ABC=90°,AD∥BC,AB∥CD,AC=BD,AO=OC,OB=OD,推出OB=OA=OC=OD,∠OAB=∠OCD,∠DAO=∠OCB,求出∠OAD=∠ODA,∠OCB=∠OBC,∠ODC=∠OCD,根据三角形内角和定理求出即可13.矩形具有而菱形不具有的性质是()A.对角线相等B.对角线平分一组对角C.对角线互相平分D.对角线互相垂直答案:A解析:解答:矩形的对角线互相平分且相等;菱形的对角线互相垂直平分,并且每一条对角线平分一组对角;根据矩形和菱形的性质得出:矩形具有而菱形不具有的性质是:对角线相等;故选:A.分析: 根据矩形好菱形的性质,容易得出结论.14.过四边形的各个顶点分别作对角线的平行线,若这四条平行线围成一个矩形,则原四边形一定是()A.对角线相等的四边形B.对角线垂直的四边形C.对角线互相平分且相等的四边形D.对角线互相垂直平分的四边形答案:B解析:解答:如图所示:∵四边形EFGH是矩形,∴∠E=90°,∵EF∥AC,EH∥BD,∴∠E+∠EAG=180°,∠E+∠EBO=180°,∴∠EAO=∠EBO=90°,∴四边形AEBO是矩形,∴∠AOB=90°,∴AC⊥BD,故选:B.分析: 由矩形的性质得出∠E=90°,由平行线的性质得出∠EAO=∠EBO=90°,证出四边形AEBO是矩形,得出∠AOB=90°即可15. 若矩形的一条对角线与一边的夹角是40°,则两条对角线所夹的锐角的度数为()A.80°B.60°C.45°D.40°答案:A解析:解答:图形中∠1=40°,∵矩形的性质对角线相等且互相平分,∴OB=OC,∴△BOC是等腰三角形,∴∠OBC=∠1,则∠AOB=2∠1=80°.故选A.分析: 根据矩形的性质,得△BOC是等腰三角形,再由等腰三角形的性质进行答题.二、填空题(共5题)16.如图,平行四边形ABCD的对角线相交于点O,请你添加一个条件__________(只添一个即可),使平行四边形ABCD是矩形.答案: AC=BD.答案不唯一解析:解答: 添加的条件是AC=BD,理由是:∵AC=BD,四边形ABCD是平行四边形,∴平行四边形ABCD是矩形,故答案为:AC=BD.答案不唯一分析:根据矩形的判定定理(对角线相等的平行四边形是矩形)推出即可17.平行四边形ABCD的对角线相交于点O,分别添加下列条件:①∠ABC=90°;②AC⊥BD;③AB=BC;④AC平分∠BAD;⑤AO=DO.使得四边形ABCD是矩形的条件有________答案:①⑤解析:解答: 要使得平行四边形ABCD为矩形添加:①∠ABC=90°;⑤AO=DO2个即可分析:四边形ABCD是平行四边形,要成为矩形加上一个角为直角或对角线相等即可18.如图,要使平行四边形ABCD是矩形,则应添加的条件是________(只填一个).答案:∠ABC=90°或AC=BD(不唯一)解析:解答: 根据矩形的判定定理:对角线相等的平行四边形是矩形,有一个角是直角的平行四边形是矩形故添加条件:∠ABC=90°或AC=BD.故答案为:∠ABC=90°或AC=BD分析: 根据矩形的判定定理:①对角线相等的平行四边形是矩形,②有一个角是直角的平行四边形是矩形,直接添加条件即可19.如图,在四边形ABCD中,对角线AC,BD相交于点O,且AO=CO,BO=DO,在不添加任何辅助线的前提下,要想该四边形成为矩形,只需再加上一个条件是________(填上你认为正确的一个答案即可)答案:∠DAB=90°解析:解答:可以添加条件∠DAB=90°,∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,∵∠DAB=90°,∴四边形ABCD是矩形,故答案为:∠DAB=90°分析: 根据对角线互相平分线的四边形为平行四边形可得四边形ABCD是平行四边形,添加条件∠DAB=90°可根据有一个角是直角的平行四边形是矩形进行判定20.木工做一个长方形桌面,量得桌面的长为15cm,宽为8cm,对角线为17cm,这个桌面_________(填”合格”或”不合格”)答案:合格解析:解答:∵AB=DC=8cm,BC=AD=15cm,∴四边形ABCD是平行四边形,∵AC=17cm,AB=8cm,BC=15cm,∴AC2=AB2+BC2,∴∠B=90°,∴四边形ABCD是矩形,即四边形是长方形,故答案为:合格.分析: 先退出思想是平行四边形,根据勾股定理的逆定理求出∠B=90°,根据矩形的判定推出即可三、解答题(共5题)21.如图,平行四边形ABCD中,点E、F、G、H分别在AB、BC、CD、AD边上且AE=CG,AH=CF.(1)求证:四边形EFGH是平行四边形;答案:解答: (1)在平行四边形ABCD中,∠A=∠C,又∵AE=CG,AH=CF,∴△AEH≌△CGF.∴EH=GF.在平行四边形ABCD中,AB=CD,AD=BC,∴AB-AE=CD-CG,AD-AH=BC-CF,即BE=DG,DH=BF.又∵在平行四边形ABCD中,∠B=∠D,∴△BEF≌△DGH.∴GH=EF.∴四边形EFGH是平行四边形.(2)如果AB=AD,且AH=AE,求证:四边形EFGH是矩形答案:解答: (2)证明:连接BD,AC.∵AH=AE,AD=AB,∴AH AE AD AB∴HE∥BD,同理可证,GH∥AC,∵四边形ABCD是平行四边形且AB=AD,∴平行四边形ABCD是菱形,∴AC⊥BD,∴∠EHG=90°.又∵四边形EFGH是平行四边形,∴四边形EFGH是矩形解析:分析: (1)易证得△AEH≌△CGF,从而证得BE=DG,DH=BF.故有,△BEF≌△DGH,根据两组对边分别相等的四边形是平行四边形而得证.(2)由题意知,平行四边形ABCD是菱形,连接AC,BD,则有AC⊥BD,由AB=AD,且AH=AE可证得HE∥BD,同理可得到HG∥AC,故HG⊥HE,又由1知四边形HGFE是平行四边形,故四边形HGFE 是矩形. 22.如图,在△ABC 中,AB =AC =5,BC =6,AD 为BC 边上的高,过点A 作AE ∥BC ,过点D 作DE ∥AC ,AE 与DE 交于点E ,AB 与DE 交于点F ,连结BE .求四边形AEBD 的面积答案: 解答:∵AE ∥BC ,BE ∥AC ,∴四边形AEDC 是平行四边形.∴AE =CD .在△ABC 中,AB =AC ,AD 为BC 边上的高,∴∠ADB =90°,BD =CD . ∴BD =AE .∴平行四边形AEBD 是矩形.在Rt △ADC 中,∠ADB =90°,AC =5,CD =12BC =3, ∴AD =2253 =4.∴四边形AEBD 的面积为:BD •AD =CD •AD =3×4=12.解析:分析:利用平行四边形的性质和矩形的判定定理推知平行四边形AEBD 是矩形.在Rt △ADC 中,由勾股定理可以求得AD 的长度,由等腰三角形的性质求得CD (或BD )的长度,则矩形的面积=长×宽=AD •BD =AD •CD23.如图,在平行四边形ABCD 中,∠BAD 的平分线交CD 于点E ,交BC 的延长线于点F ,连接BE ,∠F =45°.求证:四边形ABCD 是矩形答案:解答:证明:∵四边形ABCD 是平行四边形,∴AD∥BC.∴∠DAF=∠F.∵∠F=45°,∴∠DAE=45°.∵AF是∠BAD的平分线,∴∠EAB=∠DAE=45°.∴∠DAB=90°.又∵四边形ABCD是平行四边形,21世纪教育网∴四边形ABCD是矩形.解析:分析: 欲证明四边形ABCD是矩形,只需推知∠DAB是直角24.有一块形状如图所示的玻璃,不小心把DEF部分打碎,现在只测得AB=60cm,BC=80cm,∠A=120°,∠B=60°,∠C=150°,你能设计一个方案,根据测得的数据求出AD的长吗?答案:AD=140cm.解析:解答:过C作CM∥AB,交AD于M,∵∠A=120°,∠B=60°,∴∠A+∠B=180°,∴AM∥BC,∵AB∥CM,∴四边形ABCM是平行四边形,∴AB=CM=60cm,BC=AM=80cm,∠B=∠AMC=60°,∵AD∥BC,∠C=150°,∴∠D=180°-150°=30°,∴∠MCD=60°-30°=30°=∠D,∴CM=DM=60cm,∴AD=60cm+80cm=140cm.分析: 过C作CM∥AB,交AD于M,推出平行四边形ABCM,推出AM=BC=80cm,AB=CM=60cm,∠B=∠AMC,求出∠D=∠MCD,求出CM=DM=60cm,代入AD=AM+DM 求出即可25.如图,△ABC中,AB=AC,AD、AE分别是∠BAC与∠BAC的外角的平分线,BE⊥AE.求证:AB=DE答案:见解答解析:解答:∵AD、AE分别是∠BAC与∠BAC的外角的平分线,∴∠BAD+∠EAB=12(∠BAC+∠FAB)=90°,∵BE⊥AE,∴DA∥BE,∵AB=AC,∴∠ABC=∠ACB,∵∠FAB=∠ABC+∠ACB=2∠ABC,且∠FAB=2∠EAB,∴∠ABC=∠EAB,∴AE∥BD,∴四边形AEBD为平行四边形,且∠BEA=90°,∴四边形AEBD为矩形,∴AB=DE.分析: 先由角平分线和等腰三角形的性质证明AE∥BD,再由AD、AE分别是∠BAC与∠BAC 的外角的平分线可证得DA⊥AE,可得AD∥BE,可证得四边形ADBE为矩形,可得结论。
中考数学复习矩形【培优讲练】

9.4.1 矩形同步培优讲练综合知识点1:矩形的定义有一个角是直角的平行四边形叫做矩形.知识点2:矩形的性质1.矩形具有平行四边形的所有性质;2.矩形的对角线相等;3.矩形的四个角都是直角;4.矩形是轴对称图形,它有两条对称轴.知识点3:矩形的判定1.定义:有一个角是直角的平行四边形叫做矩形.2.对角线相等的平行四边形是矩形.3.有三个角是直角的四边形是矩形.一、矩形性质的认识【例1】下列性质中矩形不一定具有的性质是()A.对角线互相平分B.对角线互相垂直C.对角线相等D.既是轴对称图形又是中心对称图形【例2】关于矩形,下列说法错误的是()A.四个角相等B.对角线相等C.四条边相等D.对角线互相平分【例3】下列说法中能判定四边形是矩形的是()A .有两个角为直角的四边形B .对角线互相平分的四边形C .对角线相等的四边形D .四个角都相等的四边形二、利用矩形的性质求角度【例1】如图,将矩形ABCD 绕点A 顺时针旋转到矩形AB C D '''的位置,若旋转角为20︒,则1∠为( )A .100︒B .110︒C .120︒D .130︒【例2】如图,在矩形ABCD 中,对角线AC ,BD 交于点O .若60AOB ∠=︒,则OCB ∠的度数为( )A .30°B .35°C .40°D .45°【例3】如图,在矩形ABCD 中,AC ,BD 相交于点O ,AE 平分BAD ∠交BC 于E ,若30DAO ∠=︒,则BEO ∠的度数为( )A .45︒B .60︒C .65︒D .75︒三、利用矩形的性质求线段【例1】如图,在矩形COED 中,点D 的坐标是()3,4,则CE 的长是( ).A .3B .4C .5D .6【例2】如图,在矩形ABCD 中,2AB =,3BC =,点E 在BC 边上,且1BE =,F 为AB 边上的一个动点,连接EF ,以EF 为边作等边EFG ,且点G 在矩形ABCD 内,连接CG ,则CG 的最小值为( )A .3B .2C .1 D【例3】如图,在ABC 中,3AB =,4AC =,5BC =,P 为边BC 上一动点,PE AB ⊥于E ,PF AC ⊥于F ,M 为EF 中点,则AM 的最小值为__.四、利用矩形的性质求面积【例1】如图,矩形ABCD 中,4=AD ,10AB =,点E 为直线AB 的一点,连EC ,平移EC 至DF ,连接DE 、CF ,则四边形DECF 的面积是( )A .15B .40C .20D .30【例2】如图,点P 是矩形ABCD 的对角线AC 上一点,过点P 作EF //BC ,分别交AB ,CD 于点E ,F ,连接PB ,.PD 若2AE =,8.PF =则图中阴影部分的面积为______.【例3】如图,在矩形ABCD 中,AB=4,BC=6,点E 为BC 的中点,将△ABE 沿AE 折叠,使点B 落在矩形内点F 处,连接CF ,则S △ECF 的值为____.五、矩形有关的折叠问题【例1】如图,矩形ABCD 中,AB =4,AD =6,点E 为AD 中点,点P 为线段AB 上一个动点,连接EP ,将△APE 沿PE 折叠得到△FPE ,连接CE ,DF ,当线段DF 被CE 垂直平分时,AF 则线的长为_______.【例2】如图,有一张矩形纸条ABCD,AB=10cm,BC=3cm,点M,N分别在边AB,CD上,CN=1cm.现将四边形BCNM沿MN折叠,使点B,C分别落在点B',C'上.在点M从点A运动到点B的过程中,若边MB'与边CD交于点E,则点E相应运动的路径长为_____cm.【例3】如图,在长方形ABCD中,点M为CD中点,将△MBC沿BM翻折至△MBE,若∠AME=α,∠ABE=β,则α与β之间的数量关系为________.△,C D'与AB交于点E,若【例4】如图,将长方形纸片ABCD沿BD所在直线折叠,得到BC D'∠=︒,则2125∠的度数为_________.六、矩形的判定 解答题【例1】如图,ABC ∆中,AC BC =,CD AB ⊥于点D ,四边形DBCE 是平行四边形.求证:四边形ADCE 是矩形.【例2】如图,在ABC ∆中,//AE BC ,AB AC =,D 为BC 中点,AE BD =.(1)求证:四边形AEBD 是矩形.(2)连接CE 交AB 于点F ,若30ABE ∠=︒,2AE =,直接写出EC 的长.【例3】问题情境:在综合实践课上,老师让同学们探究“平面直角坐标系中的旋转问题”,如图,在平面直角坐标系中,四边形AOBC 是矩形,()0,0O ,点()5,0A ,点()0,3B .操作发现:以点A 为中心,顺时针旋转矩形AOBC ,得到矩形ADEF ,点O ,B ,C 的对应点分别为D ,E ,F .(1)如图,当点D 落在BC 边上时,求点D 的坐标;(2)继续探究:如图,当点D 落在线段BE 上时,AD 与BC 交于点H ,求证:ADB AOB ≌;≠,将ABC沿AC翻折至AB C',连接B D'.【例4】在平行四边形ABCD中,AB BC'=;(1)求证:B E DE'∥;(2)求证:B D AC(3)在平行四边形ABCD中,已知:460,,将ABC沿AC翻折至AB C',连接B D'.若以BC B=∠=︒A、C、D、B'为顶点的四边形是矩形,求AC的长.BC=.对角线AC的垂直平分线分别交AB、CD于点【例5】已知:如图,在矩形ABCD中,4AB=,2E、F.求线段CF的长.【例6】如图①,四边形ABCD是一张矩形纸片,AD =1,AB =5.在矩形ABCD的边AB上取一点M,在CD上取一点N,将纸片沿MN折叠,使MB与DN相交于点K,得到△MNK,如图①.(1)当点M与点A重合(如图②),且∠BMN=15°时,求△MNK的面积;(2)请你利用备用图探究怎样能够能够使折叠出△MNK的面积最大,最大值是多少【例7】如图,在矩形ABCD中,AB=6,BC=8,动点E从点A出发,沿边AD,DC向点C运动,A,D关于直线BE的对称点分别为M,N,连接MN.(1)如图,当E在边AD上且DE=2时,求∠AEM的度数.(2)当N在BC延长线上时,求DE的长,并判断直线MN与直线BD的位置关系,说明理由.(3)当直线MN恰好经过点C DE的长.1.如图,在长方形ABCD中,连接AC,以A为圆心,适当长为半径画弧,分别交AD,AC于点E,F,分别以E,F为圆心,大于12EF的长为半径画弧,两弧在DAC∠内交于点H,画射线AH交DC于点M.若68ACB∠=︒,则DMA∠的大小为()A.34︒B.56︒C.66︒D.68︒2.如图,矩形ABCD 中,3AB =,两条对角线,AC BD 所夹的钝角为120︒,则对角线BD 的长为( )A .3B .6C .D .103.如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,过点A 作AE BD ⊥,垂足为点E ,若2EAC CAD ∠=∠,则BAE ∠的度数为( )A .20︒B .22.5︒C .30︒D .45︒4.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,过点O 作OE BD ⊥,交AD 于点E ,若20ACB ∠=︒,则AOE ∠的大小为__________.5.如图,在矩形ABCD 中,对角线AC 、BD 相交于O ,DE AC ⊥于E ,:1:2EDC EDA ∠∠=,则ODE ∠的度数是___________.6.如图,将矩形ABCD 绕点A 顺时针旋转35︒,得到矩形AB C D ''',则α∠=______.︒.7.如图,四边形ABCD 为矩形,则∠ABC =________;若OA =5,则BD =________.8.如图,延长矩形ABCD 边BC 至点E ,使CE BD =,连接AE ,如果40ADB ∠=︒,则E ∠=______.9.如图,平面直角坐标系中,长方形OABC ,点A ,C 分别在y 轴,x 轴的正半轴上,6OA =,3OC =,45DOE ∠=︒,OD ,OE 分别交BC ,AB 于点D ,E ,且2CD =,则点E 坐标为______.9.4.1 矩形同步培优讲练综合知识点1:矩形的定义有一个角是直角的平行四边形叫做矩形.知识点2:矩形的性质1.矩形具有平行四边形的所有性质;2.矩形的对角线相等;3.矩形的四个角都是直角;4.矩形是轴对称图形,它有两条对称轴.知识点3:矩形的判定1.定义:有一个角是直角的平行四边形叫做矩形.2.对角线相等的平行四边形是矩形.3.有三个角是直角的四边形是矩形.一、矩形性质的认识【例1】下列性质中矩形不一定具有的性质是()A.对角线互相平分B.对角线互相垂直C.对角线相等D.既是轴对称图形又是中心对称图形【答案】B【解析】解:A、矩形的对角线互相平分,故此选项不符合题意;B、矩形的对角线不一定互相垂直,故此选项符合题意;C、矩形的对角线相等,故此选项不符合题意;D、矩形既是轴对称图形又是中心对称图形,故此选项不符合题意;故选:B.【例2】关于矩形,下列说法错误的是()A.四个角相等B.对角线相等C.四条边相等D.对角线互相平分【答案】C【解析】解:矩形的性质为四个角相等,对角线相等,对角线互相平分,故选:C .【例3】下列说法中能判定四边形是矩形的是( )A .有两个角为直角的四边形B .对角线互相平分的四边形C .对角线相等的四边形D .四个角都相等的四边形【答案】D【解析】解:A 、有3个角为直角的四边形是矩形,故错误;B 、对角线互相平分的四边形是平行四边形,故错误;C 、对角线相等的平行四边形,故错误;D 、四个角都相等的四边形是矩形,故正确;故选:D .二、利用矩形的性质求角度【例1】如图,将矩形ABCD 绕点A 顺时针旋转到矩形AB C D '''的位置,若旋转角为20︒,则1∠为()A .100︒B .110︒C .120︒D .130︒【答案】B【解析】解:设C D ''与BC 交于点E ,如图所示.∵旋转角为20︒,∴20DAD '∠=︒,∴9070BAD DAD ''∠=︒-∠=︒.∵360BAD B BED D '''∠+∠+∠+∠=︒,∴360709090110BED '∠=︒-︒-︒-︒=︒,∴1110BED '∠=∠=︒.故选:B .【例2】如图,在矩形ABCD 中,对角线AC ,BD 交于点O.若60AOB ∠=︒,则OCB ∠的度数为( )A .30°B .35°C .40°D .45° 【答案】A【解析】解:∵四边形ABCD 是矩,∠AOB =60°,∴∠BCD =90°,∠COD =60°,OC =OD =1122AC BD =, ∴△COD 是等边三角形,∴∠OCD =60°,∴∠OCB =90°﹣∠OCD =30°,故选:A .【例3】如图,在矩形ABCD 中,AC ,BD 相交于点O ,AE 平分BAD ∠交BC 于E ,若30DAO ∠=︒,则BEO ∠的度数为( )A .45︒B .60︒C .65︒D .75︒【答案】D【解析】解:∵四边形ABCD 是矩形,∴∠BAD=∠ABC=90°,OA=12AC ,OB=12BD ,AC=BD , ∴OA=OB ,∵AE 平分∠BAD ,∴∠BAE=∠DAE=45°,∴△ABE 是等腰直角三角形,∴AB=BE ,∵∠DAO=30°,∴∠EAO=15°,∴∠BAO=45°+15°=60°,∴△AOB 是等边三角形,∴∠ABO=60°,OB=AB ,∴∠OBE=90°-60°=30°,OB=BE ,∴∠BEO=12×(180°-30°)=75°. 故选:D .三、利用矩形的性质求线段【例1】如图,在矩形COED 中,点D 的坐标是()3,4,则CE 的长是( ).A .3B .4C .5D .6【答案】C【解析】 解:四边形COED 是矩形, CE OD ∴=,点D 的坐标是()3,4,5OD ∴=,5CE ∴=,故选:C .【例2】如图,在矩形ABCD 中,2AB =,3BC =,点E 在BC 边上,且1BE =,F 为AB 边上的一个动点,连接EF ,以EF 为边作等边EFG ,且点G 在矩形ABCD 内,连接CG ,则CG 的最小值为( )A .3B .2C .1 D【答案】B【解析】解:如图,以EC 为边作等边三角形ECH ,过点H 作HN BC ⊥于N ,HM AB ⊥于M ,又∵90ABC ∠=︒,∴四边形MHNB 是矩形,∴MH BN =,∵1BE =,2AB =,3BC =,∴2EC =,∵EHC △是等边三角形,HN EC ⊥,∴2EC EH ==,1EN NC ==,60HEC ∠=︒,∴2BN MH ==,∵FGE △是等边三角形,∴FE FG =,60FEG HEC ∠=︒=∠,∴FEH GEC ∠=∠,在FEH △和GEC 中,FE GE FEH GEC HE EC =⎧⎪∠=∠⎨⎪=⎩,∴()SAS FEH GEC ≌,∴FH GC =,∴当FH AB ⊥时,FH 有最小值,即GC 有最小值,∴点F 与点M 重合时,2FH HM ==,故选B .【例3】如图,在ABC 中,3AB =,4AC =,5BC =,P 为边BC 上一动点,PE AB ⊥于E ,PF AC ⊥于F ,M 为EF 中点,则AM 的最小值为__.【答案】65【解析】解:如图,连接AP ,3AB =,4AC =,5BC =,90EAF ∴∠=︒,PE AB ⊥于E ,PF AC ⊥于F ,∴四边形AEPF 是矩形,EF ∴,AP 互相平分.且EF AP =,EF ∴,AP 的交点就是M 点.当AP 的值最小时,AM 的值就最小,∴当⊥AP BC 时,AP 的值最小,即AM 的值最小.1122AP BC AB AC ⋅=⋅, AP BC AB AC ∴⋅=⋅,3AB =,4AC =,5BC =,534AP ∴=⨯,125AP ∴=, 65AM ∴=; 故答案为:65.四、利用矩形的性质求面积【例1】如图,矩形ABCD 中,4=AD ,10AB =,点E 为直线AB 的一点,连EC ,平移EC 至DF ,连接DE 、CF ,则四边形DECF 的面积是( )A .15B .40C .20D .30【答案】B【解析】解:已知平移EC 至DF ,则EC DF ∥,EC DF =四边形CEDF 是平行四边形,则122410402CEDF CED S S CD DA CD DA ==⨯⨯⨯==⨯= 故选:B .【例2】如图,点P 是矩形ABCD 的对角线AC 上一点,过点P 作EF//BC ,分别交AB ,CD 于点E ,F ,连接PB ,.PD 若2AE =,8.PF =则图中阴影部分的面积为______.【答案】16【解析】解:作PM AD ⊥于M ,交BC 于N .则有四边形AEPM ,四边形DFPM ,四边形CFPN ,四边形BEPN 都是矩形,ADC ABC SS ∴=,AMP AEP S S =,PBE PBN S S =,PFD PDM S S =,PFC PCN S S =, ADC AMP PFC ABC AEP PCN S S S S S S ∴--=--,即BEPN DFPM S S =矩形矩形, 12882DFP PBE S S ∴==⨯⨯=, 8816S ∴=+=阴影,故答案为:16【例3】如图,在矩形ABCD 中,AB=4,BC=6,点E 为BC 的中点,将△ABE 沿AE 折叠,使点B 落在矩形内点F 处,连接CF ,则S △ECF 的值为____.【答案】10825【解析】如图,连接BF ,,∵BC=6,点E 为BC 的中点,∴BE=3, 又∵AB=4,∴,由折叠可知:BF ⊥AE (对应点的连线必垂直于对称轴),∴BH=431255 AB BEAE•⨯==,∴BF=245,∵EF=BE=CE,∴∠BFC=90°,根据勾股定理可得:185,S△ECF=12S△BCF=12×12×185×245=10825,故答案为:108 25.五、矩形有关的折叠问题【例1】如图,矩形ABCD中,AB=4,AD=6,点E为AD中点,点P为线段AB上一个动点,连接EP,将△APE沿PE折叠得到△FPE,连接CE,DF,当线段DF被CE垂直平分时,AF则线的长为_______.【答案】18 5【解析】解:连接AF交PE于O,连接DF,∵矩形ABCD,∴BC=AD=6,CD=AB=4,∵线段DF被CE垂直平分时,∴CF=CD=4,ED=EF,∵将△APE沿PE折叠得到△FPE,∴PE是线段AF的垂直平分线,∴AE=EF,AF=2OA,∴AE=ED=EF,∵AD=AE+ED=6,∴AE=ED=EF=3,设AP=x,则PF=AP=x,BP=4-x,PC=PF+FC=x+4,∵PC2=BP2+BC2,即(x+4)2=(4-x)2+62∴x=94,∵154 =,∴1122PE AO PA AE=,即115193 2424AO⨯=⨯⨯,解得:AO=95,∴AF=2AO=185.故答案为185.【例2】如图,有一张矩形纸条ABCD,AB=10cm,BC=3cm,点M,N分别在边AB,CD上,CN=1cm.现将四边形BCNM沿MN折叠,使点B,C分别落在点B',C'上.在点M从点A运动到点B的过程中,若边MB'与边CD交于点E,则点E相应运动的路径长为_____cm.1【解析】如图1中,当点M与A重合时,AE=EN,设AE=EN=xcm,在Rt△ADE中,则有x2=32+(9﹣x)2,解得x=5,∴DE=10﹣1-5=4(cm),如图2中,当点M运动到MB′⊥AB时,DE′的值最大,DE′=10﹣1﹣3=6(cm),如图3中,当点M运动到点B′落在CD时,NB'=DB′(即DE″)=10﹣1=(9(cm),∴点E的运动轨迹E→E′→E″,运动路径=EE′+E′B′=6﹣4+6﹣(91)(cm).1.【例3】如图,在长方形ABCD中,点M为CD中点,将△MBC沿BM翻折至△MBE,若∠AME=α,∠ABE=β,则α与β之间的数量关系为________.【答案】3290βα-=︒【解析】如图,延长BE 交AD 于点N ,设BN 交AM 于点O .∵四边形ABCD 是矩形,∴∠D=∠C=90°,AD=BC ,∵DM=MC ,∴△ADM ≌△BCM(SAS),∴∠DAM=∠CBM ,∵△BME 是由△MBC 翻折得到,∴∠CBM=∠EBM=12(90°−β),∵∠DAM=∠MBE ,∠AON=∠BOM ,∴∠OMB=∠ANB=90°−β,在△MBE 中,∵∠EMB+∠EBM=90°,∴α+(90°−β)+12(90°−β)=90°,整理得:3β−2α=90°故答案为:3β−2α=90°【例4】如图,将长方形纸片ABCD 沿BD 所在直线折叠,得到BC D '△,C D '与AB 交于点E ,若125∠=︒,则2∠的度数为_________.【答案】40︒【解析】解:在矩形ABCD 中,90C ∠=︒,AB CD ∥,∴190CBD ∠+∠=︒,1ABD ∠=∠,125∠=︒,∴65CBD ∠=︒,25ABD ∠=︒,由折叠可知:2ABD CBD ∠+∠=∠,∴2652540CBD ABD ∠=∠-∠=︒-︒=︒.故答案为:40︒.六、矩形的判定 解答题【例1】如图,ABC ∆中,AC BC =,CD AB ⊥于点D ,四边形DBCE 是平行四边形.求证:四边形ADCE 是矩形.【答案】见解析【解析】证明:AC BC =,CD AB ⊥,90ADC ∴∠=︒,AD BD =.在DBCE 中,//EC BD ,EC BD =,//EC AD ∴,EC AD =.∴四边形ADCE 是平行四边形.又90ADC ∠=︒,∴四边形ADCE 是矩形.【例2】如图,在ABC ∆中,//AE BC ,AB AC =,D 为BC 中点,AE BD =.(1)求证:四边形AEBD 是矩形.(2)连接CE 交AB 于点F ,若30ABE ∠=︒,2AE =,直接写出EC 的长.【答案】见解析【解析】(1)证明://AE BD ,AE BD =,∴四边形AEBD 是平行四边形,AB AC =,D 为BC 的中点,AD BC ∴⊥,90ADB ∴∠=︒,∴四边形AEBD 是矩形.(2)解:四边形AEBD 是矩形,90AEB DBE ∴∠=∠=︒,2BD AE ==,30ABE ∠=︒,BE ∴==24BC BD =,EC ∴=,【例3】问题情境:在综合实践课上,老师让同学们探究“平面直角坐标系中的旋转问题”,如图,在平面直角坐标系中,四边形AOBC 是矩形,()0,0O ,点()5,0A ,点()0,3B .操作发现:以点A 为中心,顺时针旋转矩形AOBC ,得到矩形ADEF ,点O ,B ,C 的对应点分别为D ,E ,F .(1)如图,当点D 落在BC 边上时,求点D 的坐标;(2)继续探究:如图,当点D 落在线段BE 上时,AD 与BC 交于点H ,求证:ADB AOB ≌;【答案】(1)()1,3D (2)证明见解析【解析】(1)解:∵()5,0A ,()0,3B ,∴5OA =,3OB =,∵四边形AOBC 是矩形,∴3AC OB ==,5OA BC ==,90OBC C ∠=∠=︒,∵矩形ADEF 是由矩形AOBC 旋转得到,∴5AD AO ==,在Rt ADC 中,4CD =,∴1BD BC CD =-=,∴()1,3D .(2)证明:四边形ADEF 是矩形,90ADE ∴∠=︒,点D 在线段BE 上,90ADB ∴∠=︒,由旋转的性质得:AD AO =,在Rt ADB 和Rt AOB △中,AB AB AD AO =⎧⎨=⎩, ∴()Rt Rt HL ADB AOB ≅.【例4】在平行四边形ABCD 中,AB BC ≠,将ABC 沿AC 翻折至AB C ',连接B D '.(1)求证:B E DE '=;(2)求证:B D AC '∥;(3)在平行四边形ABCD 中,已知:460BC B =∠=︒,,将ABC 沿AC 翻折至AB C ',连接B D '.若以A 、C 、D 、B '为顶点的四边形是矩形,求AC 的长.【答案】(1)见解析(2)见解析(3)【解析】(1)证明:∵四边形ABCD 是平行四边形,∴AD BC AD BC =,∥,∴EAC ACB ∠=∠,由折叠的性质可知ACB ACB BC B C ''∠=∠=,,∴EAC ACB '∠=∠,BC AD '=,∴AE CE =,∴B C CE AD AE '-=-,即B E DE '=;(2)证明:∵B E DE '=, ∴()11802CB D B DA B ED '''∠=∠=︒-∠, 同理可得()11802EAC ECA AEC ∠=∠=︒-∠, ∵AEC B ED '∠=∠,∴ACB CB D ''∠=∠,∴B D AC '∥;(3)解:分两种情况:①如图1所示:∵四边形ACDB 是矩形,∴90CAB '∠=︒,∴90BAC ∠=︒,∵=60B ∠︒,∴30ACB ∠=︒, ∴122AB BC ==,∴AC②如图2所示:∵四边形ACB D '是矩形,∴90ACB '∠=︒,∴90ACB ∠=︒,∵460BC B =∠=︒,,∴30BAC ∠=︒,∴28AB AC ==,∴AC综上所述:AC 的长为【例5】已知:如图,在矩形ABCD 中,4AB =,2BC =.对角线AC 的垂直平分线分别交AB 、CD 于点E 、F .求线段CF 的长.【答案】52CF =【解析】解:连接AF ,如图所示:∵四边形ABCD 是矩形,∴42CD AB AD BC ====,,∵EF 是AC 的垂直平分线,∴AF CF =,设CF x =,则4DF CD CF x =-=- ,在Rt ADF 中,222AF DF DA +=,即22224x x =+-(),解得:x =52, ∴52CF =【例6】如图①,四边形ABCD 是一张矩形纸片,AD =1,AB =5.在矩形ABCD 的边AB 上取一点M ,在CD 上取一点N ,将纸片沿MN 折叠,使MB 与DN 相交于点K ,得到△MNK ,如图①.(1)当点M 与点A 重合(如图②),且∠BMN=15°时,求△MNK 的面积;(2)请你利用备用图探究怎样能够能够使折叠出△MNK 的面积最大,最大值是多少【答案】(1)△MNK 的面积为1 (2)△MNK 的面积最大值为1.3【解析】(1)解:∵四边形ABCD 是矩形,∴在图1、图2中,DNAB ,∴∠DNM=∠BMN ,又∵折叠,∴∠BMN =∠KMN ,∴∠KMN=∠KNM ,∴NK=MK ,∵△MNK 的面积S=12NK•AD=12NK ,∴S=12MK ,图2中,由折叠知,∠KAN=∠NAB=15°,∵DN AB ,∴∠KNA=∠NAB,∴∠KNA=∠KAN=15°,KA=KN,∴在Rt ADK中,∠DKA=30°,KA=2AD=2∴△MNK的面积S=12NK•AD=12NK,∴S=12AK=1;(2)有以下两种情况:情况一:如图3,将矩形纸片对折,使点B与D重合,此时点K也与D重合.设MK=MB=x,则AM=5-x.由勾股定理得:12+ (5-x)2=x2,解得,x=2.6,即MD= ND= 2.6,∴S△MNK= S△ACK=12×1×2.6 =1.3;情况二:如图4,将矩形纸片沿对角线AC对折,此时折痕即为AC.设MK=AX= CK=x,则DK=5-x,同理可得MK=NK=2.6,∴S△MNK= S△ACK=12×1×2.6 =1.3,∴△MNK的面积最大值为1.3.【例7】如图,在矩形ABCD中,AB=6,BC=8,动点E从点A出发,沿边AD,DC向点C运动,A,D关于直线BE的对称点分别为M,N,连接MN.(1)如图,当E在边AD上且DE=2时,求∠AEM的度数.(2)当N 在BC 延长线上时,求DE 的长,并判断直线MN 与直线BD 的位置关系,说明理由.(3)当直线MN 恰好经过点C 时,求DE 的长.【答案】(1)∠AEM =90° (2)MN BD ∥,理由见解析 (3)DE 的长为【解析】(1)解:如图1,∵DE =2,∴AE =AB =6,∵四边形ABCD 是矩形,∴∠A =90°,∴∠AEB =∠ABE =45°.由对称性知∠BEM =45°,∴∠AEM =90°.(2)解:如图2,∵AB =6,AD =8,∴BD =10,∵当N 落在BC 延长线上时,BN =BD =10,∴CN =2.设DE EN x ==,则6CE x =-,∵222CE CN EN +=,解得:103x =, ∴103DE EN ==. ∵BM =AB =CD ,MN =AD =BC ,∴Rt Rt (H )L BMN DCB ≌,∴∠DBC =∠BNM ,∴MN BD ∥;(3)分类讨论:①如图3,当E 在边AD 上时,∴∠BMC =90°,∴MC =.∵BM =AB =CD ,∠DEC =∠BCE ,∴△BCM ≌△CED(AAS),∴DE =MC =②如图4,当点E 在边CD 上时,∵BM =6,BC =8,∴MC =∴8CN MN MC =-=-设DE EN y ==,则6CE y =-,∴222(6)(8y y -=-+,解得:y =∴DE =综上所述,DE 的长为1.如图,在长方形ABCD 中,连接AC ,以A 为圆心,适当长为半径画弧,分别交AD ,AC 于点E ,F ,分别以E ,F 为圆心,大于12EF 的长为半径画弧,两弧在DAC ∠内交于点H ,画射线AH 交DC 于点M .若68ACB ∠=︒,则DMA ∠的大小为( )A .34︒B .56︒C .66︒D .68︒【答案】B【解析】 解:四边形ABCD 是长方形,90,D AD BC ∴∠=︒, 68DAC ACB ∴∠=∠=︒,由题意可知,AM 平分DAC ∠,1342DAM DAC ∴∠=∠=︒, 9056DMA DAM ∴∠=︒-∠=︒,故选:B .2.如图,矩形ABCD 中,3AB =,两条对角线,AC BD 所夹的钝角为120︒,则对角线BD 的长为( )A .3B .6C .D .10【答案】B【解析】解:在矩形ABCD 中,OA OB =,∵两条对角线,AC BD 所夹的钝角为120︒ 60AOB ∠∴=︒,AOB ∴是等边三角形,3OB AB ∴==,2236BD OB ∴==⨯=.故选:B .3.如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,过点A 作AE BD ⊥,垂足为点E ,若2EAC CAD ∠=∠,则BAE ∠的度数为( )A .20︒B .22.5︒C .30︒D .45︒【答案】B【解析】 解:四边形ABCD 是矩形,AC BD ∴=,OA OC =,OB OD =,OA OB OD ∴==,即AOB 、AOD △均为等腰三角形, OAD ODA ∠=∠∴,OAB OBA ∠=∠,AOE ∠是等腰AOD △的一个外角,2AOE OAD ODA OAD ∴∠=∠+∠=∠,2EAC CAD ∠=∠,EAO AOE ∠∠∴=,AE BD ⊥,90AEO ∴∠=︒,即AEO △是等腰直角三角形,45AOE ∴∠=︒,()()111801804567.522OAB OBA AOB ∴∠=∠=︒-∠=︒-︒=︒, 67.54522.5BAE OAB OAE ∴∠=∠-∠=︒-︒=︒,故选:B .4.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,过点O 作OE BD ⊥,交AD 于点E ,若20ACB ∠=︒,则AOE ∠的大小为__________.【答案】50︒【解析】∵四边形ABCD 是矩形,OA OB OC OD ∴===,20ACB ∠=︒,20OBC OCB ∴∠=∠=︒,40AOB OBC OCB ∴∠=∠+∠=︒,OE BD ⊥,904050AOE BOE AOB ∴∠=∠-∠=︒-︒=︒,故答案为:50︒.5.如图,在矩形ABCD 中,对角线AC 、BD 相交于O ,DE AC ⊥于E ,:1:2EDC EDA ∠∠=,则ODE ∠的度数是___________.【答案】30︒【解析】【解答】解:∵:1:2EDC EDA ∠∠=,90EDC EDA ∠+∠=︒,∴30EDC ∠=︒,60EDA ∠=︒,∵DE OC ⊥,∴9060DCE EDC ∠︒=︒-∠=,∵四边形ABCD 是矩形,∴OA OD OC ==,∴ODC 是等边三角形,∵DE OC ⊥, ∴1302ODE CDE ODC ∠=∠=∠=︒, 故答案为:30︒.6.如图,将矩形ABCD 绕点A 顺时针旋转35︒,得到矩形AB C D ''',则α∠=______.︒【答案】125 【解析】解:将矩形ABCD 绕点A 顺时针旋转35︒得到矩形AB C D ''',∴903555BAD ∠=︒-︒='︒,∵360BAD ABC AD C α∠+∠+∠'+='∠'︒,∴360909055125α∠=︒-︒-︒-︒=︒,故答案为:125.7.如图,四边形ABCD 为矩形,则∠ABC=________;若OA=5,则BD=________.【答案】 90︒ 10【解析】∵四边形ABCD 是矩形,OA=5,∴ABC ∠=90︒,210BD AC OA ===,故答案为:9010︒,. 8.如图,延长矩形ABCD 边BC 至点E ,使CE BD =,连接AE ,如果40ADB ∠=︒,则E ∠=______.【答案】20°【解析】解:连接AC,∵四边形ABCD是矩形,∴AD∥BE,AC=BD,且∠ADB=∠CAD=30°,∴∠E=∠DAE,又∵BD=CE,∴CE=CA,∴∠E=∠CAE,∵∠CAD=∠CAE+∠DAE,∴∠E+∠E=40°,即∠E=20°,故答案为:20°.9.如图,平面直角坐标系中,长方形OABC,点A,C分别在y轴,x轴的正半轴上,6OA=,3OC=,45DOE∠=︒,OD,OE分别交BC,AB于点D,E,且2CD=,则点E坐标为______.【答案】6,6 5⎛⎫ ⎪⎝⎭【解析】解:过点E作EF OD⊥,过点F作FN OC⊥,并延长NF交AB延长线于点M,如下图:则90EFO FNO ∠=∠=︒,∴90OFN EFM ∠+∠=︒,90OFN FON ∠+∠=︒ ∴FON EFM ∠=∠在矩形OABC 中,//AB OC ,63OA BC OC AB ====, ∴90M FNO ∠=∠=︒∴四边形BCNM 为矩形∴6MN BC ==,//CD MN ,BM CN = ∴AM ON =∵45DOE ∠=︒∴EFO △为等腰直角三角形,EF OF =∴FON EFM △≌△∴MF ON =,EM FN =设MF ON x ==,则6EM FN x ==-,(,6)F x x - 设直线OD 解析式为y kx =由题意可知(3,2)D ,代入y kx =得,32k =,解得23k =, 又∵点(,6)F x x -在直线OD 上,∴263x x -= 解得185x =,即181255AM ON FN EM ====, ∴65AE AM EM =-=∴点E 坐标为6,65⎛⎫ ⎪⎝⎭故答案为6,65⎛⎫ ⎪⎝⎭。
北师大版九年级数学上册第一章 1.2矩形的性质与判定 同步练习题

北师大版九年级数学上册第一章 1.2矩形的性质与判定同步练习题第1课时矩形的性质1.如图,四边形ABCD和四边形AEFG都是矩形.若∠BAG=20°,则∠DAE=(B)A.10° B.20° C.30° D.45°2.如图,在矩形ABCD中,对角线AC,BD相交于点O,∠COD=60°,AB=3,则AC的长是(A)A.6 B.8 C.10 D.123.如图,在矩形ABCD中,∠DAE=∠CBE=45°,AD=1,则△ABE的周长等于(C)A.4.83 B.4 2C.22+2 D.32+24.如图,在矩形ABCD中,O是两对角线的交点,AE⊥BD,垂足为E.若OD=2OE,AE=3,则DE的长为(B)A.2 3 B.3 C.4 D.3+15.如图,在矩形ABCD中,EG垂直平分BD于点G.若AB=4,BC=3,则线段EG的长度是(B)A.32B.158C.52D .3 6.如图,点O 是矩形ABCD 的对角线AC 的中点,M 是AD 的中点.若OM =3,BC =10,则OB7.如图,在Rt △ABC 中,∠ACB =90°,点D ,E 分别是边AB ,AC 的中点,延长BC 至F ,使CF =12BC.若EF =13,则线段AB 的长为26.8.如图,在矩形ABCD 中,AB =3,BC =4,AC 为对角线,∠DAC 的平分线AE 交DC 于点E ,则CE 的长为53.9.如图,在矩形ABCD 中,AB =3,AD =4,P 为AD 上一动点,PE ⊥AC 于点E ,PF ⊥BD 于点F ,则PE +PF 的值为125.10.如图,在矩形ABCD 中,AB =4,BC =6,将△ABE 沿着AE 折叠至△AB′E.若BE =CE ,连接B′C,则B′C 的长为185.11.如图,在矩形ABCD 中,AD =AE ,DF ⊥AE 于点F.求证:AB =DF.证明:∵四边形ABCD 是矩形, ∴AD ∥BC ,∠B =90°. ∴∠AEB =∠DAF. ∵DF ⊥AE ,∴∠AFD =∠B=90°.在△ABE 和△DFA 中,⎩⎪⎨⎪⎧∠AEB=∠DAF,∠B =∠AFD,AE =DA ,∴△ABE ≌△DFA(AAS). ∴AB =DF.12.如图,BE ,CF 是锐角△ABC 的两条高,M ,N 分别是BC ,EF 的中点.若EF =6,BC =24.(1)求证:∠ABE=∠ACF;(2)判断EF 与MN 的位置关系,并证明你的结论; (3)求MN 的长.解:(1)证明:∵BE,CF 是△ABC 的两条高, ∴∠ABE +∠A=90°,∠ACF +∠A=90°. ∴∠ABE =∠ACF. (2)MN 垂直平分EF. 证明:连接EM ,FM ,∵BE ,CF 是△ABC 的两条高,M 是BC 的中点, ∴EM =FM =12BC.∵N 是EF 的中点,∴MN ⊥EF. ∴MN 垂直平分EF. (3)∵EF=6,BC =24,∴EM =12BC =12×24=12,EN =12EF =12×6=3.在Rt △EMN 中,MN =EM 2-EN 2=122-32=315.13.如图,在矩形ABCD 中,AB =3,BC =4.M ,N 在对角线AC 上,且AM =CN ,E ,F 分别是AD ,BC 的中点.(1)求证:△ABM≌△CDN;(2)若G 是对角线AC 上的点,∠EGF =90°,求AG 的长.解:(1)证明:∵四边形ABCD 是矩形, ∴AB =CD ,AB ∥CD. ∴∠MAB =∠NCD.在△ABM 和△CDN 中, ⎩⎪⎨⎪⎧AB =CD ,∠MAB =∠NCD,AM =CN ,∴△ABM ≌△CDN(SAS). (2)连接EF ,交AC 于点O.在△AEO 和△CFO 中,⎩⎪⎨⎪⎧∠EOA=∠FOC,∠EAO =∠FCO,AE =CF ,∴△AEO ≌△CFO(AAS).∴EO =FO ,AO =CO.∴O 为EF ,AC 的中点. ∵∠EGF =90°,∴OG =12EF =12AB =32.在Rt △ABC 中,AC =AB 2+BC 2=5, ∴OA =52.∴AG =OA -OG =1或AG =OA +OG =4. ∴AG 的长为1或4.14.如图,在矩形ABCD 中,∠BAC =30°,对角线AC ,BD 交于点O ,∠BCD 的平分线CE 分别交AB ,BD 于点E ,H ,连接OE.(1)求∠BOE 的度数;(2)若BC =1,求△BCH 的面积; (3)求S △CHO ∶S △BHE .解:(1)∵四边形ABCD 是矩形, ∴AB ∥CD ,AO =CO =BO =DO.∴∠DCE =∠BEC.∵CE 平分∠BCD,∴∠BCE =∠DCE=45°. ∴∠BCE =∠BEC=45°.∴BE =BC.∵∠BAC =30°,AO =BO =CO ,∴∠OBA =30°. ∴∠BOC =60°. ∴△BOC 是等边三角形. ∴BC =BO =BE.∴∠BOE =180°-30°2=75°.(2)过点H 作HF⊥BC 于点F.∵△BOC 是等边三角形,∴∠FBH =60°. ∴BH =2BF ,FH =3BF.∵∠BCE =45°,∴CF =FH =3BF. ∴BC =3BF +BF =1.∴BF=3-12. ∴FH =3-32.∴S △BCH =12BC·FH=3-34.(3)过点C 作CN⊥BO 于点N , ∵BC =3BF +BF =BO =BE , ∴OH =OB -BH =3BF -BF. ∵∠CBN =60°,CN ⊥BO , ∴CN =32BC =3+32BF. ∵S △CHO ∶S △BHE =(12OH·CN)∶(12BE·BF),∴S △CHO ∶S △BHE =3-32.第2课时 矩形的判定1.已知▱ABCD ,下列条件中,不能判定这个平行四边形为矩形的是(B) A .∠A =∠B B .∠A =∠C C .AC =BD D .AB ⊥BC2.如图,在△ABC 中,点D 在BC 上,DE ∥AC ,DF ∥AB ,下列四个判断中不正确的是(D)A .四边形AEDF 是平行四边形B .若∠BAC=90°,则四边形AEDF 是矩形C .若AD =EF ,则四边形AEDF 是矩形 D .若AD 平分∠BAC,则四边形AEDF 是矩形3.如图,在▱ABCD 中,M ,N 是BD 上两点,BM =DN ,连接AM ,MC ,CN ,NA ,添加一个条件,使四边形AMCN 是矩形,这个条件是(A)A .OM =12AC B .MB =MOC .BD ⊥AC D .∠AMB =∠CND4.如图,在▱ABCD 中,在不添加任何辅助线的情况下,请添加一个条件∠A =90°,使平行四边形ABCD 是矩形.5.如图,已知MN∥PQ,EF 与MN ,PQ 分别交于A ,C 两点,过A ,C 两点作两组内错角的平分线,交于点B,D,则四边形ABCD是矩形.6.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,有下列四个条件:①AB=BE;②DE⊥DC;③∠ADB=90°;④CE⊥DE.如果添加其中一个条件就能使四边形DBCE成为矩形,那么正确的条件是①③④(填序号).7.如图,在△ABC中,D是AB边的中点,E是CD的中点,过点C作CF∥AB交AE的延长线于点F,连接BF.当△ABC满足AC=BC(答案不唯一)时(请添加一条件),四边形BDCF 为矩形.8.如图,在▱ABCD中,AB=6,BC=10,对角线AC⊥AB,点E,F分别是边BC,AD上的点,且BE=DF.当BE的长度为3.6时,四边形AECF是矩形.9.在坐标平面内,A,B两点的坐标分别是(1,5),(4,1),点C在y轴上,点D在坐标平面内,以A,B,C,D为顶点的四边形是矩形,则点D的坐标为(5,3)或(-3,2)或(3,1).410.如图,以△ABC的三边为边分别作等边△ACD,△ABE,△BCF,∠BAC≠60°,则下列结论:①△EBF≌△DFC;②四边形AEFD为平行四边形;③当AB=AC时,四边形AEFD是菱形;④当∠BAC=90°时,四边形AEFD是矩形.其中正确的结论是①②③.(填序号)11.已知:如图,▱ABCD 的两条对角线相交于点O ,BE ⊥AC ,CF ⊥BD ,垂足分别为E ,F ,且BE =CF.求证:▱ABCD 是矩形.证明:∵BE⊥AC,CF ⊥BD , ∴∠OEB =∠OFC=90°. 在△BEO 和△CFO 中, ⎩⎪⎨⎪⎧∠OEB=∠OFC,∠BOE =∠COF,BE =CF ,∴△BEO ≌△CFO(AAS). ∴OB =OC.∵四边形ABCD 是平行四边形, ∴OB =12BD ,OC =12AC.∴BD =AC. ∴▱ABCD 是矩形.12.如图,已知AB∥DE,AB =DE ,AC =FD ,∠CEF =90°.求证: (1)△ABF≌△DEC; (2)四边形BCEF 是矩形.证明:(1)∵AB∥DE, ∴∠A =∠D. ∵AC =FD , ∴AC -CF =DF -CF , 即AF =CD.在△ABF 和△DEC 中, ⎩⎪⎨⎪⎧AF =DC ,∠A =∠D,AB =DE ,∴△ABF ≌△DEC(SAS). (2)∵△ABF≌△DEC, ∴EC =BF ,∠ECD =∠BFA. ∴∠ECF =∠BFC.∴EC∥BF. ∴四边形BCEF 是平行四边形. ∵∠CEF =90°, ∴四边形BCEF 是矩形.13.如图,在等边△ABC 中,点D 是AC 的中点,F 是BC 的中点,以BD 为边作等边△BDE.求证:AB =EF ,且四边形AEBF 是矩形.证明:∵在等边△ABC 中,点D 是AC 的中点,F 是BC 的中点,∴∠AFB =90°,AF =BD ,∠CBD =30°. ∵△BDE 是等边三角形, ∴BE =BD ,∠DBE =60°.∴AF =BD =BE ,∠EBF =∠AFB=90°. ∴AF ∥BE. 又∵AF=BE ,∴四边形AEBF 是平行四边形. 在△ABF 和△EFB 中, ⎩⎪⎨⎪⎧AF =EB ,∠AFB =∠EBF,BF =FB ,∴△ABF ≌△EFB(SAS). ∴AB =EF.∴四边形AEBF 是矩形.14.如图,在▱ABCD 中,BC =12 cm ,∠ABC =60°,AC ⊥AB ,O 是AC ,BD 的交点,点E ,F 分别从点O 同时出发,沿射线OA 和OC 方向移动,速度都是1 cm/s.(1)求证:在整个运动过程中,四边形BEDF 始终是平行四边形;(2)设点E 和点F 同时运动的时间为t s ,当t 为何值时,四边形BEDF 是矩形?解:(1)证明:∵四边形ABCD 是平行四边形, ∴OB =OD.由题意,得OE =OF ,∴四边形BEDF 始终是平行四边形.(2)在Rt △ABC 中,∵∠BAC =90°,∠ABC =60°,BC =12, ∴∠ACB =30°,AB =12BC =6,AC =3AB =6 3.∴OA =OC =3 3.∴BO =AB 2+AO 2=62+(33)2=37. ∵当EF =BD 时,四边形BEDF 是矩形, ∴OE =OB ,即t =37.∴当t =37时,四边形BEDF 是矩形.第3课时 矩形的性质与判定的运用1.下列关于矩形的说法,正确的是(C) A .对角线相等的四边形是矩形 B .对角线互相平分的四边形是矩形 C .矩形的对角线相等且互相平分 D .矩形的对角线互相垂直且平分2.如图,已知在四边形ABCD 中,AB =DC ,AD =BC ,连接AC ,BD 交于点O.若AO =BO ,AD =3,AB =2,则四边形ABCD 的面积为(C)A .4B .5C .6D .73.如图,在矩形COED 中,点D 的坐标是(1,3),则CE4.如图,在四边形ABCD中,已知对角线AC⊥BD,垂足为O,点E,F,G,H分别为边AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH的面积为12.5.如图,在菱形ABCD中,AC,BD交于点O,AC=6,BD=8.若DE∥AC,CE∥BD,则OE 的长为5.6.如图,在△ABC中,∠BAC=90°,AB=8,AC=6,M为BC上的一动点,ME⊥AB于点E,MF⊥AC于点F,点N为EF的中点,则MN的最小值为2.4.7.如图,在矩形ABCD中,AB=1,AD=2,点E是边AD上的一个动点,把△BAE沿BE折叠,点A落在A′处.若A′恰好在矩形的对称轴上,则AE的长为1或38.如图,在矩形ABCD中,AB=4 cm,AD=12 cm,点P从点A出发,向点D以每秒1 cm 的速度运动,Q从点C出发,以每秒4 cm的速度在B,C两点之间做往返运动,两点同时出发,点P到达点D为止(同时点Q也停止),这段时间内,当运动时间为2.4_s或4_s或7.2_s 时,P,Q,C,D四点组成矩形.9.如图,在▱ABCD中,AB=6,BC=8,AC=10.(1)求证:四边形ABCD是矩形;(2)求BD的长.解:(1)证明:∵AB=6,BC=8,AC=10,∴AB2+BC2=AC2.∴∠ABC=90°.∵四边形ABCD是平行四边形,∴四边形ABCD是矩形.(2)∵四边形ABCD是矩形,∴BD=AC=10.10.如图,在菱形ABCD中,对角线AC,BD交于点O,AE⊥BC交CB延长线于点E,CF ∥AE交AD延长线于点F.(1)求证:四边形AECF是矩形;(2)连接OE,若AE=4,AD=5,求OE的长.解:(1)证明:∵四边形ABCD是菱形,∴AO=CO,AD∥BC.∵CF∥AE,∴四边形AECF 是平行四边形. ∵AE ⊥BC ,∴四边形AECF 是矩形. (2)∵四边形ABCD 是菱形, ∴AD =AB =BC =CD =5. ∵AE =4,∠AEB =90°, ∴EB =AB 2-AE 2=3. ∴EC =EB +BC =8. ∴AC =AE 2+EC 2=4 5. ∵在Rt △AEC 中,AO =CO , ∴OE =12AC =2 5.11.如图,在四边形ABCD 中,AB ∥CD ,AB =CD ,∠A =∠ADC ,E ,F 分别为AD ,CD 的中点,连接BE ,BF ,延长BE 交CD 的延长线于点M.(1)求证:四边形ABCD 为矩形;(2)若MD =6,BC =12,求BF 的长度.(结果可保留根号)解:(1)证明:∵在四边形ABCD 中,AB ∥CD ,AB =CD , ∴四边形ABCD 是平行四边形. ∴∠A +∠ADC=180°. ∵∠A =∠ADC,∴∠A =90°. ∴四边形ABCD 是矩形. (2)∵AB∥CD,∴∠ABE =∠M. ∵E 为AD 的中点,∴AE =DE.在△ABE 和△DME 中, ⎩⎪⎨⎪⎧∠AEB=∠DEM ,∠ABE =∠M,AE =DE ,∴△ABE ≌△DME(AAS). ∴AB =DM =CD =6. ∵F 为CD 的中点, ∴CF =12CD =3.∵四边形ABCD 是矩形, ∴∠C =90°.在Rt △BCF 中,BF =BC 2+CF 2=122+32=317.12.如图,在▱ABCD 中,E 是AD 上一点,连接BE ,F 为BE 的中点,且AF =BF. (1)求证:四边形ABCD 为矩形;(2)过点F 作FG⊥BE,交BC 于点G.若BE =BC ,S △BFG =5,CD =4,求CG 的长度.解:(1)证明:∵F 为BE 的中点,AF =BF ,∴AF =BF =EF. ∴∠BAF =∠ABF,∠FAE =∠AEF.在△ABE 中,∠BAF +∠ABF+∠FAE+∠AEF=180°, ∴∠BAF +∠FAE=90°,即∠BAE =90°. 又∵四边形ABCD 为平行四边形, ∴四边形ABCD 为矩形.(2)连接EG ,过点E 作EH⊥BC,垂足为H ,∵F 为BE 的中点,FG ⊥BE ,∴BG =GE. ∵S △BFG =5,CD =EH =4, ∴S △BGE =12BG·EH=10.∴BG =GE =5.在Rt △EGH 中,GH =GE 2-EH 2=3. ∴BH =5+3=8.在Rt △BEH 中,BE =BH 2+EH 2=4 5. ∴CG =BC -BG =BE -BG =45-5.13.已知:如图,在▱ABCD 中,AB >AD ,∠ADC 的平分线交AB 于点E ,作AF⊥BC 于点F ,交DE 于点G ,延长BC 至H 使CH =BF ,连接DH.(1)补全图形,并证明四边形AFHD 是矩形;(2)当AE =AF 时,猜想线段AB ,AG ,BF 之间的数量关系,并证明.解:(1)补全图形如图所示. 证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD =BC.∵CH =BF ,∴FH =BC.∴AD=FH. ∴四边形AFHD 是平行四边形. ∵AF ⊥BC ,∴四边形AFHD 是矩形. (2)猜想:AB =BF +AG.证明:延长FH 至M ,使HM =AG ,连接DM.∵AB∥CD,∴∠AED=∠EDC.∵DE平分∠ADC,∴∠ADE=∠EDC.∴∠AED=∠ADE.∴AE=AD.∵AE=AF,∴AF=AD.∵AF=DH,∴AD=DH.又∵∠GAD=∠DHM=90°,∴△DAG≌△DHM(SAS).∴∠ADE=∠HDM,∠AGD=∠M.∴∠EDC=∠HDM.∴∠GDH=∠CDM.∵AF∥DH,∴∠AGD=∠GDH.∴∠CDM=∠M.∴CD=CM=CH+HM. ∵AB=CD,CH=BF,HM=AG,∴AB=BF+AG.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
M Q P C
B A 矩形的判定练习题
1.判定一个四边形是矩形,可以先判定它是__________,再判定这个四边形有一个__________或再判定这个四边形的两条对角线__________.
2.下列说法错误的是( )
A.有一个内角是直角的平行四边形是矩形
B.矩形的四个角都是直角,并且对角线相等
C.对角线相等的平行四边形是矩形
D.有两个角是直角的四边形是矩形
3.如图,过矩形ABCD 的顶点A 作对角线BD 的平行线交CD 的延长线于E ,则△AEC 是( )
A.等边三角形
B.等腰三角形
C.不等边三角形
D.等腰直角三角形
4.如图,把两个大小完全相同的矩形拼成“L ”型图案,则∠FAC= ,∠FCA= 。
5.如图,矩形ABCD 中,AC 、BD 交于点0,点M 、N 、P 、Q 分别为OA 、OB 、OC 、OD 的中点,试判断四边形MNPQ 的形状,并证明。
6.如图,平行四边形ABCD 中,点M 为AD 的中点,BM=CM
求证:四边形ABCD 是矩形.
7.如图,平行四边形ABCD 中,AD=2AB ,点M 、N 分别为AD 、BC 的中点,连接BM 、AN 交于点P ,
连接CM 、DN 交于点Q 。
求证:四边形PNQM 是矩形.
8.如图,△ABC 中,D 为AB 上一点,且AD=BD=CD ,DE 、DF 分别平分∠ADC 、∠BDC 求证:四边形DECF 是矩形.
E B C D A G
F 4题图
3题图
9.已知:如图,BC是等腰△BED底边ED上的高,四边形ABEC是平行四边形.
求证:四边形ABCD是矩形.
10.如图,四边形ABCD中,BE=DF,AC、EF互相平分于点O,∠B=90°
求证:四边形ABCD是矩形.
11.如图,P为平行四边形ABCD外一点,且PA=PB,PC=PD
求证:四边形ABCD是矩形.
12.已知点E为平行四边形ABCD的边AB的中点,且ED=EC,
求证:四边形ABCD为矩形。
13.工人师傅做铝合金窗框分下面三个步骤进行:
(1)先截出两对符合规格的铝合金窗料(如图①),使AB=CD,EF=GH;
(2)摆放成如图②的四边形,则这时窗框的形状是______形,根据的数学原理是:_______________________;
(3)将直角尺靠紧窗框的一个角(如图③),调整窗框的边框,•当直角尺的两条直角边与窗框无缝隙时(如图④),说明窗框合格,这时窗框是_______形,根据的数学原理是:_____________________.。