水中氨氮的去除方法
氨氮超标的处理方法快速去除氨氮

氨氮超标的处理方法快速去除氨氮氨氮超标污染是当前环境保护领域的一个重要问题,它对水体造成了严重的污染,给人们的生活和环境带来了不小的困扰。
因此,快速去除水体中的氨氮成为了当前环保工作的重要任务之一。
那么,针对氨氮超标的处理方法,我们应该如何快速去除水体中的氨氮呢?首先,我们可以采用生物法去除水体中的氨氮。
生物法是通过微生物的作用来降解水中的氨氮,将其转化为无害的物质。
在处理氨氮超标的水体时,可以注入一定量的硝化细菌和反硝化细菌,利用其对氨氮的生物降解能力,加速水体中氨氮的降解过程。
此外,也可以通过人工构建湿地等方式,利用湿地植物和微生物的协同作用,去除水中的氨氮,达到净化水体的目的。
其次,化学法也是一种快速去除水体中氨氮的方法。
通过向水体中添加化学药剂,如氯化铁、硫酸铝等,可以快速将水中的氨氮与化学药剂发生反应,形成不溶性沉淀物,从而将氨氮去除。
此外,还可以利用氧化剂,如臭氧、过氧化氢等,氧化水体中的氨氮,将其转化为无害的氮气释放到大气中,达到去除氨氮的目的。
另外,物理法也是一种快速去除水体中氨氮的方法。
通过利用物理手段,如超滤、活性炭吸附等,可以将水中的氨氮去除。
超滤是利用特定的膜孔径,将水中的氨氮分离出去;而活性炭则是通过其大表面积和孔隙结构,吸附水中的氨氮,达到去除的效果。
总的来说,针对氨氮超标的处理方法,我们可以采用生物法、化学法和物理法相结合的方式,快速去除水体中的氨氮。
当然,在实际操作中,我们需要根据具体情况选择合适的方法,并且结合水体的特点和氨氮的浓度,合理地制定处理方案,以达到高效、快速去除氨氮的目的。
希望通过我们的努力,能够有效改善水体环境质量,保护人类健康和生态环境。
氨氮的预处理方法

氨氮的预处理方法氨氮是指水中所含的游离氨和铵离子的浓度。
由于氨氮具有较高的毒性和对水体生态环境的负面影响,因此在水体环境保护和污水处理过程中,需要对氨氮进行预处理以降低其浓度。
1.生物法预处理:生物法预处理是将含氨水体通过微生物活性池进行处理的一种方法。
常见的生物法预处理方法包括活性污泥法、人工湿地法和微生物滤床法。
-活性污泥法:活性污泥法是一种将含氨废水中的氨氮转化为氮气通过空气中的氧气释放出去的方法。
废水经过曝气槽,利用活性污泥中的硝化细菌进行氨氮的氨化转化为亚硝酸盐,再经过好氧池中的硝化细菌进行亚硝酸盐的硝化转化为硝酸盐。
这样,废水中的氨氮就被转化为氮气,从而达到降低氨氮浓度的目的。
-人工湿地法:人工湿地法是一种通过植物和土壤微生物降解氨氮的方法。
水体通过人工湿地,植物的根系和湿地土壤中的微生物可以吸附、分解和转化废水中的氨氮,使其减少。
这种方法具有结构简单、运行成本低的优点,并且可以同时去除其他污染物。
-微生物滤床法:微生物滤床法是将含氨水体通过填充了微生物滤料的滤床进行处理的方法。
废水通过滤床时,微生物滤料上的微生物能够将废水中的氨氮降解为无毒的亚硝酸盐、硝酸盐和氮气。
这种方法具有处理效果稳定、装置结构简单的特点。
2.物化预处理:物化预处理是通过一些物化方法将废水中的氨氮与其他物质发生反应,从而降低氨氮的浓度。
-化学沉淀法:化学沉淀法是利用化学反应将废水中的氨氮转变为不溶性物质,通过沉淀的方式从废水中除去的方法。
常用的化学沉淀剂有氢氧化钙、氢氧化镁等。
-活性炭吸附法:活性炭具有较高的比表面积和吸附性能,可以将废水中的氨氮吸附在其表面上,从而达到去除氨氮的目的。
-化学氧化法:化学氧化法是通过氧化剂将废水中的氨氮氧化为无毒的物质,如亚硝酸盐、硝酸盐等。
常用的氧化剂有臭氧、高锰酸钾等。
3.综合预处理:综合预处理是将多种预处理方法结合起来,通过联合运用提高氨氮去除效果。
一种常用的综合预处理方法是将生物法与物化法相结合。
如何有效去除污水中的氨氮?

如何有效去除污水中的氨氮?
1.折点氯化法
缺氧情况下,通过脱氮菌将亚硝酸盐和硝酸盐还原成氮气,该反应过程中,反硝化菌利用有机碳源作为电子供体,利用硝酸根中的氧进行缺氧呼吸。
折点加氯法控制的准确时,可以完全去除掉氨氮,但因为加氯量太大,造成成本过高,还有就是产酸时增大了总溶解固体,所以现在这种方法通常是用作氨氮废水的后段处理、给水处理和饮用水处理。
2.生物脱氮法
生物法除氮的工艺很多,通常有AO、AAO、UCT工艺以及生物膜、生物滤池跟氧化沟,每种工艺都包括有厌氧段和好氧段。
AAO工艺主要是通过厌氧、缺氧、好氧交替运行来达到脱氮的效果,因为丝状菌不能大量增殖,所以一般不会发生污泥膨胀的现象,SVI值一般小于100。
在运行中勿需投药,但要在厌氧缺氧段需要不断搅拌以增加溶解氧,减少停留时间,防止出现污泥大量释磷。
具有运行费用低的特点,但是脱氮效果也很难再进一步提高。
3.膜处理法
随着膜处理技术逐渐成熟,利用膜吸收法、液膜法、电渗析法和聚丙烯中空纤维膜法处理高浓度氨氮无机废水能取得很好的效果,去除率高,但是膜处理法有个严重的问题,膜的污染和稳定性,跟其他方法比较时,它的运行成本和费用都比较高,所以现在只是小规模的运用。
4.氨氮去除剂
投加氨氮去除剂,无需改变原有工艺流程,可直接投加,操作简单方便,药剂主要是通过跟游离氨和铵离子形成氮气来达到去除的效果,氨氮去除剂具有投加量少,对氨氮的去除率髙,处理结果稳定,不会产生二次污染。
同时还有脱色、降低COD等辅助功能,具体投加量可以根据实际情况来调整,成本可控。
污水去除氨氮的方法

污水去除氨氮的方法物化法1.吹脱法在碱性条件下,利用氨氮的气相浓度和液相浓度之间的气液平衡关系进行分离的一种方法,一般认为吹脱与温度、PH、气液比有关。
2.沸石脱氨法利用沸石中的阳离子与废水中的NH4+进行交换以达到脱氮的目的。
应用沸石脱氨法必须考虑沸石的再生问题,通常有再生液法和焚烧法。
采用焚烧法时,产生的氨气必须进行处理,此法适合于低浓度的氨氮废水处理,氨氮的含量应在10-20mg∕1.o3.膜分离技术利用膜的选择透过性进行氨氮脱除的一种方法。
这种方法操作方便,氨氮回收率高,无二次污染。
例如:气水分离膜脱除氨氮。
氨氮在水中存在着离解平衡,随着PH升高,氨在水中NH3形态比例升高,在一定温度和压力下,NH3的气态和液态两项达到平衡。
根据化学平衡移动的原理即吕.查德里(A.1..1.EChatelier)原理。
在自然界中一切平衡都是相对的和暂时的。
化学平衡只是在一定条件下才能保持"假若改变平衡系统的条件之一,如浓度、压力或温度,平衡就向能减弱这个改变的方向移动。
”遵从这一原理进行了如下设计理念在膜的一侧是高浓度氨氮废水,另一侧是酸性水溶液或水。
当左侧温度Tl>20o C,PHl>9,Pl>P2保持一定的压力差,那么废水中的游离氨NH4+,就变为氨分子NH3,并经原料液侧介面扩散至膜表面,在膜表面分压差的作用下,穿越膜孔,进入吸收液,迅速与酸性溶液中的H+反应生成铁盐。
4.MAP沉淀法主要是利用以下化学反应:Mg2++NH4++P043-=MgNH4P04理论上讲以一定比例向含有高浓度氨氮的废水中投加磷盐和镁盐,⅛[Mg2+][NH4+][P043-]>2.5×10-13时可生成磷酸铁镁(MAP),除去废水中的氨氮。
5.化学氧化法利用强氧化剂将氨氮直接氧化成氮气进行脱除的一种方法。
折点加氯是利用在水中的氨与氯反应生成氨气脱氨,这种方法还可以起到杀菌作用,但是产生的余氯会对鱼类有影响,故必须附设除余氯设施。
污水氨氮去除方法

污水氨氮去除方法
污水中氨氮的去除方法如下:
1、吹脱法
氨吹脱工艺是将水的pH值提到10.5到11.5的范围,在吹脱塔中反复形成水滴,通过塔内大量空气循环,气水接触,使氨气逸出。
这种方法广泛用于处理中高浓度的氨氮废水,常需加石灰,经吹脱可以回收氨气。
2、离子交换法
离子交换实际是不溶性离子化合物(离子交换剂)上的可交换离子与溶液中的其它同性离子的交换反应,是一种特殊的吸附过程。
用离子交换法去除氨氮时,常用离子交换剂沸石、活性炭等,也有研究采用合成树脂。
3、生物处理法
目前,生物法是实际应用中使用最广泛的处理低浓度氨氮废水的方法。
生物脱氮是在微生物的作用下,将有机氮和氨态氮转化为N2和NxO气体的过程,其中包括硝化和反硝化两个反应过程。
鱼缸里氨氮去除方法

鱼缸里氨氮去除方法
1. 换水法:定期更换部分鱼缸内的水,这是最基本的氨氮去除方法。
每周更换至少20%的水量,这可以有效减少氨氮浓度。
2. 定时更换过滤素材:过滤装置可以有效去除氨氮,但过滤媒介材料会渐渐饱和,需要更换。
建议每1-2个月更换一次。
3. 添加活性炭:活性炭可以吸附不同物质,包括氨氮,但定期更换是必需的。
4. 增加植物:植物可以吸收水中的氨氮和其他污染物质,种植草类和水蕨可以有效减少水中氨氮含量。
5. 良好的饲养管理:适当的喂食量和频率可以减少鱼缸内的废弃物,从而减少氨氮释放。
6. 使用氨氮转化器:这是一种专门设计用于降低水中氨氮浓度的生物制剂,可以加速氨氮转化成无害的亚硝酸盐和硝酸盐。
使用前应仔细阅读说明书并确保使用正确。
水中氨氮的去除方法

水中氨氮的去除方法
1. 曝气法:将废水通入曝气槽,通过曝气槽底部的曝气头,将空气吹进槽内,使水中的氨氮转化为氮气释放出来,从而达到除氨氮的目的。
2. 生物法:利用生物菌群对水中的氨氮进行生化分解,将其转化为无害物质,可采用生物滤池或生物反应器等设备。
3. 植物法:利用水生植物吸收水中的氨氮,将其转化为生物质,这种方法也可形成一种自然景观,常使用的植物有菖蒲、香蒲、芦苇等。
4. 化学方法:高氯酸和高氯酸钙可使氨氮在水中转化为氮气,氢氧化钠和过硫酸钠可促进氨氮的氧化反应,从而去除水中的氨氮。
自来水厂氨氮的处理方法

自来水厂中的氨氮是指水中的氨和氨基酸等有机物在水处理过程中转化而来的氨态氮,它是一种有害物质,需要进行处理以保障水质安全。
以下是自来水厂中常用的氨氮处理方法:
1.生物脱氮法:该方法利用微生物对氨氮进行降解,将氨氮转化为无害的氮气。
该方法需要建设生物反应器等设备,运行成本较高,但处理效果稳定可靠。
2.化学脱氮法:该方法通过加入化学药剂将氨氮转化为不易溶解的化学物质,然后通过沉淀、过滤等方式去除。
该方法操作简单,但药剂费用较高,且可能产生二次污染。
3.膜分离法:该方法利用反渗透、超滤等膜分离技术,将水中的氨氮分离出来。
该方法处理效果好,但设备投资和运行成本较高。
4.气浮法:该方法利用气泡将水中的氨氮浮起来,然后通过沉淀、过滤等方式去除。
该方法操作简单,但处理效果受到水质、气泡大小等因素的影响。
以上方法各有优缺点,选择合适的方法需要考虑水质、处理效果、经济性等因素。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水中氨氮的去除方法 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】
水中氨氮的去除方法
废水中的氮常以合氮有机物、氨、硝酸盐及亚硝酸盐等形式存在。
生物处理把大多数有机氮转化为氨,然后可进一步转化为硝酸盐。
水中氨氮的去除方法有多种,但目前常见的除氮工艺有生物硝化与反硝化、沸石选择性交换吸附、空气吹脱及折点氯化等。
下面我们详细介绍一下这几种水中氨氮的去除方法:
一、生物硝化与反硝化(生物陈氮法)
(一) 生物硝化在好氧条件下,通过亚硝酸盐菌和硝酸盐菌的作用,将氨氮氧化成亚硝酸盐氮和硝酸盐氮的过程,称为生物硝化作用。
生物硝化的反应过程为:
由上式可知:(1)在硝化过程中,1g氨氮转化为硝酸盐氮时需氧;(2)硝化过程中释放出H+,将消耗废水中的碱度,每氧化lg氨氮,将消耗碱度(以CaCO3计) 。
影响硝化过程的主要因素有:(1)pH值当pH值为~时(20℃),硝化作用速度最快。
由于硝化过程中pH将下降,当碱度不足时,即需投加石灰,维持pH值在以上;(2)温度温度高时,硝化速度快。
亚硝酸盐菌的最适宜水温为35℃,在15℃以下其活性急剧降低,故水温以不低于15℃为宜;(3)污泥停留时间硝化菌的增殖速度很小,其最大比生长速率为=~(温度20℃,~。
为了维持池内一定量的硝化菌群,污泥停留时间必须大于硝化菌的最小世代时间。
在实际运行中,一般应取>2 ,或>2 ;
(4)溶解氧氧是生物硝化作用中的电子受体,其浓度太低将不利于硝化反
应的进行。
一般,在活性污泥法曝气池中进行硝化,溶解氧应保持在2~3mg/L以上;(5)BOD负荷硝化菌是一类自养型菌,而BOD氧化菌是异养型菌。
若BOD5负荷过高,会使生长速率较高的异养型菌迅速繁殖,从而佼白养型的硝化菌得不到优势,结果降低了硝化速率。
所以为要充分进行硝化,BOD5负荷应维持在(BOD5)/kg(SS).d以下。
(二) 生物反硝化在缺氧条件下,由于兼性脱氮菌(反硝化菌)的作用,将NO2--N和NO3--N还原成N2的过程,称为反硝化。
反硝化过程中的电子供体(氢供体)是各种各样的有机底物(碳源)。
以甲醇作碳源为例,其反应式为:
6NO3-十2CH3OH→6NO2-十2CO2十4H2O 6NO2-十
3CH3OH→3N2十3CO2十3H2O十60H-
由上可见,在生物反硝化过程中,不仅可使NO3--N、NO2--N被还原,而且还可位有机物氧化分解。
影响反硝化的主要因素:(1)温度温度对反硝化的影响比对其它废水生物处理过程要大些。
一般,以维持20~40℃为宜。
苦在气温过低的冬季,可采取增加污泥停留时间、降低负荷等措施,以保持良好的反硝化效果;(2)pH值反硝化过程的pH值控制在~;(3)溶解氧
氧对反硝化脱氮有抑制作用。
一般在反硝化反应器内溶解氧应控制在L以下(活性污泥法)或1mg/L以下(生物膜法);(4)有机碳源当废水中含足够的有机碳源,BOD5/TN>(3~5)时,可无需外加碳源。
当废水所含的碳、氮比低于这个比值时,就需另外投加有机碳。
外加有机碳多采用甲醇。
考虑到甲醇对溶解氧的额外消耗,甲醇投量一般为NO3--N的3倍。
此外,还可利用微生物死亡;自溶后释放出来的那部分有机碳,即"内碳源",但这要求污泥停留时间长或负荷率低,使微生物处于生长曲线的静止期或衰亡期,因此池容相应增大。
二、沸石选择性交换吸附
斜发沸石对某些阳离子的交换选择性次序为:K+,NH4+>Na+>Ba2+>Ca2+>Mg2+。
利用斜发沸石对NH4+的强选择性,可采用交换吸附工艺去除水中氨氮。
交换吸附饱和的拂石经再生可重复利用。
溶液pH值对沸石除氨影响很大。
当pH过高,NH4+向NH3转化,交换吸附作用减弱;当pH过低,H+的竞争吸附作用增强,不利于NH4+的去除。
通常,进水pH值以6~8为宜。
当处理合氨氮10~20mg/L的城市进水时,出水浓度可达lmg/L以下。
穿透时通水容积约100~150床容。
沸石的工作交换容量约×10-3n-1mol/g左右。
吸附铵达到饱和的沸石可用5g/L的石灰乳或饱和石灰水再生。
再生液用量约为处理水量的3~5%。
研究表明,石灰再生液中加入的NaCl,可提高再生效率。
针对石灰再生的结垢问题,亦有采用2%的氯化钠溶液作再生液的,此时再生液用量较大。
再生时排出的高浓度合氨废液必须进行处理,其处理方法有:(1)空气吹脱吹脱的NH3或者排空,或者由量H2S04吸收作肥料;(2)蒸气吹脱冷凝液为1%的氨溶液,可用作肥料;(3)电解氧化(电氯化) 将氨氧化分解为N2。
三、空气吹脱
在碱性条件下(pH>,废水中的氨氮主要以NH3的形式存在(图20-2)。
让废水与空气充分接触,则水中挥发性的NH3将由液相向气相转
移,从而脱除水中的氨氮。
吹脱塔内装填木质或塑料板条填料,空气流由塔的下部进入,而废水则由塔顶落至塔底集水池。
影响氨吹脱效果的主要因素有:(1)pH值一般将pH值提高至~;
(2)温度水温降低时氨的溶解度增加,吹脱效率降低。
例如,20℃时氨去除率为90~95%,而10℃时降至约75%,这为吹脱塔在冬季运行带来困难;
(3)水力负荷水力负荷(m3/m2.h)过大,将破坏高效吹脱所需的水流状态,而形成水幕;水力负荷过小,填料可能没有适当湿润,致使运行不良,形成干塔。
一般水力负荷为~5m3/m2·h;
(4)气水比对于一定塔高,增加空气流量,可提高氨去除率;但随着空气流量增加,压降也增加,所以空气流量有一限值。
一般,气/水比可取2500~5000(m3/m2);
(5)填料构型与高度由于反复溅水和形成水滴是氨吹脱的关键,因此填料的形状、尺寸、间距、排列方式够都对吹脱效果有影响。
一般,填料间距40~50mm,填料高度为6~。
若增加填料间距,则需更大的填料高度;(6)结垢控制填料结垢(CaCO3)特降低吹脱塔的处理效率。
控制结垢的措施有:用高压水冲洗垢层;在进水中投加阻垢剂:采用不合或少含CO2的空气吹脱(如尾气吸收除氨循环使用);采用不易结垢的塑料填料代替木材等。
空气吹脱法除氨,去除率可达60~95%,流程简单,处理效果稳定,基建费和运行费较低,可处理高浓度合氨废水。
但气温低时吹脱效
率低,填科结垢往往严重干扰运行,且吹脱出的氨对环境产生二次污染。
四、折点氯化投加过量氯或次氯酸钠,使废水中氨完全氧化为N2的方法,称为折点氯化法,其反应可表示为:
NH4+十→十十+十
由反应式可知,到达折点的理论需氯(C12)量为kg(NH3-N),而实际需氯量在8~10kg/kg(NH3-N)。
在pH=6~7进行反应,则投药量可最小。
接触时间一般为~2h。
严格控制pH值和投氯量,可减少反应中生成有害的氯胺(如NCl3)和氯代有机物。
折点氯化法对氨氮的去除率达90~100%,处理效果稳定,不受水温影响,基建费用也不高。
但其运行费用高;残余氯及氯代有机物须进行后处理。
在目前采用的四种脱氮工艺中,物理化学法由于存在运行成本高、对环境造成二次污染等问题,实际应用受到-定限制。
而生物脱氮法能饺为有效和彻底地除氮,且比较经济,因而得到较多应用。