励磁系统PSS简介

合集下载

PSS的原理作用及整定

PSS的原理作用及整定
∆ω
∆U PSS
∆M PSS
ϕ1
∆U t
ϕ
∆M e 2 − ∆U t
∆δ
2
∆M 'e 2
PSS作用原理
VSI
1 1 + sT6
KS
sT5 1 + sT6
1 (1 + A1s + A 2s 2 )
1 + sT1 1 + sT2
1 + sT3 1 + sT4
VSTMAX
VST
VSTMIN
典型电力系统稳定器的传递框图
Performance of Filter in Tracking Electrical Power Ramp 0.3
Output of filter Input Signal Signal Amplitude (Relative) 0.2
0.1
0
0
0.5 Time (seconds)
1
1.5
sTW (1 + sTW )
橡皮条

重物
• 励磁控制系统对这三类稳定性的改善都有显著的作用, 下面分别讨论励磁控制系统对各类稳定的影响。
励磁控制系统对静态稳定的影响
• 当发电机的励磁电动势Eq恒定(即励磁不调节)时, 输出功率P是δ角的正弦函数,其曲线如图所示。P的 大小取决于δ角,故称δ为功率角。
Ut

U
Pm

P
P=
EqU Xd∑
K1
+ ∑ +
∆ M e1
∆M e

∆M m
+ ∑ - 1 Ms
∆ω
ω0 s
∆δ
∆M e 2
D

电力系统稳定器(PSS)简单介绍

电力系统稳定器(PSS)简单介绍

电力系统稳定器(PSS)
1、电力系统稳定器简称PSS,其作用:
a.提高电力系统静态稳定能力;
b.提高电力系统动态稳定能力;
c.阻尼电力系统低频振荡。

2、电力系统稳定器(PSS)的原理:
在励磁系统中采用ΔP、Δω、Δf等一个或两个信号作为附加反馈控制,增加正阻尼,它不降低励磁系统电压环的增益,不影响励磁控制系统的暂态性能。

3、电力系统稳定器(PSS)是EXC9000励磁调节器的一个标准软件功能。

我们开发的PSS,采用加速功率作反馈信号(即双变量ΔP、Δω),有效克服了采用单电功率反馈信号时的无功“反调”问题。

PSS的数学模型如下图所示,属于PSS2A 模型。

图 1 PSS传递函数模型
说明:
PSS输出控制信号PSS_uk,通过附加控制端引入AVR相加点,与反馈电压Ug的相加方式一致。

通过调节器人机界面,可选择投入或退出PSS。

当选择投入PSS时,只有在发电机有功大于PSS投入功率后,PSS输出才有效。

当选择退出PSS时,则PSS输出无效,恒等于0。

PSS装置在电力系统中的作用

PSS装置在电力系统中的作用

浅谈电力系统振荡及PSS装置的作用樊绍华PSS是电力系统稳定器(Power system stabilizer)的简称。

一、电力系统的振荡类型:电力系统在动态过程中可能出现多种类型的振荡,如电磁振荡:表现为系统电感和电容元件之间的能量交换振荡。

振荡频率一般较高,例如高压线路电感的线路分布电容之间在一定条件下可能产生谐振,这种谐振可能引起危险的高电压。

以如高压串联补偿线路的电感和串联补偿电容,这种振荡频率较低,一般低于同步频率,称为“次同步振荡”。

另一类常见的电磁振荡是由系统中调节装置特性不恰当引起,它的振荡频率可能在很大范围内变化。

电磁振荡一般衰减较快,但如果它的振荡频率与系统机电自然振荡频率相同,或与机组轴系自然振荡频率互补则可能引起严重后果。

机电振荡:表现为机械元件之间的动态运动(振动)和扭转振荡。

对于电力系统安全影响较大的有汽轮机叶片谐振和大机组轴系的扭振,其自然振荡频率可以低于或高于同步频率。

如果存在一个频率与其机械自然振荡频率相同的外部扰动,则将出现危险的谐振,可能损坏设备。

在系统出现大的扰动后,轴系也将引起扭振,如果这个扭振还未来得及衰减,以来一次扰动,则两次扰动的效果可能重合而引起更大幅值的扭振。

电力系统故障时,可能接连出现短路、切除、重合闸于故障、再切除等多次大扰动,这些扰动如果多次叠加,则可能出现严重后果。

机电振荡:常见的是发电机组间功率动态振荡。

振荡时的能量是通过电气联系传递的,故称为机电振荡,表现为发电机电功率和功角的变化。

当振荡较严重时,系统不能维持同步运行,即稳定破坏。

机电振荡的频率较低,一般在0.2――2.5Hz范围内,通常称为低频振荡。

机电扭振互作用:表现为电磁振荡和机械扭振的相互作用。

如电力系统中出现频率为fe(fe低于同步频率fn)的电磁振荡,发电机定子电流中频率为fe的电流分量将在以fn速度旋转的转子直流绕组中产生频率为(fn-fe)的交变力矩,如果轴系的自然振荡频率fm=fn-fe,则将引起轴系的扭转谐。

PSS-电力系统稳定装置试验

PSS-电力系统稳定装置试验

PSS——电力系统稳定装置电气2008-05-04 13:49:35 阅读898 评论0 字号:大中小订阅电力系统稳定器(简称PSS)是励磁系统的一个附加功能,用于提高电力系统阻尼,解决低频振荡问题,是提高电力系统动态稳定性的重要措施之一。

它抽取与此振荡有关的信号,如发电机有功功率、转速或频率,加以处理,产生的附加信号加到励磁调节器中,使发电机产生阻尼低频振荡的附加力矩。

PSS稳定装置的输入是发电机的有功信号,经过隔直环节和补偿环节,最后输出到励磁调节器,作为励磁调节器综合环节的一个负的输入。

在稳态运行时,由于隔直环节的作用,输出信号为零。

当系统受到扰动时,系统的低频振荡分量将使PSS产生输出信号,如果PSS相位补偿适当,将产生阻尼低频振荡的转矩,整个PSS装置的增益和相位决定了它对系统的阻尼效果。

有效平息系统的低频振荡,提高电力系统的稳定性。

PSS投入的一个条件是机组的输出有功,当有功大于一定的值时,PSS才起作用。

通过试验测量励磁系统滞后频率特性、PSS临界放大倍数等试验,确定机组PSS参数,并按调令投入PSS运行。

低频振荡分析发电机电磁力矩可分为同步力矩和阻尼力矩,同步力矩(PE)与Δδ同相位,阻尼力矩与Δω同相位。

如果同步力矩不足,将发生滑行失步;阻尼力矩不足,将发生振荡失步。

低频振荡是发生在弱联系的互联电网之间或发电机群与电网之间,或发电机群与发电机群之间的一种有功振荡,其振荡频率在0.2-2Hz之间,低频振荡发生的有四种可能的原因:1、系统弱阻尼时,在受到扰动后,其功率发生振荡且长时间才能平息。

2、系统负阻尼时,系统发生扰动而振荡或系统发生自激而引起自激振荡。

这种振荡,振荡幅度逐渐增大,直至达到某平衡点后,成为等幅振荡,长时间不能平息。

3、第三种是系统振荡模与某种功率波动的频率相同,引起特殊的强迫振荡,这种振荡随功率波动的原因消除而消除。

4、由发电机转速变化引起的电磁力矩变化和电气回路耦合产生的机电振荡,其频率约为0.2-2Hz。

值长必须知道的知识:励磁系统的PSS是什么?

值长必须知道的知识:励磁系统的PSS是什么?

值长必须知道的知识:励磁系统的PSS是什么?励磁系统的 PSS 是什么?PSS(Power System Stabilizer)电力系统稳定器,是作为发电机励磁系统的附加控制,在大型发电机组加装PSS,适当整定PSS有关参数可以起到提供附加阻尼力矩,可以抑制电力系统低频振荡;提高电力系统静态稳定限额。

PSS是励磁系统的一种功能,是抑制有功振荡的,励磁正常工作是以机端电压为反馈量PSS是在这个基础上加入了有功的反馈,也就是在有功发生振荡时为系统增加一个阻尼,使振荡尽快平稳.单独一个电厂投入PSS是没有效果的,只有大部分电源点都投入PSS,电网的抗振荡能力才能提高.现在电网要求电厂投入PSS和一次调频这些都是为了电网的稳定.发电机自动电压调节器中的一种附加励磁控制装置。

它的主要作用是给电压调节器提供一个附加控制信号,产生正的附加阻尼转矩,来补偿以端电压为输入的电压调节器可能产生的负阻尼转矩,从而提高发电机和整个电力系统的阻尼能力,抑制自发低频振荡的发生,加速功率振荡的衰减。

通俗的讲就像荡秋千一样:在荡秋千中,我们停止外力,秋千就会在摩擦系数的作用下慢慢停下;当我们外加使秋千停下来的外力,它就会马上停下;当我们外加使这个秋千荡起来的外力,它就越荡越高。

电力系统的动稳就像荡秋千一样,励磁负阻尼,就产生一个使秋千荡起来的外力,励磁正阻尼产生一个使秋千停下来的外力。

比较这两个外力,主要的问题就是作用在秋千上的时间不同,由于发电机转子的电感,励磁对秋千所产生的外力总是滞后,正是这种滞后效应造成励磁负阻尼。

如果我们用PSS的超前环节来校正这个滞后作用,励磁的负阻尼就变为正阻尼,这就是PSS的原理。

PSS投退要求:1、电力系统稳定器可以阻尼发电机的磁极,和电网系统的低频振荡。

平时不影响励磁调节,对AVR来说是一个附加通道。

2、发电机的有功功率达到200MW(额定负荷600MW的机组)以上就可以手动投入电力系统稳定器PSS,并且发电机的电压限制在设置的范围(90%-100%U0)之内。

励磁系统PSS简介

励磁系统PSS简介

电力系统稳定器PSS模型简介按照标准技术语言:电力系统稳定器Power System Stabilizer 简称PSS,是励磁调节器通过一种附加控制功能,借助于AVR控制励磁输出,阻尼同步电机的低频功率振荡,用以改善电力系统稳定性能的一个或一组单元。

按照陈小明理解的技术语言:PSS是励磁调节器自动通道(自动电压调节器AVR)的附加环节或者附加装置,以低频0.2∼2.5Hz的有功功率摆动作为输入,经过放大和调整相位后叠加在AVR输出上,产生同发电机阻尼绕组一样效果的正阻尼,抵消单纯电压偏差调节的AVR所产生的负阻尼,防止电力系统出现低频振荡,提高电力系统动态稳定性。

显然,PSS只有一个叠加到AVR的输出量,至于输入量最少一个。

按照PSS输入的不同可以划分出不同的PSS模型。

按照其他方式划分,又有其他模型。

无论什么理论,只要一说到分类,张三李四王麻子各有各的爱好,分类也就越来越多。

幸好PSS源于美国,且数学模型研究不是中国人的特长,因此,PSS模型的划分还是比较简单的,美国电气和电子工程师协会(IEEE)1992年将PSS划分PSS1A型(单输入)和PSS2A型(双输入),2005年版的IEEE为将PSS划分PSS1A(单输入Single-input PSS)、PSS2B(双输入Dual-input PSS)、PSS3B (双输入Dual-input PSS)、PSS4B(多频段Multi-band PSS),这是目前PSS模型最权威的分类,也是学习和交流PSS技术的重要依据。

PSS1A,单输入PSS,两级超前滞后环节。

最早的输入量是频率,现在普遍采用功率P,利用隔直环节得到ΔP,再对ΔP进行超前滞后处理,以达到抑制低频振荡之目的。

PSS1A主要适用于火电厂,因为火电机组调负荷很慢,其有功变化频率不在PSS1A的频率范围,不会产生机组无功反调。

PSS1A,简单可靠。

所谓反调,就是发电机无功随有功增减而减增,显然不利于电力系统稳定,需要避免。

PSS作用及原理

PSS作用及原理

先说说低频振荡和阻尼的概念:低频振荡:在电力系统中,发电机经输电线路并列运行时,在负荷突变等小扰动的作用下,发电机转子之间会发生相对摇摆,这时电力系统如果缺乏必要的阻尼就会失去动态稳定。

由于电力系统的非线性特性,动态失稳表现为发电机转子之间的持续的振荡,同时输电线路上功率也发生相应的振荡,影响了功率的正常输送。

由于这种持续振荡的频率很低,一般在0.2~2.5HZ之间,故称为低频振荡。

所谓阻尼:就是阻止扰动,平息振荡,而负阻尼恰恰相反。

励磁装置的负阻尼:是指励磁装置对于系统功角摆动所作出的调节作用,会加大这种摆动,不利于系统的稳定。

低频振荡:在电力系统中,发电机经输电线路并列运行时,在负荷突变等小扰动的作用下,发电机转子之间会发生相对摇摆,这时电力系统如果缺乏必要的阻尼就会失去动态稳定。

由于电力系统的非线性特性,动态失稳表现为发电机转子之间的持续的振荡,同时输电线路上功率也发生相应的振荡,影响了功率的正常输送。

由于这种持续振荡的频率很低,一般在0.2~2.5HZ之间,故称为低频振荡。

所谓阻尼:就是阻止扰动,平息振荡,而负阻尼恰恰相反。

励磁装置的负阻尼:是指励磁装置对于系统功角摆动所作出的调节作用,会加大这种摆动,不利于系统的稳定。

PSS 的作用主要有三个方面:第一就是抑制低频振荡,一般在系统发生低频振荡,PSS经过1~2 个周波振荡就完全平息了;第二是提高静稳定的功率极限,具有PSS 附加功能的调节器,可采用较大电压放大倍数,提高电压调节精度,维持发电机端电压不变,使单机-无穷大系统的静稳极限接近线路的功率极限;第三是有利于暂态稳定,能够在一定频率范围内提供正阻尼,抑制大扰动第一摇摆之后的后续振荡,缩短后续摇摆过程。

PSS 基本原理:电力系统稳定器就是为抑制低频振荡而研究的一种附加励磁控制技术。

它在励磁电压调节器中,引入领先于轴速度的附加信号,产生一个正阻尼转矩,去克服原励磁电压调节器中产生的负阻尼转矩作用。

PSS配置、构成、参数计算及投运试验

PSS配置、构成、参数计算及投运试验

PSS配置、构成、参数计算及投运试验中国电力科学研究院方思立华北电力科学研究院苏为民摘要本文介绍了PSS的配置要求及各种输入信号的PSS的特点及适用范围, 论述了PSS相位补偿及增益选取的计算方法, 以及PSS的现场试验方法等.1 PSS配置PSS是采用励磁附加控制,增加对低频振荡的阻尼,提高电力系统稳定的装置,对于数字式AVR,它不需要增加设备,又有很好的阻尼效果,因此近年来在电力系统中得到了广泛的采用。

经验表明,不仅快速励磁系统采用PSS增大系统阻尼的效果良好,即使常规励磁系统,采用PSS也有良好效果。

美国西部和加拿大联合电力系统(WSCC)建议60MW 及以上机组,励磁控制系统迟后角小于(1)式三阶典型系统时应配置PSS。

(6.28) 3Ts = (S+0.628)(S+6.28)(S+62.8) (1) 式(1)的迟后特性见表1。

某快速励磁系统的传递函数如式2F(ex)=[30/ (1+0.03S)] [1+(1/ 2S )] (2)如发电机时间常数Tdo=6s, 其励磁控制系统的迟后特性见表2a,某常规交流励磁机励磁系统的传递函数如式3F(ex)=300[(1+1.6S)/(1+16S)][(1+0.5S)/(1+0.05S)][1/(1+0.03S)][1/(1+0.8S)] (3)同上发电机采用式(3)励磁的迟后特性见表2b. 式(3)中励磁机简化为一阶惯性环节虽有较大的时间常数,因采用较强的超前补偿,其迟后特性仍小于1式。

快速励磁系统的迟后特性则较1式小很多. 因此要求励磁系统性能良好的发电机,普遍采用PSS。

我国励磁系统行标DL/T 650—1998,DL/T 843—2003均将PSS作为必备的附加单元,并规定其投入率分别不低于99%(自并励)及90%(交流励磁机励磁)。

2 PSS输入信号及其数学模型2.1PSS各输入信号的优缺点PSS是在AVR输入附加控制信号,如转速偏差Δω(或频率偏差Δf),功率偏差ΔPe (或加速功率偏差ΔPa)或两个信号的综合,使发电机产生Δω轴方向的阻尼力矩(ΔTe)以抑制电力系统的低频功率振荡,各输入信号的优缺点如下:2.1.1 Δω或Δf因为励磁控制系统是一个迟后环节,有较大的迟后角,要求以Δω为输入信号的PSS,有很大的超前角补偿,以便PSS 的输出使发电机产生的附加转矩与Δω同相位,从表2可见,当振荡频率为1Hz 时,超前补偿角在100 o 左右,超前补偿角大,微分作用强,控制回路就容易发生谐振,临界增益就较小,限制了使用增益. 此外Δω信号的测取比较困难,这也限制了Δω为输入信号的PSS 的采用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电力系统稳定器PSS模型简介
按照标准技术语言:电力系统稳定器Power System Stabilizer 简称PSS,是励磁调节器通过一种附加控制功能,借助于AVR控制励磁输出,阻尼同步电机的低频功率振荡,用以改善电力系统稳定性能的一个或一组单元。

按照陈小明理解的技术语言:PSS是励磁调节器自动通道(自动电压调节器AVR)的附加环节或者附加装置,以低频0.2∼2.5Hz的有功功率摆动作为输入,经过放大和调整相位后叠加在AVR输出上,产生同发电机阻尼绕组一样效果的正阻尼,抵消单纯电压偏差调节的AVR所产生的负阻尼,防止电力系统出现低频振荡,提高电力系统动态稳定性。

显然,PSS只有一个叠加到AVR的输出量,至于输入量最少一个。

按照PSS输入的不同可以划分出不同的PSS模型。

按照其他方式划分,又有其他模型。

无论什么理论,只要一说到分类,张三李四王麻子各有各的爱好,分类也就越来越多。

幸好PSS源于美国,且数学模型研究不是中国人的特长,因此,PSS模型的划分还是比较简单的,美国电气和电子工程师协会(IEEE)1992年将PSS划分PSS1A型(单输入)和PSS2A型(双输入),2005年版的IEEE为将PSS划分PSS1A(单输入Single-input PSS)、PSS2B(双输入Dual-input PSS)、PSS3B (双输入Dual-input PSS)、PSS4B(多频段Multi-band PSS),这是目前PSS模型最权威的分类,也是学习和交流PSS技术的重要依据。

PSS1A,单输入PSS,两级超前滞后环节。

最早的输入量是频率,现在普遍采用功率P,利用隔直环节得到ΔP,再对ΔP进行超前滞后处理,以达到抑制低频振荡之目的。

PSS1A主要适用于火电厂,因为火电机组调负荷很慢,其有功变化频率不在PSS1A的频率范围,不会产生机组无功反调。

PSS1A,简单可靠。

所谓反调,就是发电机无功随有功增减而减增,显然不利于电力系统稳定,需要避免。

PSS2B,双输入PSS,一个输入量是ω,一个是P,三级超前滞后环节。

其原理是利用ω和P计算发电机机械功率ΔPm和电磁功率ΔPe,二者一减得到发电机的加速功率ΔPa,这样当机组单方向增负荷或单方向减负荷时,加速功率等于零,PSS不起作用即不产生无功反调。

只有当机组有功增减变化即振动时,PSS才起作用,抑制系统低频振荡。

PSS3B也是双输入PSS,一个输入量是ω,一个是P,相当于一个ω输入的单PSS与一个P输入的单PSS叠加、协调工作,在我国使用很少,我估计参数不好整定。

PSS4B是一个多频段的PSS,将ω分成三个频率段分别处理最后再叠加,可以提高PSS在超低频范围的作用,非常复杂,应用更加少见,但是理论研究前景看好。

比较IEEE1992年版和2005年版PSS模型分类,PSS1A的分类没有变化,增加了PSS3B和PSS4B。

令人困惑的是用P222B取代了PSS2A,为什么IEEE要用PSS2B来取代PSS2A呢?
比较PSS2A和PSS2B,二者都是双输入PSS,都是采用加速功率计算原理,唯一的区别是PSS2A只有两级超前滞后环节,而PSS2B
具有三级超前滞后环节。

超前滞后环节多,参数的调整方便,更加适用于工程领域。

在2005年版IEEE之前,中国电力科学院发现只有两个超前滞后环节的PSS2A调整参数不方便,故实践中增加了一个环节,并把这种具有三个超前滞后环节的PSS2A称为的“改进型PSS2A”,从原理上称为“双输入信号加速功率型PSS”。

2005年IEEE修订了PSS模型标准,把具有三个超前滞后环节的PSS2A称为PSS2B,替代了原来的PSS2A模型。

显然,从原理上讲,PSS2B也就是PSS2A,因此造成P SS2A 与PSS2B在工程实践混用。

但是按照IEEE的新标准,现在应该改叫PSS2B。

PSS在国外的历史始于上世纪60年代,在我国始于70年代,著名PSS专家刘取老师在《电力系统稳定性及发电机励磁控制》序言中对此有一个简单叙述。

2006年水电励磁技术标准《DLT583_2006大中型水轮发电机静止整流励磁系统及装置技术条件》将PSS划分为“广义形式的单输入电力系统稳定器(PSS1A型)”和双输入电力系统稳定器(PSS2A),如下图所示。

2008年国家励磁技术标准《GBT7409.2-2008同步电机励磁系统电力系统研究用模型》将PSS划分为PSS1(单输入信号PSS)PSS2(加速功率型PSS)PSS3(双输入信号PSS),也如下图所示。

显然,国标的PSS1就是IEE的PSS1A,PSS2就是PSS2B,PSS3就是PSS3B。

但是我们习惯上还是采用IEEE标准《IEEE Std 421.5-2005 IEEE推荐的电力系统稳定研究用励磁系统数学模型(IEEE Recommended Practice for Excitation System Models for Power System Stability Studies)》来划分PSS模型。

相关文档
最新文档