导数中的双变量任意
导数中双变量问题的四种策略

导数中双变量问题的四种策略双变量问题的几种处理策略策略一:合并思想已知函数$f(x)=\ln x$的图像上任意不同的两点的中点为$A(x_1,y_1)$。
$B(x_2,y_2)$,线段$AB$的中点为$C(x,y)$,记直线$AB$的斜率为$k$,试证明:$k>f'(x)$。
解析:因为$f(x)=\ln x$,所以$f'(x)=\frac{1}{x}$。
又因为k=\frac{f(x_2)-f(x_1)}{x_2-x_1}=\frac{\ln x_2-\lnx_1}{x_2-x_1}=\frac{\ln\frac{x_2}{x_1}}{x_2-x_1}$$不妨设$x_2>x_1$,要比较$k$与$f(x)$的大小,即比较frac{\ln\frac{x_2}{x_1}}{x_2-x_1}\text{和}\frac{1}{x_1}$$的大小,即比较ln\left(\frac{x_2}{x_1}\right)^{\frac{1}{x_2-x_1}}\text{和}e^{\frac{1}{x_2-x_1}}$$的大小。
又因为$x_2>x_1$,所以frac{x_2-x_1}{x_2+1}<\ln\left(\frac{x_2}{x_1}\right)^{\frac{1}{x_2-x_1}}<\frac{x_2-x_1}{x_1}$$因此frac{x_2-x_1}{x_2+1}<k<\frac{x_2-x_1}{x_1}$$又因为$x_2>x_1$,所以$\frac{x_2-x_1}{x_2+1}>\frac{1}{2}$,因此$k>f'(x)$。
策略二:分离思想问题2:若$g(x)=\ln x+\frac{1}{x}$,求$a$的取值范围,使得对任意的$x_1,x_2\in(1,2)$,都有$g(x_2)-g(x_1)<-1$。
导数中双变量问题的四种策略

双变量问题的几种处理策略策略一:合的思想问题1:已知函数x x f ln )(=的图象上任意不同的两点,,线段的中点为,记直线的斜率为,试证明:.解析:因为∴, ∴,又 不妨设 , 要比较与的大小,即比较与的大小, 又∵,∴ 即比较与的大小.令,则, ∴在上位增函数.又,∴, ∴,即二:分的思想问题2:若1ln )(++=x a x x g ,且对任意的(]2,1,21∈x x ,,都有,求a 的取值范围.解析∵ ,∴由题意得在区间(]2,1上是减函数. ∴ ()11,y x A ()22,y x B AB),(00y x C AB k )(0x f k '>x x f ln )(=xx f 1)(='210021)(x x x x f +=='121212121212ln ln ln )()(x x x x x x x x x x x f x f k -=--=--=12x x >k )(0x f '1212lnx x x x -212x x +12x x >12lnx x 1)1(2)(212122112+-=+-x x x x x x x x )1(1)1(2ln )(≥+--=x x x x x h 0)1()1()1(41)(222≥+-=+-='x x x x x x h )(x h [)+∞,1112>x x 0)1()(12=>h x x h 1)1(2ln 121212+->x x x x x x )(0x f k '>21x x ≠1)()(1212-<--x x x g x g 1)()(1212-<--x x x g x g []0)()(121122<-+-+x x x x g x x g x x g x F +=)()(1)1(1)(2++-='x ax x F由在恒成立. 设,,则 ∴在上为增函数,∴.策略3:变得思想设函数x x x f ln )(=,若,求证 解析:, ,所以在上是增函数,上是减函数.因为,所以即,同理. 所以 又因为当且仅当“”时,取等号. 又,, 所以,所以, 所以:.问题4:已知函数()21ln ,2f x x x mx x m R =--∈,若函数()f x 有两个极值点12,x x ,求证: 212x x e >解析:欲证212x x e >,需证: 12ln ln 2x x +>,若()f x 有两个极值点12,x x ,即函数()'f x 有两个零点,又()'ln f x x mx =-, 所以12,x x 是方程()'0f x =的两个不同实根313)1()1(0)(222+++=+++≥⇒≤'xx x x x x a x F []2,1∈x =)(x m 3132+++x x x []2,1∈x 0312)(2>+-='xx x m )(x m []2,1227)2(=≥m a 1),1,1(,2121<+∈x x e x x 42121)(x x x x +<x x xx f x g ln )()(==e x x x g 1,0ln 1)(==+=),1(+∞e )(x g )1,0(e11211<+<<x x x e111212121ln )()ln()()(x x x g x x x x x x g =>++=+)ln(ln 211211x x x x x x ++<)ln(ln 212212x x x x x x ++<)ln()2()ln()(ln ln 2112212112122121x x x xx x x x x x x x x x x x +++=++++<+,421221≥++x x x x 21x x =1),1,1(,2121<+∈x x ex x 0)ln(21<+x x )ln(4)ln()2(21211221x x x x x x x x +≤+++)ln(4ln ln 2121x x x x +<+42121)(x x x x +<于是,有1122ln 0{ln 0x mx x mx -=-=,解得1212ln ln x x m x x +=+,另一方面,由1122ln 0{ln 0x mx x mx -=-=,得()2121ln ln x x m x x -=-,从而可得21122112ln ln ln ln x x x x x x x x -+=-+,于是()()222121111222111lnln ln ln ln 1x x x x x x x x x x x x x x ⎛⎫+ ⎪-+⎝⎭+==--.又120x x <<, 设21x t x =,则1t >.因此, ()121ln ln ln ,1t t x x t ++=-1t >. 要证12ln ln 2x x +>,即证:()1ln 2,11t t t t +>>-.即当1t >时,有()21ln 1t t t ->+. 设函数()()21ln ,11t h t t t t -=-≥+,则()()()()()()222212111011t t t h t t t t t +---'=-=≥++, 所以, ()h t 为()1,+∞上的增函数.注意到, ()10h =,因此, ()()10h t h ≥=.于是,当1t >时,有()21ln 1t t t ->+. 所以,有12ln ln 2x x +>成立, 212x x e >.问题5:x m x x x f x --=221ln )(已知函数,若()x f 有两个极值点x 1,x 2,(x 1<x 2),且x x x x x a 12112ln 2ln ->-恒成立,求整数a 的最大值。
导数中的双变量任意

导数中的双变量任意、存在恒成立问题解决方法:转化为最值问题处理●类型 一:若2211D x D x ∈∀∈∀,,)()(21x g x f >恒成立 ⇔ max 2min 1)()(x g x f >. 基本思想是:函数)(x f 的任一函数值均大于)(x g 的任一函数值,故只需max 2min 1)()(x g x f >即可. 几何解释如图一.例1、已知x x x f ln )(=,3)(2++-=ax x x g ,若对)0(1∞+∈∀,x ,]1[2e x ,∈∀使得)(21x f ≥)(2x g 成立,求实数a 的取值范围.【变式训练1】已知函数14341ln )(-+-=xx x x f ,42)(2-+-=bx x x g ,若)20(1,∈∀x , ]21[2,∈∀x ,不等式)(1x f ≥)(2x g 恒成立,求实数b 的取值范围.●类型 二:若2211D x D x ∈∃∈∃,,)()(21x g x f >恒成立 ⇔ min 2max 1)()(x g x f >. 基本思想是:函数)(x f 的某些函数值大于)(x g 的某些函数值,只要求有这样的函数值,不要求所有的函数值.故只需min 2max 1)()(x g x f >即可. 几何解释如图二.例2、已知a ≤2,设函数x a x x x f ln 1)(--=,ex x x g 1ln )(--=, 若在]1[e ,上存在21x x ,,使)(1x f ≥)(2x g 成立,求实数a 取值范围.【变式训练2】已知函数xx x g ln )(=,ax x g x f -=)()(. (1)求函数)(x g 的单调区间;(2)若函数)(x f 在(1,∞+)上是减函数,求实数a 的最小值;(3)若存在][221e e x x ,,∈,使得)(1x f ≤a x f +')(2成立,求实数a 取值范围.●类型 三:若2211D x D x ∈∃∈∀,,)()(21x g x f >恒成立 ⇔ min 2min 1)()(x g x f >. 基本思想是:函数)(x f 的任一函数值大于)(x g 的某些函数值,但并不要求大于)(x g 所有的函数值.故只需min 2min 1)()(x g x f >即可. 几何解释如图三.例3、已知函数x x x f 2)(2+=,m x g x -=)21()(. 若对]11[]21[21,,,-∈∃∈∀x x ,使得 )(1x f ≥)(2x g 成立,求实数m 取值范围.【变式训练3】已知函数)()(2R n m nx mx x f ∈+=,在1=x 取得极值2. (1)求)(x f 的解析式; (2)设函数x a x x g +=ln )(,若对]1[]11[21e x x ,,,∈∃-∈∀,使得)(2x g ≤27)(1+x f 成立,求实数a 的取值范围.●类型 四:若2211D x D x ∈∀∈∃,,)()(21x g x f >恒成立 ⇔ max 2max 1)()(x g x f >. 基本思想是:函数)(x f 的某些函数值大于)(x g 的任一函数值,只要求)(x f 有函数值大于)(x g 的函数值即可.故只需max 2max 1)()(x g x f >即可. 几何解释如图三.例4、已知函数,x ax x f ln )(+=,22)(2+-=x x x g . 若a 1->且]1[1e x ,∈∃,对 ]10[2,∈∀x ,使得)()(21x g x f >成立,求实数a 的取值范围.【变式训练4】已知函数xx x f 2ln )(-=,x x x f x g ln 62)()(-+=,设4)(2+-=mx x x h . 若)10(1,∈∃x ,对]21[2,∈∀x ,总有)(1x g ≥)(2x h 成立,求实数m 的取值范围.例4、【解析】:因为22)(2+-=x x x g ,]1,0[∈x ,易得2)0()(max ==g x g . 又x ax x f ln )(+=,x a x f 1)(+=',易知)(x f '在[1,e]上单调递减,∴]11[)(++∈'a e a x f ,,若a ≥e1-,则)(x f '>0,)(x f 在[1,e]上单调递增,1)()(max +==ae e f x f >2,解得a >e 1.若e a 11-<<-,)(x f 在(1,a 1-)上单调递增,在(a1-,e )上单调递减,)ln(1)1()(max a af x f ---=-=>2,得31e a ->,此时与e a 11-<<-矛盾. 综上所述,所求a 的取值范围是(+∞,1e ).。
导数题中“任意、存在”型的归纳辨析

导数题中“任意、存在”型的归纳辨析南昌外国语学校 梁懿涛导数题是高考题中的常客,而且大都以压轴题的面目出现,所以拿下导数题是迈入高分段的标志。
导数题虽年年有,但却悄然之中发生着些改变。
这其中,尤以关于“任意”、“存在”的内容最为明显。
“任意”、“存在”可以说是导数题最为明显的特色,从早期单一型,发展到现今的混合型。
下面对此作一归纳。
一.单一函数单一“任意”型例1.已知函数()ln()f x x x a =-+的最小值为0,其中0a >。
(1)求a 的值;(2)若对任意的[0,)x ∈+∞,有2()f x kx ≤成立,求实数k 的最小值。
解析:(1)1()x a f x x a+-'=+,()f x ∴在(,1)a a --单调递减,在(1,)a -+∞单调递增,所min ()f x (1)01f a a =-=⇒=。
(2)设2()ln()g x kx x x a =-++,则问题等价于()0g x ≥对[0,)x ∈+∞恒成立,即min ()0g x ≥。
因为当0k ≤时,x →+∞时,()f x →-∞,所以0k >。
由22(21)()1kx k x g x x +-'=+,若2104k k -->,则当21(0,)4k x k -∈-时,()0g x '<,()g x 单调递减,()(0)0g x g <=,矛盾。
从而2104k k--≤,解得12k ≥。
即实数k 的最小值是12。
点评:“任意”的意思是不管x 取给定集合中的哪一个值,得到的函数值都要满足给定的不等式,它有两种形式:“对任意的x A ∈,()()a f x >≥恒成立”等价于“当x A ∈时,max ()()a f x >≥”;“对任意的x A ∈,()()a f x <≤恒成立”等价于“当x A ∈时,min ()()a f x <≤”。
二.单一函数单一“存在”型例2. 已知函数2()ln f x a x x =+(a R ∈),若存在[1,]x e ∈,使得()(2)f x a x ≤+成立,求实数a 的取值范围。
导数中双变量处理策略教学提纲

导数中双变量处理策略导数-双变量问题处理策略1.构造函数利用单调性证明2.任意性与存在性问题3.整体换元—双变单4.极值点偏移【构造函数利用单调性证明】形式如:1212|()()|||f x f x m x x -≥-例1、设函数221()(2)ln (0)ax f x a x a x+=-+<. (1)讨论函数()f x 在定义域内的单调性;(2)当(3,2)a ∈--时,任意12,[1,3]x x ∈,12(ln 3)2ln 3|()()|m a f x f x +->-恒成立,求实数m 的取值范围.【任意与存在性问题】例2、 已知函数()2a f x x x=+,()ln g x x x =+,其中0a >. (1)若函数()x f y =在[]e ,1上的图像恒在()x g y =的上方,求实数a 的取值范围. (2)若对任意的[]12,1x x e ∈,(e 为自然对数的底数)都有()1f x ≥()2g x 成立, 求实数a 的取值范围.【整体换元——双变单】例3、已知函数x x x f ln )(=的图象为曲线C , 函数b ax x g +=21)(的图象为直线l . (Ⅰ) 当3,2-==b a 时, 求)()()(x g x f x F -=的最大值;(Ⅱ) 设直线l 与曲线C 的交点的横坐标分别为21,x x , 且21x x ≠, 求证:2)()(2121>++x x g x x .【对称轴问题12x x +的证明】例4、已知函数11()(x x f x x e --=∈R).⑴求函数()f x 的单调区间和极值;⑵已知函数()y g x =对任意x 满足()(4)g x f x =-,证明:当2x >时,()();f x g x >⑶如果12x x ≠,且12()()f x f x =,证明:12 4.x x +>【实战演练】1.已知函数f (x )=21x 2-ax +(a -1)ln x ,1a >. (1)讨论函数()f x 的单调性;(2)证明:若5a <,则对任意x 1,x 2∈(0,)+∞,x 1≠x 2,有1212()()1f x f x x x ->--.2.设3x =是函数()()()23,x f x x ax b e x R -=++∈的一个极值点. (1)求a 与b 的关系式(用a 表示b ),并求()f x 的单调区间;(2)设()2250,4x a g x a e ⎛⎫>=+ ⎪⎝⎭,若存在[]12,0,4ξξ∈,使得()()121f g ξξ-< 成立,求a 的取值范围.3.已知函数21()ln (1)(0)2f x x ax a x a R a =-+-∈≠,. ⑴求函数()f x 的单调增区间;⑵记函数()F x 的图象为曲线C ,设点1122(,)(,)A x y B x y 、是曲线C 上两个不同点,如果曲线C 上存在点00(,)M x y ,使得:①1202x x x +=;②曲线C 在点M 处的切线平行于直线AB ,则称函数()F x 存在“中值相依切线”.试问:函数()f x 是否存在中值相依切线,请说明理由.4.(2018届高三咸阳市二模理科).已知函数2()2ln (,0)x f x x a R a a=-∈≠. (1)讨论函数()f x 的单调性;(2) 若函数()f x 有两个零点1x ,2x 12()x x <,且2a e =,证明:122x x e +>.。
导数中双变量处理策略

导数-双变量问题处理策略1.构造函数利用单调性证明2.任意性与存在性问题3.整体换元—双变单4.极值点偏移【构造函数利用单调性证明】形式如:1212|()()|||f x f x m x x -≥-例1、设函数221()(2)ln (0)ax f x a x a x+=-+<. (1)讨论函数()f x 在定义域内的单调性;(2)当(3,2)a ∈--时,任意12,[1,3]x x ∈,12(ln 3)2ln 3|()()|m a f x f x +->-恒成立,求实数m 的取值范围.【任意与存在性问题】例2、已知函数()2a f x x x=+,()ln g x x x =+,其中0a >. (1)若函数()x f y =在[]e ,1上的图像恒在()x g y =的上方,求实数a 的取值范围.(2)若对任意的[]12,1x x e ∈,(e 为自然对数的底数)都有()1f x ≥()2g x 成立, 求实数a 的取值范围.【整体换元——双变单】例3、已知函数x x x f ln )(=的图象为曲线C ,函数b ax x g +=21)(的图象为直线l . (Ⅰ)当3,2-==b a 时,求)()()(x g x f x F -=的最大值;(Ⅱ)设直线l 与曲线C 的交点的横坐标分别为21,x x ,且21x x ≠,求证:2)()(2121>++x x g x x .【对称轴问题12x x +的证明】例4、已知函数11()(x x f x x e --=∈R). ⑴求函数()f x 的单调区间和极值;⑵已知函数()y g x =对任意x 满足()(4)g x f x =-,证明:当2x >时,()();f x g x > ⑶如果12x x ≠,且12()()f x f x =,证明:12 4.x x +>【实战演练】1.已知函数f (x )=21x 2-ax +(a -1)ln x ,1a >. (1)讨论函数()f x 的单调性;(2)证明:若5a <,则对任意x 1,x 2∈(0,)+∞,x 1≠x 2,有1212()()1f x f x x x ->--. 2.设3x =是函数()()()23,x f x x ax b e x R -=++∈的一个极值点. (1)求a 与b 的关系式(用a 表示b ),并求()f x 的单调区间;(2)设()2250,4x a g x a e ⎛⎫>=+ ⎪⎝⎭,若存在[]12,0,4ξξ∈,使得()()121f g ξξ-<成立,求a 的取值范围.3.已知函数21()ln (1)(0)2f x x ax a x a R a =-+-∈≠,. ⑴求函数()f x 的单调增区间;⑵记函数()F x 的图象为曲线C ,设点1122(,)(,)A x y B x y 、是曲线C 上两个不同点,如果曲线C 上存在点00(,)M x y ,使得:①1202x x x +=;②曲线C 在点M 处的切线平行于直线AB ,则称函数()F x 存在“中值相依切线”.试问:函数()f x 是否存在中值相依切线,请说明理由.4.(2018届高三咸阳市二模理科).已知函数2()2ln (,0)x f x x a R a a=-∈≠. (1)讨论函数()f x 的单调性;(2)若函数()f x 有两个零点1x ,2x 12()x x <,且2a e =,证明:122x x e +>.。
函数与导数的 “双变量”问题探究

函数与导数的“双变量”问题探究一、问题提出近年来函数综合问题中,常常出现两个在一定范围内可以变化的量,即函数的双变量问题。
此问题经常结合不等式进行命题,主要考查学生转化与化归思想,考查学生对问题的转化及处理能力,此类问题难度较大,对学生的综合能力要求较高。
解决此类问题主要通过变元来解决,如何将两个变量转化为一个变量是此类问题解体的关键。
然后,再结合函数性质即可解决此类问题。
二、例题解说−x+alnx例1:已知函数f(x)=1x(1)讨论f(x)的单调性.<a−2.(2)若函数存在两个极值点x1,x2,证明f(x1)−f(x2)x1−x2小结1:消元,变量归一①若两个变量存在确定的关系,可以利用其中一个变量替换另一个变量,直接消元,将两个变量转化为一个变量.,x1x2,x1−②若两个变量不存在确定的关系,有时可以将两个变量之间的关系看成一个整体(比如x1x2x2,x1+x2),进行整体换元,将两个变量化为一个变量..例2:已知函数f(x)=e2x−2t(e x+x)+x2+2t2+1,求证f(x)≥32小结2:变换主元当两个变量之间没有关系,也不能看成一个整体时,主元的选择就显得尤为重要了,主元若选择得当,可以降低思维难度,可以将复杂的函数变为简单函数。
主元变换是将其中一个变量作为主元,其中一个变量作为参数。
例3:已知函数f(x)=1+2lnx.x2(1)求f(x)的单调区间(2)存在x1,x2∈(1,+∞)且x1≠x2,使|f(x1)−f(x2)|≥k|lnx1−lnx2|成立,求k的取值范围.小结3:构造函数根据题中条件构造适当的函数,利用函数性质解决.,1],|f(x1)−f(x2)|≤b,求b的取值范围.例4:已知函数f(x)=xlnx+x,对∀x1,x2∈[1e3小结4:转化为最值根据题中条件将双变量问题转化为函数最值来处理,此类题型可以参考“恒成立”与“存在性”问题解题思路与方法.三、练习提升1.设函数f(x)=e mx+x2−mx.(1)证明:f(x)在(−∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x1,x2∈[−1,1],都有|f(x1)−f(x2)|≤e−1,求m的取值范围.2.已知常数a>0,函数f(x)=ln(1+ax)−2xx+2.(1)讨论f(x)在区间(0,+∞)上的单调性;(2)若f(x)存在两个极值点x1,x2,且f(x1)+f(x2)>0,求a的取值范围.3.已知函数f(x)=lnx−ax+1−ax−1,(a∈R).(Ⅰ)当a≤12时,讨论f(x)的单调性;(Ⅱ)设g(x)=x2−2bx+4,当a=14时,若对任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),求实数b取值范围.4.已知函数f(x)=ln x+mx−2(m∈R).(1)讨论函数f(x)的单调性;(2)若函数f(x)存在两个零点分别为x1,x2(x1<x2),试求m的取值范围,并证明1x1+1x2>1e.5.已知函数f(x)=x ln x−2ax2+x,a∈R.(Ⅰ)若()f x在(0,+∞)内单调递减,求实数a的取值范围;(Ⅱ)若函数f(x)有两个极值点分别为x1,x2,证明:x1+x2>12a.6.已知函数f(x)=(x+2)ln x+ax2(a为常数)在x=1处的切线方程为y=4x−72. (1)求a的值,并讨论f(x)的单调性;(2)若f(x1)+f(x2)=1,求证x1x2≤1.函数与导数的“双变量”问题探究一、问题提出近年来函数综合问题中,常常出现两个在一定范围内可以变化的量,即函数的双变量问题。
双变量的“任意性”与 “存在性”五种题型的解题方法解析

1双变量的“任意性”与 “存在性”五种题型的解题方法 一、“存在=存在”型∃x 1∈D 1,∃x 2∈D 2,使得f (x 1)=g (x 2),等价于函数f (x )在D 1上的值域A 与函数g (x )在D 2上的值域B 的交集不为空集,即A ∩B ≠⌀.其等价转化的基本思想:两个函数有相等的函数值,即它们的值域有公共部分.【例1】 已知函数f (x )=x 2-23ax 3,a >0,x ∈R .g (x )=1x 2(1-x ).若∃x 1∈(-∞,-1],∃x 2∈-∞,-12 ,使得f (x 1)=g (x 2),求实数a 的取值范围.【解析】∵f (x )=x 2-23ax 3,∴f '(x )=2x -2ax 2=2x (1-ax ).令f '(x )=0,得x =0或x =1a .∵a >0,∴1a>0,∴当x ∈(-∞,0)时, f '(x )<0,∴f (x )在(-∞,-1]上单调递减, f (x )在(-∞,-1]上的值域为1+2a3,+∞ .∵g (x )=1x 2(1-x ),∴g '(x )=3x 2-2x (x 2-x 3)2=3x -2x 3(1-x )2.∵当x <-12时,g '(x )>0,∴g (x )在-∞,-12 上单调递增,∴g (x )<g -12 =83,∴g (x )在-∞,-12 上的值域为-∞,83.若∃x 1∈(-∞,-1],∃x 2∈-∞,-12 ,使得f (x 1)=g (x 2),则1+2a 3<83,a <52.故实数a 的取值范围是0,52.【变式1】 已知函数f (x )=-16x +112,0≤x ≤12,x 3x +1,12<x ≤1 和函数g (x )=a ·sin π6x -a +1(a >0),若存在x 1,x 2∈[0,1],使得f (x 1)=g (x 2)成立,则实数a 的取值范围是( )A.12,32 B.[1,2)C.12,2D.1,32【答案】选C 【解析】设函数f (x ),g (x )在[0,1]上的值域分别为A ,B ,则“存在x 1,x 2∈[0,1],使得f (x 1)=g (x 2)成立”等价于“A ∩B ≠⌀”.当0≤x ≤12时, f (x )=-16x +112单调递减,所以0≤f (x )≤112;当12<x ≤1时, f '(x )=x 2(2x +3)(x +1)2>0,所以f (x )=x 3x +1单调递增,112<f (x )≤12,故f (x )在[0,1]上的值域A =0,12.当x ∈[0,1]时,π6x ∈0,π6 ,y =sin π6x 在[0,1]上单调递增.又a >0,所以g (x )=a sin π6x -a +1在[0,1]上单调递增,其值域B =1-a ,1-a 2.2由A ∩B ≠⌀,得0≤1-a ≤12或0≤1-a 2≤12,解得12≤a ≤2.故选C .二、“任意=存在”型∀x 1∈D 1,∃x 2∈D 2,使得f (x 1)=g (x 2),等价于函数f (x )在D 1上的值域A 是函数g (x )在D 2上的值域B 的子集,即A ⊆B .其等价转化的基本思想:函数f (x )的任意一个函数值都与函数g (x )的某一个函数值相等,即f (x )的函数值都在g (x )的值域之中.【例2】 已知函数f (x )=4x 2-72-x,x ∈[0,1].(1)求f (x )的单调区间和值域;(2)设a ≥1,函数g (x )=x 3-3a 2x -2a ,x ∈[0,1].若对于任意的x 1∈[0,1],总存在x 0∈[0,1],使得g (x 0)=f (x 1)成立,求a 的取值范围.【解析】(1)f '(x )=-4x 2+16x -7(2-x )2=-(2x -1)(2x -7)(2-x )2,x ∈[0,1].令f '(x )=0,解得x =12或x =72(舍去).当x 变化时, f '(x ), f (x )的变化情况如下表所示:x 00,121212,11f '(x )-0+f (x )-72↘-4↗-3 所以f (x )的递减区间是0,12,递增区间是12,1 .f (x )min =f 12=-4,又f (0)=-72, f (1)=-3,所以f (x )max =f (1)=-3.故当x ∈[0,1]时, f (x )的值域为[-4,-3].(2)“对于任意的x 1∈[0,1],总存在x 0∈[0,1],使得g (x 0)=f (x 1)成立”等价于“在x ∈[0,1]上,函数f (x )的值域B 是函数g (x )的值域A 的子集,即B ⊆A ”.因为a ≥1,且g '(x )=3(x 2-a 2)<0,所以当x ∈[0,1]时,g (x )为减函数,所以g (x )的值域A =[1-2a -3a 2,-2a ].由B ⊆A ,得1-2a -3a 2≤-4且-2a ≥-3,又a ≥1,故1≤a ≤32.【变式2】 已知函数f (x )=x 2-23ax 3(a >0),x ∈R .(1)求f (x )的单调区间和极值;(2)若对于任意的x 1∈(2,+∞),都存在x 2∈(1,+∞),使得f (x 1)·f (x 2)=1.求a 的取值范围.【解析】 解析 (1)由已知,有f '(x )=2x -2ax 2(a >0).令f '(x )=0,解得x =0或x =1a .当x 变化时, f '(x ), f (x )的变化情况如下表:x(-∞,0)0,1a 1a 1a ,+∞3f '(x )-0+0-f (x )↘↗13a 2↘所以, f (x )的单调递增区间是0,1a;单调递减区间是(-∞,0),1a ,+∞ .当x =0时, f (x )有极小值,且极小值f (0)=0;当x =1a 时,f (x )有极大值,且极大值f 1a =13a2.(2)由f (0)=f 32a=0及(1)知,当x ∈0,32a 时, f (x )>0;当x ∈32a,+∞ 时, f (x )<0.设集合A ={f (x )|x ∈(2,+∞)},集合B =1f (x )|x ∈(1,+∞),f (x )≠0,则“对于任意的x 1∈(2,+∞),都存在x 2∈(1,+∞),使得f (x 1)·f (x 2)=1”等价于A ⊆B .显然,0∉B .下面分三种情况讨论:①当32a >2,即0<a <34时,由f 32a=0可知,0∈A ,而0∉B ,所以A 不是B 的子集.②当1≤32a ≤2,即34≤a ≤32时,有f (2)≤0,且此时f (x )在(2,+∞)上单调递减,故A =(-∞, f (2)),因而A ⊆(-∞,0);由f (1)≥0,有f (x )在(1,+∞)上的取值范围包含(-∞,0),即(-∞,0)⊆B .所以,A ⊆B .③当32a <1,即a >32时,有f (1)<0,且此时f (x )在(1,+∞)上单调递减,故B =1f (1),0,A =(-∞, f (2)),所以A 不是B 的子集.综上,a 的取值范围是34,32.三、“任意≥(≤、>、<)任意”型∀x 1∈D 1,∀x 2∈D 2,f (x 1)>g (x 2)恒成立,等价于f (x )min >g (x )max ,或等价于f (x )>g (x )max 恒成立,或等价于f (x )min >g (x )恒成立.其等价转化的基本思想是函数f (x )的任何一个函数值均大于函数g (x )的任何一个函数值.∀x 1∈D 1,∀x 2∈D 2,f (x 1)<g (x 2)恒成立,等价于f (x )max <g (x )min ,或等价于f (x )<g (x )min 恒成立,或等价于f (x )max <g (x )恒成立.其等价转化的基本思想是函数f (x )的任何一个函数值均小于函数g (x )的任何一个函数值.∀x 1∈D 1,∀x 2∈D 2,f (x 1)-g (x 2)>k 恒成立,等价于[f (x 1)-g (x 2)]min >k 恒成立,也等价于f (x )min-g (x )max >k .∀x 1∈D 1,∀x 2∈D 2,f (x 1)-g (x 2)<k 恒成立,等价于[f (x 1)-g (x 2)]max <k 恒成立,也等价于f (x )max-g (x )min <k .【例3】 设函数f (x )=x 3-x 2-3.(1)求f (x )的单调区间;(2)设函数g (x )=a x+x ln x ,如果对任意的x 1,x 2∈12,2,都有f (x 1)≤g (x 2)成立,求实数a 的取值范围.【解析】解析 (1)f '(x )=3x 2-2x .f '(x )>0时,x <0或x >23,f '(x )<0时,0<x <23.所以, f (x )的递增区间是(-∞,0),23,+∞;递减区间是0,23.4(2)由(1)知,函数f (x )在12,23 上单调递减,在23,2 上单调递增,而f 12=-258, f (2)=1,故f (x )在区间12,2上的最大值f (x )max =f (2)=1.“对任意的x 1,x 2∈12,2 ,都有f (x 1)≤g (x 2)成立”等价于“对任意的x ∈12,2,g (x )≥f (x )max 恒成立”,即当x ∈12,2时,g (x )=a x+x ln x ≥1恒成立,即a ≥x -x 2ln x 恒成立,记u (x )=x -x 2ln x 12≤x ≤2,则有a ≥u (x )max .u '(x )=1-x -2x ln x ,可知u '(1)=0.当x ∈12,1时,1-x >0,2x ln x <0,则u '(x )>0,所以u (x )在12,1上递增; 当x ∈(1,2)时,1-x <0,2x ln x >0,则u '(x )<0,所以u (x )在(1,2)上递减.故u (x )在区间12,2上的最大值u (x )max =u (1)=1,所以实数a 的取值范围是[1,+∞).【点拨】 (1)∀x 1∈D 1,∀x 2∈D 2,f (x 1)>g (x 2)恒成立,通常等价转化为f (x )min >g (x )max .这是两个独立变量--双变量问题,不等式两边f (x 1),g (x 2)中自变量x 1,x 2可能相等,也可能不相等;(2)对任意的x ∈[m ,n ],不等式f (x )>g (x )恒成立,通常等价转化为[f (x )-g (x )]min >0.这是单变量问题,不等式两边f (x ),g (x )的自变量x 相等.【变式3】 函数f (x )=mxx 2+1+1(m ≠0),g (x )=x 2e ax (a ∈R ).(1)直接写出函数f (x )的单调区间;(2)当m >0时,若对于任意的x 1,x 2∈[0,2], f (x 1)≥g (x 2)恒成立,求a 的取值范围.【解析】 (1)当m >0时,f (x )的递增区间是(-1,1);递减区间是(-∞,-1),(1,+∞).当m <0时,f (x )的递增区间是(-∞,-1),(1,+∞);递减区间是(-1,1).(2)当m >0时,“对于任意的x 1,x 2∈[0,2],f (x 1)≥g (x 2)恒成立”等价于“对于任意的x ∈[0,2],f (x )min ≥g (x )max 成立”.当m >0时,由(1)知,函数f (x )在[0,1]上单调递增,在[1,2]上单调递减,因为f (0)=1,f (2)=2m5+1>1,所以f (x )min =f (0)=1,故应满足1≥g (x )max .因为g (x )=x 2e ax ,所以g '(x )=(ax 2+2x )e ax .①当a =0时,g (x )=x 2,此时g (x )max =g (2)=4,不满足1≥g (x )max .②当a ≠0时,令g '(x )=0,得x =0或x =-2a .(i )当-2a≥2,即-1≤a <0时,在[0,2]上,g '(x )≥0,g (x )在[0,2]上单调递增,g (x )max =g (2)=4e 2a .由1≥4e 2a ,得a ≤-ln 2,所以-1≤a ≤-ln 2.(ii )当0<-2a <2,即a <-1时,在0,-2a上,g '(x )≥0,g (x )递增;在-2a ,2 上,g '(x )<0,g (x )递减.g (x )max =g -2a =4a 2e 2,由1≥4a 2e 2,得a ≤-2e ,所以a <-1.5(iii )当-2a<0,即a >0时,显然在[0,2]上,g '(x )≥0,g (x )单调递增,于是g (x )max =g (2)=4e 2a >4,此时不满足1≥g (x )max .综上,a 的取值范围是(-∞,-ln 2].四、“任意≥(≤、>、<)存在”型∀x 1∈D 1,∃x 2∈D 2,使得f (x 1)>g (x 2)成立,等价于f (x )min >g (x )min .其等价转化的基本思想是函数f (x )的任意一个函数值大于函数g (x )的某一个函数值,但并不要求大于函数g (x )的所有函数值.∀x 1∈D 1,∃x 2∈D 2,使得f (x 1)<g (x 2)成立,等价于f (x )max <g (x )max .其等价转化的基本思想是函数f (x )的任意一个函数值小于函数g (x )的某一个函数值,但并不要求小于函数g (x )的所有函数值.∀x 1∈D 1,∃x 2∈D 2,使得f (x 1)-g (x 2)>k 成立,等价于f (x )min -g (x )min >k .∀x 1∈D 1,∃x 2∈D 2,使得f (x 1)-g (x 2)<k 成立,等价于f (x )max -g (x )max <k .【例4】 函数f (x )=ln x -14x +34x-1,g (x )=x 2-2bx +4,若对任意的x 1∈(0,2),存在x 2∈[1,2],使得f (x 1)≥g (x 2)成立,求实数b 的取值范围.【解析】 “对任意的x 1∈(0,2),存在x 2∈[1,2],使得f (x 1)≥g (x 2)成立”等价于“f (x )在(0,2)上的最小值不小于g (x )在[1,2]上的最小值,即f (x )min ≥g (x )min (*)”.f '(x )=1x -14-34x 2=-(x -1)(x -3)4x 2,当x ∈(0,1)时, f '(x )<0, f (x )单调递减;当x ∈(1,2)时, f '(x )>0, f (x )单调递增.故当x ∈(0,2)时, f (x )min =f (1)=-12.又g (x )=(x -b )2+4-b 2,x ∈[1,2],①当b <1时,g (x )min =g (1)=5-2b >3,此时与(*)矛盾;②当b ∈[1,2]时,g (x )min =g (b )=4-b 2≥0,同样与(*)矛盾;③当b ∈(2,+∞)时,g (x )min =g (2)=8-4b ,由8-4b ≤-12,得b ≥178.综上,实数b 的取值范围是178,+∞ .【变式4】 已知函数f (x )=13x 3+x 2+ax .(1)若f (x )在区间[1,+∞)上单调递增,求a 的最小值;(2)若g (x )=x ex ,∀x 1∈12,2 ,∃x 2∈12,2 ,使得f '(x 1)≤g (x 2)成立,求a 的取值范围.【解析】 (1)由题设知f '(x )=x 2+2x +a ≥0,即a ≥-(x +1)2+1在[1,+∞)上恒成立,而y =-(x +1)2+1在[1,+∞)上单调递减,则y max =-3,∴a ≥-3,∴a min =-3.(2)“∀x 1∈12,2,∃x 2∈12,2 ,使f '(x 1)≤g (x 2)成立”等价于“x ∈12,2 时,f '(x )max ≤g (x )max 恒成立”.∵f '(x )=x 2+2x +a =(x +1)2+a -1在12,2上递增,∴f '(x )max =f '(2)=8+a ,又g '(x )=e x -xe x e 2x =1-x e x,6∴g (x )在(-∞,1)上递增,在(1,+∞)上递减.∴当x ∈12,2时,g (x )max =g (1)=1e ,由8+a ≤1e 得,a ≤1e -8,所以a 的取值范围是-∞,1e-8 .五、“存在≥(≤、>、<)存在”型若∃x 1∈D 1,∃x 2∈D 2,使得f (x 1)>g (x 2)成立,等价于f (x )max ≥g (x )min .其等价转化的基本思想是函数f (x )的某一个函数值大于函数g (x )的某一个函数值,即只要有这样的函数值即可.若∃x 1∈D 1,∃x 2∈D 2,使得f (x 1)<g (x 2)成立,等价于f (x )min <g (x )max .其等价转化的基本思想是函数f (x )的某一个函数值小于函数g (x )的某一个函数值,即只要有这样的函数值即可.若∃x 1∈D 1,∃x 2∈D 2,使得f (x 1)-g (x 2)>k 成立,等价于[f (x 1)-g (x 2)]max >k ,也等价于f (x )max-g (x )min >k .若∃x 1∈D 1,∃x 2∈D 2,使得f (x 1)-g (x 2)<k 成立,等价于[f (x 1)-g (x 2)]min <k ,也等价于f (x )min -g (x )max <k .【例5】 已知函数f (x )=4ln x -ax +a +3x(a ≥0).(1)直接写出函数f (x )的单调区间;(2)当a ≥1时,设g (x )=2e x -4x +2a ,若存在x 1,x 2∈12,2,使f (x 1)>g (x 2),求实数a 的取值范围.【解析】 (1)当a =0时,函数f (x )的递减区间为0,34,递增区间为34,+∞ .当0<a <1时,函数f (x )的递减区间为0,2--(a -1)(a +4)a,2+-(a -1)(a +4)a,+∞,递增区间为2--(a -1)(a +4)a ,2+-(a -1)(a +4)a.当a ≥1时, f (x )的递减区间为(0,+∞).(2)“存在x 1,x 2∈12,2 ,使f (x 1)>g (x 2)”等价于“ 当x ∈12,2时, f (x )max >g (x )min ”.由(1)知,当x ∈12,2时, f (x )max =f 12 =-4ln 2+32a +6,由g '(x )=2e x -4>0,得x >ln 2,所以g (x )在(0,ln 2)上单调递减,在(ln 2,+∞)上单调递增,故当x ∈12,2时,g (x )min =g (ln 2)=4-4ln 2+2a ,由f (x )max >g (x )min ,得-4ln 2+32a +6>4-4ln 2+2a ,又a ≥1,所以1≤a <4.【变式5】 设函数f (x )=xln x-ax .(1)若函数f (x )在(1,+∞)上为减函数,求实数a 的最小值;(2)若存在x 1,x 2∈[e ,e 2],使f (x 1)≤f '(x 2)+a 成立,求实数a 的取值范围.【解析】 (1)由题设知f '(x )=ln x -1(ln x )2-a ≤0在(1,+∞)上恒成立,则只需f '(x )max ≤0.又f '(x )=ln x -1(ln x )2-a =-1ln x -12 2+14-a ,7所以当1ln x =12,即x =e 2时, f '(x )max =14-a ,由14-a ≤0得a ≥14,故a 的最小值为14.(2)“存在x 1,x 2∈[e ,e 2],使f (x 1)≤f '(x 2)+a 成立”等价于“当x 1,x 2∈[e ,e 2]时, f (x 1)min ≤f '(x 2)max +a ”.由(1)知,当x ∈[e ,e 2]时, f '(x )max =f '(e 2)=14-a ,所以f '(x )max +a =14.则问题等价于“当x ∈[e ,e 2]时, f (x )min ≤14”.①当a ≥14时,由(1)得f '(x )max =14-a ≤0, f (x )在[e ,e 2]上为减函数,则f (x )min =f (e 2)=e 22-ae 2,由f (x )min ≤14,得a ≥12-14e 2.②当a <14时, f '(x )=-1ln x -12 2+14-a 在[e ,e 2]上的值域为-a ,14-a .(i )当-a ≥0,即a ≤0时, f '(x )≥0在[e ,e 2]恒成立,故f (x )在[e ,e 2]上为增函数,于是f (x )min =f (e )=e -ae ≥e >14,与f (x )min ≤14矛盾.(ii )当-a <0,即0<a <14时,由f '(x )的单调性和值域知,存在唯一的x 0∈(e ,e 2),使f '(x )=0,且满足:当x ∈(e ,x 0)时, f '(x )<0, f (x )为减函数;当x ∈(x 0,e 2)时, f '(x )>0, f (x )为增函数,所以f (x )min =f (x 0)=x 0ln x 0-ax 0≤14,x 0∈(e ,e 2).所以a ≥1ln x 0-14x 0>1ln e 2-14e >12-14=14,与0<a <14矛盾.综上,a 的取值范围是a ≥12-14e2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数中的双变量任意、存在恒成立问题
解决方法:转化为最值问题处理
●类型 一:若2211D x D x ∈∀∈∀,,)()(21x g x f >恒成立 ⇔ max 2min 1)()(x g x f >. 基本思想是:函数)(x f 的任一函数值均大于)(x g 的任一函数值,
故只需max 2min 1)()(x g x f >即可. 几何解释如图一.
例1、已知x x x f ln )(=,3)(2++-=ax x x g ,若对)0(1∞+∈∀,x ,
]1
[2e x ,∈∀使得)(21x f ≥)(2x g 成立,求实数a 的取值范围.
【变式训练1】已知函数14341ln )(-+-=x
x x x f ,42)(2-+-=bx x x g ,若)20(1,∈∀x , ]21[2,∈∀x ,不等式)(1x f ≥)(2x g 恒成立,求实数b 的取值范围.
●类型 二:若2211D x D x ∈∃∈∃,,)()(21x g x f >恒成立 ⇔ min 2max 1)()(x g x f >. 基本思想是:函数)(x f 的某些函数值大于)(x g 的某些函数值,
只要求有这样的函数值,不要求所有的函数值.
故只需min 2max 1)()(x g x f >即可. 几何解释如图二.
例2、已知a ≤2,设函数x a x x x f ln 1)(--=,e
x x x g 1ln )(--=, 若在]1
[e ,上存在21x x ,,使)(1x f ≥)(2x g 成立,求实数a 取值范围.
【变式训练2】已知函数x
x x g ln )(=,ax x g x f -=)()(. (1)求函数)(x g 的单调区间;
(2)若函数)(x f 在(1,∞+)上是减函数,求实数a 的最小值;
(3)若存在][221e e x x ,,∈,使得)(1x f ≤a x f +')(2成立,求实数a 取值范围.
●类型 三:若2211D x D x ∈∃∈∀,,)()(21x g x f >恒成立 ⇔ min 2min 1)()(x g x f >. 基本思想是:函数)(x f 的任一函数值大于)(x g 的某些函数值,
但并不要求大于)(x g 所有的函数值.
故只需min 2min 1)()(x g x f >即可. 几何解释如图三.
例3、已知函数x x x f 2)(2+=,m x g x -=)2
1()(. 若对]11[]21[21,,,-∈∃∈∀x x ,使得 )(1x f ≥)(2x g 成立,求实数m 取值范围.
【变式训练3】已知函数)()(2R n m n
x mx x f ∈+=,在1=x 取得极值2. (1)求)(x f 的解析式; (2)设函数x a x x g +
=ln )(,若对]1[]11[21e x x ,,,∈∃-∈∀,使得)(2x g ≤2
7)(1+
x f 成立,求实数a 的取值范围.
●类型 四:若2211D x D x ∈∀∈∃,,)()(21x g x f >恒成立 ⇔ max 2max 1)()(x g x f >. 基本思想是:函数)(x f 的某些函数值大于)(x g 的任一函数值,
只要求)(x f 有函数值大于)(x g 的函数值即可.
故只需max 2max 1)()(x g x f >即可. 几何解释如图三.
例4、已知函数,x ax x f ln )(+=,22)(2+-=x x x g . 若a 1->且]1
[1e x ,∈∃,对 ]10[2,∈∀x ,使得)()(21x g x f >成立,求实数a 的取值范围.
【变式训练4】已知函数x
x x f 2ln )(-=,x x x f x g ln 62)()(-+=,设4)(2+-=mx x x h . 若)10(1,
∈∃x ,对]21[2,∈∀x ,总有)(1x g ≥)(2x h 成立,求实数m 的取值范围.
例4、【解析】:因为22)(2
+-=x x x g ,]1,0[∈x ,易得2)0()(max ==g x g . 又x ax x f ln )(+=,x a x f 1)(+
=',易知)(x f '在[1,e]上单调递减,∴]11[)(++∈'a e a x f ,,若a ≥e
1-,则)(x f '>0,)(x f 在[1,e]上单调递增,1)()(max +==ae e f x f >2,解得a >e 1.若e a 11-<<-,)(x f 在(1,a 1-)上单调递增,在(a
1-,e )上单调递减,)ln(1)1()(max a a
f x f ---=-=>2,得31e a ->,此时与e a 11-<<-矛盾. 综上所述,所求a 的取值范围是(+∞,1e
).。