初一数学分式的乘除知识点
9.分式的乘除-----分式的乘除课件数学沪科版七年级下册

2.分清乘方、乘除的运算顺序,能够解决分式的乘除、乘
方的混合运算.(重点、难点)
1.如何进行分式的乘除法运算?
乘法法则:两个分式相乘,用分子的积作
积的分子,用分母的积作积的分母.
除法法则:两个分式相除,将除式的分子、
分母颠倒位置后,与被除式相乘.
²
;
²
· =
10
³
;
³
· · =
4
4.
a a
a
b b
b
10个
10
a
a
10
b
b
一般地,当n是正整数时,
n个
a n a a
a a a … a an
( ) …
n ,即
b
b b
b b b … b b
n个
a n an
( ) n.
法交换律和结合律可起到简化运算的作用
b
b
这就是说,分式乘方就是把分子、分母分
别乘方.
根据负整数次幂的意义,可知:
( )
= (
−1
)
=
− ��
=
.
这就是说,分式的乘方( ) 可以转化为积的
乘方(
−1
) .
2x
3
x
计算: 5 x 3 25 x 2 9 5 x 3 .
2 x 25 x 9
.
5. 计算: 2
2
x 16
4 x
4 x
数学2.2《分式的乘除法》课件(2)

Conversation 4 Anna: Mei Ling, can you come to my party on Saturday? Mei Ling: Sorry, but I’m not available. I must study for a math test. Anna: Ok. Good luck!
①把各分式中分子或分母里的多项式分解因式; ②在乘除过程中遇到整式则视其为分母为1; ③应用分式乘除法法则进行运算; ④结果为最简分式或整式.
随堂练习 1、计算 (1)
a b b a2
(2) (a2 a) a
a 1
1
解(1)原式= a
(2)原式= (a-1)2
2.计算 a2 b 1 a2 1 a2 正确吗?
A: Can you play basketball with us?
B: Sorry, I can’t. I …
prepare for an exam
A: Can you … ? B: Sorry, I can’t. I …
go to the doctor
meet my friend
A: Can you …?
to meet my friend on Saturday.
Conversation 2 Anna: Hello, Mary! Can you come
to my party on Saturday? Mary: I’d love to. Do I need to bring
anything? Anna: No, I’ll buy all the circle can or can’t.
1. Jeff can/ can’t go to the party. 2. Mary can/ can’t go to the party. 3. May can/ can’t go to the party. 4. Mei Ling can/ can’t go to the party. 5. Paul can/ can’t go to the party.
分式的乘除法

分式的乘除法分式的乘法和除法是数学中非常重要的概念,在许多数学题目和实际应用中都会用到这两种运算。
下面我们将详细介绍分式的乘法和除法,帮助大家更好地掌握这个概念。
一、分式的乘法1. 定义两个分数的乘积是将它们的分子相乘,分母相乘得到的新的分数。
简单来说,两个分数的乘积算法是:分式 A ×分式 B = (A的分子× B的分子) / (A的分母× B的分母)例如:(3/4) × (5/6) = (3×5) / (4×6) = 15 / 24(1/3) × (4/5) = (1×4) / (3×5) = 4 / 152. 乘法的性质①乘法是可交换的:两个分式相乘的结果与两个分式交换位置后相乘的结果相同。
A ×B = B × A②乘法是可结合的:三个或更多个分式相乘的结果不受计算的顺序影响。
(A × B) × C = A × (B × C)③乘法满足分配律:一个分式与多个分式相加的结果等于每个分式与它相乘后再相加的结果。
A × (B + C) = A × B + A × C例如:2/3 × (4/5 + 1/5) = 2/3 × 5/5 = 10/152/3 × 4/5 + 2/3 ×1/5 = 8/15 + 2/15 = 10/15二、分式的除法1. 定义两个分式的除法是将它们的分子相乘,分母相乘后,将前者的结果除以后者的结果所得到的新的分数。
简单来说,分式 A ÷分式 B 算法是:分式 A ÷分式 B = (A的分子× B的分母) / (A的分母× B的分子)例如:(3/4) ÷ (5/6) = (3×6) / (4×5) = 18 / 20(1/3) ÷ (4/5) = (1×5) / (3×4) = 5 / 122. 除法的性质①除法是不可交换的:两个分式相除的结果与两个分式交换位置后相除的结果不相同。
分式的乘除法

分式的乘除法分式是数学中的一种表示形式,它由分子与分母组成,分子表示被分割的数量,分母表示分割成的份数。
在分式中,乘法和除法是常见的运算。
本文将介绍分式的乘法和除法的规则和运算方法。
一、分式的乘法分式的乘法是指两个或多个分式相乘的操作。
下面是分式乘法的规则:规则1:分子乘以分子,分母乘以分母。
示例1:(2/3) * (5/7) = (2 * 5) / (3 * 7) = 10/21规则2:任意常数乘以分式,可以将常数作为分子或分母的一部分。
示例2:3 * (4/5) = (3 * 4) / 5 = 12/5规则3:分子和分母都可以进行约分。
示例3:(8/12) * (3/5) = (8/3) * (3/5) = 24/15 = 8/5二、分式的除法分式的除法是指将一个分式除以另一个分式的操作。
下面是分式除法的规则:规则1:除法可以等价为乘法。
示例1:(2/3) ÷ (4/5) = (2/3) * (5/4) = (2 * 5) / (3 * 4) = 10/12 = 5/6规则2:除法的倒数等于分子和分母交换位置后的分式。
示例2:(3/4) ÷ (2/3) = (3/4) * (3/2) = (3 * 3) / (4 * 2) = 9/8规则3:分子和分母都可以进行约分。
示例3:(4/6) ÷ (2/3) = (4/6) * (3/2) = (4 * 3) / (6 * 2) = 12/12 = 1/1 = 1三、分式乘除法的综合运算分式乘除法可以结合使用,需要按照运算的优先级和顺序进行计算。
下面是一个综合运算的示例:示例:(2/3) * (3/4) ÷ (4/5) = (2/3) * (3/4) * (5/4) = (2 * 3 * 5) / (3 * 4 * 4) =30/48 = 5/8四、小结分式的乘法和除法是分式运算中常见的操作,掌握其规则和运算方法对于数学学习和实际计算都非常重要。
分式的乘除法

分式的乘除法在数学中,分式是一种数学表达式,由一个或多个数的比值构成。
分式的乘除法是指对于两个或多个分式进行相乘或相除的运算。
本文将详细介绍分式的乘法和除法运算规则,并提供相关示例。
一、分式的乘法运算规则分式的乘法运算规则如下:1. 分子与分子相乘,分母与分母相乘。
例如,对于分式 a/b 和 c/d 的乘法运算,结果为(a*c)/(b*d)。
示例1: 计算 (2/3) * (4/5) = (2*4)/(3*5) = 8/15。
示例2: 计算 (1/2) * (3/4) = (1*3)/(2*4) = 3/8。
2. 分式可以和整数进行相乘。
例如,对于分式 a/b 和整数 c 的乘法运算,结果为(a*c)/b。
示例3: 计算 (2/3) * 4 = (2*4)/3 = 8/3。
示例4: 计算 (3/4) * 2 = (3*2)/4 = 6/4 = 3/2。
二、分式的除法运算规则分式的除法运算规则如下:1. 分式的除法可以转化为分子乘以倒数的形式。
例如,对于分式 a/b 除以 c/d 的运算,结果为(a/b)*(d/c)。
示例5: 计算 (2/3) ÷ (4/5) = (2/3)*(5/4) = (2*5)/(3*4) = 10/12 = 5/6。
示例6: 计算 (1/2) ÷ (3/4) = (1/2)*(4/3) = (1*4)/(2*3) = 4/6 = 2/3。
2. 分式可以和整数进行相除。
例如,对于分式 a/b 除以整数 c 的运算,结果为(a/b)*(1/c)。
示例7: 计算 (2/3) ÷ 4 = (2/3)*(1/4) = (2*1)/(3*4) = 2/12 = 1/6。
示例8: 计算 (3/4) ÷ 2 = (3/4)*(1/2) = (3*1)/(4*2) = 3/8。
三、综合运算示例接下来,我们将综合运用分式的乘法和除法规则进行计算。
示例9: 计算 [(1/2) * (4/5)] ÷ [(3/4) * (1/3)]。
分式的乘除与乘方

分式的乘除与乘方分式是数学中的一个重要概念,它在乘除与乘方运算中有着特殊的应用。
本文将探讨分式在乘除与乘方中的运算规则,帮助读者更好地理解和应用这些概念。
一、分式的乘法分式的乘法可以用以下公式描述:若a/b和c/d是两个分式,其中a、b、c、d为实数,且b和d不为0,则它们的乘积为:(a/b) * (c/d) = (a * c) / (b * d)通过这个公式,我们可以看出分子相乘得到新分式的分子,分母相乘得到新分式的分母。
例如,我们计算1/2乘以3/4,可以按照上述公式进行计算:(1/2) * (3/4) = (1 * 3) / (2 * 4) = 3/8二、分式的除法分式的除法可以用以下公式描述:若a/b和c/d是两个分式,其中a、b、c、d为实数,且b和c不为0,则它们的除法为:(a/b) / (c/d) = (a * d) / (b * c)同样地,我们可以看出分式的分子乘以除数的倒数得到新分式的分子,分母乘以被除数的倒数得到新分式的分母。
举例来说,如果我们计算2/3除以4/5,可以按照上述公式进行计算:(2/3) / (4/5) = (2/3) * (5/4) = (2 * 5) / (3 * 4) = 10/12 = 5/6三、分式的乘方分式的乘方可以用以下公式描述:若a/b是一个分式,其中a和b为实数,且b不为0,则它的n次幂为:(a/b)^n = a^n / b^n通过这个公式,我们可以看出分式的分子和分母分别取n次幂得到新分式的分子和分母。
例如,我们计算(2/3)^2,可以按照上述公式进行计算:(2/3)^2 = (2^2) / (3^2) = 4/9总结:在分式的乘除与乘方运算中,我们可以运用特定的公式进行计算,以得到正确的结果。
分式乘法中,分子相乘得到新分式的分子,分母相乘得到新分式的分母;分式除法中,分子乘以除数的倒数得到新分式的分子,分母乘以被除数的倒数得到新分式的分母;分式乘方中,分子和分母分别取指数的幂得到新分式的分子和分母。
分式的乘除运算

分式的乘除运算在数学中,分式是一种特殊的数学表达式,它由分子和分母组成,中间用一条水平线分隔。
分式的乘除运算是指对分式进行乘法和除法的运算。
本文将详细介绍分式的乘除运算规则以及相关的解题方法。
一、分式的乘法运算分式的乘法运算可以通过分子相乘、分母相乘的方式进行。
具体步骤如下:步骤1:将两个分式的分子和分母分别相乘。
例如,对于分式a/b和c/d的乘法运算,乘积可以表示为:(a*c)/(b*d)。
步骤2:对乘积进行约分。
如果乘积的分子和分母有公因数,可以进行约分。
约分时,需要找到分子和分母的最大公因数,并将分子和分母分别除以最大公因数。
二、分式的除法运算分式的除法运算可以通过转化为乘法来进行。
具体步骤如下:步骤1:将除法转化为乘法。
将除法运算转化为乘法运算的方式是,将被除数乘以除数的倒数。
即,a/b ÷ c/d 可以转化为 a/b * d/c。
步骤2:按照乘法运算的规则进行计算。
按照分式的乘法运算规则,将分子和分母相乘,并进行约分。
三、分式乘除运算的综合应用在实际的问题中,分式乘除运算常常与整数运算相结合,需要注意分式与整数的运算顺序。
一般来说,先进行分式的乘除运算,然后再进行加减运算。
例如,计算表达式:2/3 * 4/5 ÷ 1/2。
按照分式乘除运算的规则,先进行乘法运算,然后进行除法运算。
2/3 * 4/5 = 8/15。
8/15 ÷ 1/2 = 8/15 * 2/1 = 16/15。
四、乘除运算的注意事项在进行分式的乘除运算时,需要注意以下几点:1. 约分:在进行乘除运算时,尽量进行约分,使结果更简洁。
2. 分母为零:分式的分母不能为零。
在进行计算时,要避免分母为零的情况。
3. 正确运算顺序:在实际问题中,要根据运算的先后顺序,合理安排乘除运算与加减运算的顺序。
综上所述,分式的乘除运算是数学中的重要概念之一。
通过对分式乘法和除法运算规则的了解,我们可以灵活运用在实际问题的解答中。
分式的乘除法

V1 则 的值也越大, 即西瓜瓤占整个西瓜的体 V
积也越大.
因此,买大西瓜更合算.
例3.请你化简,再选一个使原式有意义,而 2 3 2 你也喜爱的数代入求值: x x 1 x 反思:
x x
2
x 1
x 本题中“ ”为何不能取0或1或-1?
小测:计算下列各题:
n m (1) ; m n
12xy3
练习2:计算:
3y (1) 5 x 3 2a (3) 2 c 3 2 2a b (5) c
2
2 2
2
yx x y 3m n 4mn (7) ;(8) x y y x 。 3 2 2mn 9m n
a 2 1 a 2 a a 2
1 2 a 2a
分式乘法运算, 就是运用分式 的运算法则和 分式的基本性 质,进行约分 化简,其结果 通常要化成最 简分式或整式.
利用分式的乘法法则计算
例2. 计算:
9a 2 b 2 3ab3 2 2 2c 8c
(3)
6 a b
2
ab 27 (2) a b 2 3 6a b
3 2
;
12 a b
ab
a b
2
18a 2b2 6b2 a ; ;(4) 2 2 5 xy 5x y
(5)
2ab 2a b 。 2 2 a b a b
2 2
2
例1:计算
a2 4 a 3 2 2 a 4a 3 a 3a 2
解:原式=
(a 2)(a 2) a 3 (a 1)(a 3) (a 1)(a 2) (a 2)(a 2)(a 3) (a 1)(a 3)(a 1)(a 2) a-2 2 a 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学分式的乘除知识点
1.约分:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分;
分式约分:将分子、分母中的公因式约去,叫做分式的约分。
分式约分的根据是分式的基本性质,即分式的分子、分母都除以同一个不等于零的整式,分式的值不变。
约分的方法和步骤包括:
(1)当分子、分母是单项式时,公因式是相同因式的最低次幂与系数的最大公约数的积;
(2)当分子、分母是多项式时,应先将多项式分解因式,约去公因式。
2.通分:根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通。
分式通分:将几个异分母的分式化成同分母的分式,这种变形叫分式的通分。
(1)当几个分式的分母是单项式时,各分式的最简公分母是系数的最小公倍数、相同字母的最高次幂的所有不同字母的积;
(2)如果各分母都是多项式,应先把各个分母按某一字母降幂或升幂排列,再分解因式,找出最简公分母;
(3)通分后的各分式的分母相同,通分后的各分式分别与原来的分式相等;
(4)通分和约分是两种截然不同的变形.约分是针对一个分式而言,。