循环流化床锅炉设备及系统课件
合集下载
循环流化床锅炉主要设备及系统

燃烧室内部通常装有布风装置 、点火装置、温度测点等,以
确保煤粉能够均匀燃烧。
燃烧室的尺寸和形状根据锅炉 的容量和设计要求而定,其结 构需充分考虑热效率和燃烧效
率。
燃烧室的维护和清洁对于锅炉 的安全和稳定运行至关重要。
分离器
分离器的主要作用是将燃烧产生的烟气中的固体颗粒进行分离,以回收热能和减少 对环境的污染。
灰渣系统的作用
灰渣系统是循环流化床锅炉的重要辅助系统之一,主要负责收集 和运输锅炉燃烧产生的灰渣,并将其排出炉外。
灰渣系统的组成
灰渣系统通常包括灰斗、落灰管、输送设备(如刮板输送机、链式 输送机等)以及灰渣储存和处理设备等。
灰渣的利用和处理
收集的灰渣可以进行再利用,如作为建材、水泥等行业的原料,或 者经过处理后进行填埋等无害化处理。
环保性能好
循环流化床锅炉采用低温燃烧技术,能够减少氮氧化物、 硫氧化物等污染物的生成,烟气中的颗粒物也得到有效控 制,环保性能较好。
负荷调节范围广
循环流化床锅炉的负荷调节范围较广,可以在30%至 100%的范围内进行调节,能够满足不同用户的需求。
循环流化床锅炉的应用
电力行业
循环流化床锅炉广泛应用于电力 行业,作为大型火力发电厂的锅 炉设备,为电网提供稳定的电力
紧急处理
对于突发的严重故障或事故,需要进行紧急处理,如紧急停炉、切断燃料供应、启动消防设施等,以防止事故扩大和 减少损失。
维护保养
循环流化床锅炉的维护保养包括日常检查、定期清理、润滑保养等措施,以保持设备的良好状态和延长 使用寿命。同时需要对常见故障和问题进行分析总结,加强设备的维护和管理。
05
循环流化床锅炉发展趋 势与展望
除尘系统
除尘系统的作用
循环流化床锅炉原理ppt课件

1.布风板 定义:流化床锅炉燃烧室下部的炉篦称作 布风板。
布风板的主要作用有: (1)支撑炉内物料; (2)合理分配一次风,使通过布风板及风
帽的一次风流化物料,使之达到良好的流 化状态。
.
布风板的结构
.
布风板的结构
.
布风板的结构
图3-5 布风板结构形式示意图 (a)V型;(b)回字型;(c)水平型;(d)倾斜型
循环流化床锅炉给料方式分正压给料和负 压给料两种,正压给料就是给料口处炉膛 内压力大于大气压,负压给料为小于大气 压力
.
给料机结构图
图3-1
图3-14
.
给料机
.
给料方式
图3-16 给料方式 (a)正压给料; (b)负压给料
.
物料循环系统
主要包括物料分离器、立管和回料阀三部 分
作用是将烟气携带的大量物料分离下来并 返送回炉内形成循环床燃烧。
循环流化床锅炉
.
循环流化床燃烧的优缺点
一、循环流化床锅炉的优点
(1)对燃料的适应性特别好 (2)燃烧效率高 (3)炉内传热能力强 (4)脱硫效率高 (5)NOX排放量低 (6)负荷变化范围大,调节特性好 (7)给煤点数量少 (8)无埋管磨损
.
循环硫化炉示意图
.
循环流化床锅炉核心部分
.
发展流化床燃烧的 意义与结论
.
风帽的结构
.
点火方式与点火装置
循环流化床点火,就是通过外部热源使最 初加入床层上的物料温度提高到煤着火所 需的最低水平上,从而使投入的煤迅速着 火,并自保持床层温度在煤自身着火的水 平上,实现锅炉正常稳定运行。
点火方式:流态化点火 床上点火
床下点火
固定床点火 :床上点火
循环流化床锅炉结构原理及运行PPT课件

• (1)给煤装置 • 给煤装置为3台刮板式给煤机。给煤机与落煤管通过膨胀节相连,解决给煤机与炉膛水冷壁之间的膨
胀差(膨胀值120mm)。给煤装置的给煤量能够满足在一台给煤装置故障时,其余2台给煤装置仍 能保证锅炉100%额定出力。一定粒度的燃煤经给煤机进入布置在前墙的三根矩形间距为2.2m的落煤 管,落煤管上端有送煤风,下端靠近水冷壁处有播煤风,给煤借助自身重力和和引入的送煤风沿着落 煤管滑落到下端在距布风板1500 mm处进入炉膛。给煤量通过改变给煤机的转速来调整,给煤机内 通入一次风冷风作为密封风,由于给煤管内为正压(约有5000Pa的正压),给煤机必须具有良好的 密封。播煤风管连接在每个落煤管的端口,并应配备风门以控制入口风量。
PPC公司引进技术或合作生产的方式,开始生产制造130t/h、220t/h的循环流化床锅
炉。并具备了生产更大容量CFB锅炉的能力。国内“八五”重点能源环保科研项目内
江循环流化床示范电站从芬兰奥斯龙公司引进的410t/h循环流化床也已经投入运行。
循环流化床锅炉主要有以下特点:
• 1、燃料适应性广
• 2、有利于环境保护
13
• (8)硫回收装置尾气及合成驰放气燃烧系统 • 硫回收装置尾气入口位于二次风总管上,随二次风进入锅炉脱硫;合成驰放气入口布置于
锅炉后墙二次风管上(共两点),随二次风进入锅炉燃烧;硫回收装置尾气及合成驰放 气应在锅炉正常运行后投入,炉膛内无明火时严禁投入;锅炉点火前应确保锅炉内无可 燃性气体,必要时应吹扫炉膛,以防暴燃。
通过16根φ 159×12的分散下降管向炉膛水冷壁供水。其中两侧水冷壁下集箱分别由3根分散 下降管引入,前后墙水冷壁下集箱分别由5根分散下降管引入。两侧水冷壁上集箱相应各有4 根φ 159×12连接管引至汽包,前后墙水冷壁上集箱有10根φ 159×12引至汽包。
胀差(膨胀值120mm)。给煤装置的给煤量能够满足在一台给煤装置故障时,其余2台给煤装置仍 能保证锅炉100%额定出力。一定粒度的燃煤经给煤机进入布置在前墙的三根矩形间距为2.2m的落煤 管,落煤管上端有送煤风,下端靠近水冷壁处有播煤风,给煤借助自身重力和和引入的送煤风沿着落 煤管滑落到下端在距布风板1500 mm处进入炉膛。给煤量通过改变给煤机的转速来调整,给煤机内 通入一次风冷风作为密封风,由于给煤管内为正压(约有5000Pa的正压),给煤机必须具有良好的 密封。播煤风管连接在每个落煤管的端口,并应配备风门以控制入口风量。
PPC公司引进技术或合作生产的方式,开始生产制造130t/h、220t/h的循环流化床锅
炉。并具备了生产更大容量CFB锅炉的能力。国内“八五”重点能源环保科研项目内
江循环流化床示范电站从芬兰奥斯龙公司引进的410t/h循环流化床也已经投入运行。
循环流化床锅炉主要有以下特点:
• 1、燃料适应性广
• 2、有利于环境保护
13
• (8)硫回收装置尾气及合成驰放气燃烧系统 • 硫回收装置尾气入口位于二次风总管上,随二次风进入锅炉脱硫;合成驰放气入口布置于
锅炉后墙二次风管上(共两点),随二次风进入锅炉燃烧;硫回收装置尾气及合成驰放 气应在锅炉正常运行后投入,炉膛内无明火时严禁投入;锅炉点火前应确保锅炉内无可 燃性气体,必要时应吹扫炉膛,以防暴燃。
通过16根φ 159×12的分散下降管向炉膛水冷壁供水。其中两侧水冷壁下集箱分别由3根分散 下降管引入,前后墙水冷壁下集箱分别由5根分散下降管引入。两侧水冷壁上集箱相应各有4 根φ 159×12连接管引至汽包,前后墙水冷壁上集箱有10根φ 159×12引至汽包。
循环流化床锅炉课件

第一章 循环流化床锅炉概述
第三章 循环流化床锅炉基本原理
第四章 循环流化床锅炉主要燃 烧设备及系统
第六章 循环流化床锅炉的运行
第一章 循环流化床锅炉概述
第一节 循环流化床锅炉发展状况
一、煤燃烧技术的发展
19世纪80年代
固定床层燃技术
20世纪30年代
20世纪60年代末 至70年代初期
效率问题
煤粉燃烧技术
污染问题
第一代
流化床煤燃烧 技术(鼓泡床)
鼓泡床问题
20世纪80年代
第二代
流化床煤燃烧技 术(循环流化床)
第一章 循环流化床锅炉概述
第一节 循环流化床锅炉发展发展状况
二、我国流化床燃烧技术的发展
1965年
第一台流化床锅炉在广东茂名投产
备注:工业鼓泡床锅炉,燃用油母页岩
1988年11月 第一台循环流化床锅炉在山东明水热 电厂投产(35t/h)
第一章 循环流化床锅炉概述
第一节 循环流化床锅炉发展发展状况 三、山西循环流化床锅炉现状
2 130~240 t/h 级CFB锅炉的情况
2.3 侯马晋田电厂安装有两台哈尔滨锅炉厂引进 Alstom公司的循环流化床技术进行基础设计和制 造的型号为HG-220/9.8 CFB锅炉,于2002~2003 年4月先后投产。 2.4 山西平朔煤矸石电厂2×220 t/h循环流化床 锅炉#1炉于2004年12月26日通过72 小时试运。
6、燃料粒比度
燃料各粒径的颗粒占总量的份额之比称作粒比度。又称燃 料颗粒特性。按着粒比度在坐标图上作出的是一条连续的 曲线。称作颗粒特性曲线。
第三章 循环流化床锅炉基本原理
第一节 基本概念 7、流态化
当气体或液体以一定的速度流过固体颗粒层,并且气体 或液体对固体颗粒产生的作用力与固体颗粒所受的其他 外力相平衡,固体颗粒层会呈现出类似于液体状态的现 象。这种操作状态称为流态化。 8、流化速度 是指床料或物料流化时动力流体(一次风)的速度。也 称空塔速度。(u=Q/A)
第三章 循环流化床锅炉基本原理
第四章 循环流化床锅炉主要燃 烧设备及系统
第六章 循环流化床锅炉的运行
第一章 循环流化床锅炉概述
第一节 循环流化床锅炉发展状况
一、煤燃烧技术的发展
19世纪80年代
固定床层燃技术
20世纪30年代
20世纪60年代末 至70年代初期
效率问题
煤粉燃烧技术
污染问题
第一代
流化床煤燃烧 技术(鼓泡床)
鼓泡床问题
20世纪80年代
第二代
流化床煤燃烧技 术(循环流化床)
第一章 循环流化床锅炉概述
第一节 循环流化床锅炉发展发展状况
二、我国流化床燃烧技术的发展
1965年
第一台流化床锅炉在广东茂名投产
备注:工业鼓泡床锅炉,燃用油母页岩
1988年11月 第一台循环流化床锅炉在山东明水热 电厂投产(35t/h)
第一章 循环流化床锅炉概述
第一节 循环流化床锅炉发展发展状况 三、山西循环流化床锅炉现状
2 130~240 t/h 级CFB锅炉的情况
2.3 侯马晋田电厂安装有两台哈尔滨锅炉厂引进 Alstom公司的循环流化床技术进行基础设计和制 造的型号为HG-220/9.8 CFB锅炉,于2002~2003 年4月先后投产。 2.4 山西平朔煤矸石电厂2×220 t/h循环流化床 锅炉#1炉于2004年12月26日通过72 小时试运。
6、燃料粒比度
燃料各粒径的颗粒占总量的份额之比称作粒比度。又称燃 料颗粒特性。按着粒比度在坐标图上作出的是一条连续的 曲线。称作颗粒特性曲线。
第三章 循环流化床锅炉基本原理
第一节 基本概念 7、流态化
当气体或液体以一定的速度流过固体颗粒层,并且气体 或液体对固体颗粒产生的作用力与固体颗粒所受的其他 外力相平衡,固体颗粒层会呈现出类似于液体状态的现 象。这种操作状态称为流态化。 8、流化速度 是指床料或物料流化时动力流体(一次风)的速度。也 称空塔速度。(u=Q/A)
循环流化床精华PPT演示课件

• 终端速度:颗粒在静止空气中做初速度为零的自由 落体运动时,当下落速度达到某一数值时,颗粒 受到的阻力、重力和浮力三者达到平衡,然后颗 粒将匀速向下运动,这一临界速度叫颗粒的终端 速度。
内蒙古中煤蒙大新能源化工有限公司
• 料层差压料:层差压过高,会使流化质量下降,底 部大颗粒沉积,危机安全运行.同时,料层高度增 加,床层阻力增加,风机电耗增加。
(一进两出)
内蒙古中煤蒙大新能源化工有限公司
CFBB基本知识
循环流化床锅炉不同位置的流化状态
位置 燃烧室(二次风口以下) 燃烧室(二次风口以上) 旋风分离器 返料料腿(立管) 返料机构/外置式换热器 尾部烟道
流动状态 湍流或鼓泡流化床
快速流化床 旋涡流动 移动床 鼓泡流化床 气力输送
内蒙古中煤蒙大新能源化工有限公司
内蒙古中煤蒙大新能源化工有限公司
• 燃料粒比度:各粒径的颗粒占总量的份额之比称 为粒比度。
• 沟流,一次风流速在未达到临界流速前,空气在 床料中分布不均匀,颗粒大小和空隙率不均匀, 阻力也有大有小,大量的空气从阻力小的地方穿 越料层,其他部分仍处于固定状态,这种现象称 为沟流。沟流一般可以分为贯穿沟流和局部沟流 。
汇报人:白新伟
内蒙古中煤蒙大新能源化工有限公司
目录
1
CFB锅炉基本知识
2 CFCBF锅B锅炉炉各各系系统统和和主主要要设设备备
3
CFB锅炉运行操作
4
CFB锅炉典型事故案例
内蒙古中煤蒙大新能源化工有限公司
CFBB基本知识
• 循环流化床锅炉结构 原理
• 循环流化床锅炉主要 有两部分;一部分是 由炉本体,分离返料 装置和外部换热器组 成的,一部分是尾部 烟道以及尾部受热面 组成的。
内蒙古中煤蒙大新能源化工有限公司
• 料层差压料:层差压过高,会使流化质量下降,底 部大颗粒沉积,危机安全运行.同时,料层高度增 加,床层阻力增加,风机电耗增加。
(一进两出)
内蒙古中煤蒙大新能源化工有限公司
CFBB基本知识
循环流化床锅炉不同位置的流化状态
位置 燃烧室(二次风口以下) 燃烧室(二次风口以上) 旋风分离器 返料料腿(立管) 返料机构/外置式换热器 尾部烟道
流动状态 湍流或鼓泡流化床
快速流化床 旋涡流动 移动床 鼓泡流化床 气力输送
内蒙古中煤蒙大新能源化工有限公司
内蒙古中煤蒙大新能源化工有限公司
• 燃料粒比度:各粒径的颗粒占总量的份额之比称 为粒比度。
• 沟流,一次风流速在未达到临界流速前,空气在 床料中分布不均匀,颗粒大小和空隙率不均匀, 阻力也有大有小,大量的空气从阻力小的地方穿 越料层,其他部分仍处于固定状态,这种现象称 为沟流。沟流一般可以分为贯穿沟流和局部沟流 。
汇报人:白新伟
内蒙古中煤蒙大新能源化工有限公司
目录
1
CFB锅炉基本知识
2 CFCBF锅B锅炉炉各各系系统统和和主主要要设设备备
3
CFB锅炉运行操作
4
CFB锅炉典型事故案例
内蒙古中煤蒙大新能源化工有限公司
CFBB基本知识
• 循环流化床锅炉结构 原理
• 循环流化床锅炉主要 有两部分;一部分是 由炉本体,分离返料 装置和外部换热器组 成的,一部分是尾部 烟道以及尾部受热面 组成的。
循环流化床锅炉原理ppt课件

料方式
给料装置指的是将经破碎后的煤和脱硫剂送入流化床的装置,通常包括皮带、链板、埋刮板、气力输送设备以及圆盘给料机和螺旋结料机(俗称绞笼)等。 循环流化床锅炉给料方式分正压给料和负压给料两种,正压给料就是给料口处炉膛内压力大于大气压,负压给料为小于大气压力
给料机结构图
循环流化床锅炉主要部件名称
循环流化床锅炉
循环流化床锅炉系统图
循环流化床锅炉外观图
220t/h循环流化床锅炉
135MW机组循环流化床锅炉
135MW机组循环流化床锅炉
模块三 循环流化床锅炉 主要设备及作用
燃烧设备 物料循环系统 燃煤制备系统 风烟系统 除渣、除灰系统
课题一 燃烧设备
课题五 除渣除灰系统
除渣系统 除灰系统
滚筒式冷渣器
风水联合冷渣器系统
国外典型机组
A.汽包 B.炉内槽型分离器 C.水冷耐火层 D.蒸发屏 E.水冷耐火层 F.分隔 G.煤包 H.重力给煤机 I.水冷耐火层 J.二次风喷嘴 K.给煤槽 L.冷渣器 M.过热器 N.外槽型分离器 O.飞灰斗 P.省煤器 Q.多管旋风分离器 R.管式空气预热器 S.再循环系统 T.鼓风机 U.床上燃烧器 V.一次风
课题三 燃煤制备系统
制煤设备 *钢棒滚筒磨 *锤击式破碎机 制煤系统 *两级破碎系统 *棒磨制煤系统 *锤击磨制煤系统
课题四 风烟系统
风系统的分类及作用 一次风、 二次风、 播煤风、 回料风、冷却风、石灰石输送风 送风系统的几种布置形式 中、小型锅炉风系统 容量较大锅炉的风系统
课题五 主要污染物排放控制
流化床燃烧对SO2的排放控制 脱硫的基本工作过程:给煤中的硫份在炉膛内反应生成SO2及其它的一些硫化物;同时一定粒度分布的石灰石被给入炉膛,这些石灰石被迅速加热,并发生燃烧反应,产生多孔疏松的CaO。SO2扩散到CaO的表面和内孔,在有氧参与的情况下, CaO 吸收SO2并生成CaSO4。 最佳脱硫温度一般为850~870℃。 流化床燃烧对NOX的排放控制
给料装置指的是将经破碎后的煤和脱硫剂送入流化床的装置,通常包括皮带、链板、埋刮板、气力输送设备以及圆盘给料机和螺旋结料机(俗称绞笼)等。 循环流化床锅炉给料方式分正压给料和负压给料两种,正压给料就是给料口处炉膛内压力大于大气压,负压给料为小于大气压力
给料机结构图
循环流化床锅炉主要部件名称
循环流化床锅炉
循环流化床锅炉系统图
循环流化床锅炉外观图
220t/h循环流化床锅炉
135MW机组循环流化床锅炉
135MW机组循环流化床锅炉
模块三 循环流化床锅炉 主要设备及作用
燃烧设备 物料循环系统 燃煤制备系统 风烟系统 除渣、除灰系统
课题一 燃烧设备
课题五 除渣除灰系统
除渣系统 除灰系统
滚筒式冷渣器
风水联合冷渣器系统
国外典型机组
A.汽包 B.炉内槽型分离器 C.水冷耐火层 D.蒸发屏 E.水冷耐火层 F.分隔 G.煤包 H.重力给煤机 I.水冷耐火层 J.二次风喷嘴 K.给煤槽 L.冷渣器 M.过热器 N.外槽型分离器 O.飞灰斗 P.省煤器 Q.多管旋风分离器 R.管式空气预热器 S.再循环系统 T.鼓风机 U.床上燃烧器 V.一次风
课题三 燃煤制备系统
制煤设备 *钢棒滚筒磨 *锤击式破碎机 制煤系统 *两级破碎系统 *棒磨制煤系统 *锤击磨制煤系统
课题四 风烟系统
风系统的分类及作用 一次风、 二次风、 播煤风、 回料风、冷却风、石灰石输送风 送风系统的几种布置形式 中、小型锅炉风系统 容量较大锅炉的风系统
课题五 主要污染物排放控制
流化床燃烧对SO2的排放控制 脱硫的基本工作过程:给煤中的硫份在炉膛内反应生成SO2及其它的一些硫化物;同时一定粒度分布的石灰石被给入炉膛,这些石灰石被迅速加热,并发生燃烧反应,产生多孔疏松的CaO。SO2扩散到CaO的表面和内孔,在有氧参与的情况下, CaO 吸收SO2并生成CaSO4。 最佳脱硫温度一般为850~870℃。 流化床燃烧对NOX的排放控制
循环流化床锅炉主要设备及系统

工作原理
旋风分离器的旋流示意图
烟气从切向进入分离器筒体,烟气中所含较粗的颗粒物体在较大的离心力、惯性力、重力的作用下,甩向筒体壁落下。被分离的物料通过回路密封装置和回料管而返回流化床内,烟气中较细的飞灰与烟气一起通过分离器的中心管筒从分离器顶部进入锅炉的尾部对流区域。
水冷分离器
结构特点 水冷 优缺点 优点 热惯性小,启动时间短 不易结焦 缺点 制造工艺复杂,昂贵
工作特点: 四面水冷壁的下集箱是相互连通的,左、右侧水冷壁各有一个上集箱,前、后水冷壁有共用一个上集箱(顶棚集箱) ,水经集中下水管进入下集箱,然后经水冷壁引入上集箱,再由汽水引出管将汽水混合物引至锅筒。
水冷壁
水冷壁管内的水流分配和受热合理,以保证沿燃烧室宽度均匀产汽,沿汽包全长的水位均衡,防止发生水循环不良现象。
汽水系统 锅炉给水从省煤器进口集箱引入,逆流向上经过顺列布置省煤器管组,由出口集箱的右端通过上水管从汽包右封头引入锅筒,在启动阶段没有给水流入锅筒时,省煤器再循环系统可以将锅水从锅筒引至省煤器进口集箱,以保护省煤器。 锅筒通过两根下降管和连接管将锅水送至水冷壁下联箱。联想内锅水向上流经风室水冷壁、炉膛水冷壁、经过各自的上部出口集箱通过汽水引出管引入锅筒进行汽水分离,被分离出来的水重新引入锅筒水空间。被分离出来的饱和蒸汽由蒸汽引出管引至低温过热器进口集箱,经低温过热器到一级减温器,然后到中温过热器在到二级减温器,最后到高温过热屏产生合格的蒸汽到汽机。
锅炉给水首先被引至尾部烟道省煤器进口右侧集箱,逆流向上经过顺列布置,管束采用光管布置,管式省煤器管组进入省煤器出口集箱,通过省煤器引出管从锅筒左右封头进入锅筒。在启动阶段没有建立足够量的连续给水流入锅筒时,省煤器再循环管路可以将锅水从锅筒引至省煤器进口集箱,防止省煤器管子内的水停滞汽化。本锅炉为自然循环锅炉。锅炉的水循环采用集中供水,分散引入、引出的方式。给水引入锅筒水空间,并通过集中下降管和与之相连的下水连接管及分散下降管分别引入水冷壁下集箱和水冷蒸发屏进口集箱。锅水在向上流经炉膛水冷壁、水冷蒸发屏的过程中被加热成为汽水混合物,经各自的上部出口集箱通过汽水引出管引入锅筒进行汽水分离。被分离出来的水重新进入锅筒水空间,并进行再循环,被分离出来的饱和蒸汽从锅筒顶部的蒸汽连接管引出。
旋风分离器的旋流示意图
烟气从切向进入分离器筒体,烟气中所含较粗的颗粒物体在较大的离心力、惯性力、重力的作用下,甩向筒体壁落下。被分离的物料通过回路密封装置和回料管而返回流化床内,烟气中较细的飞灰与烟气一起通过分离器的中心管筒从分离器顶部进入锅炉的尾部对流区域。
水冷分离器
结构特点 水冷 优缺点 优点 热惯性小,启动时间短 不易结焦 缺点 制造工艺复杂,昂贵
工作特点: 四面水冷壁的下集箱是相互连通的,左、右侧水冷壁各有一个上集箱,前、后水冷壁有共用一个上集箱(顶棚集箱) ,水经集中下水管进入下集箱,然后经水冷壁引入上集箱,再由汽水引出管将汽水混合物引至锅筒。
水冷壁
水冷壁管内的水流分配和受热合理,以保证沿燃烧室宽度均匀产汽,沿汽包全长的水位均衡,防止发生水循环不良现象。
汽水系统 锅炉给水从省煤器进口集箱引入,逆流向上经过顺列布置省煤器管组,由出口集箱的右端通过上水管从汽包右封头引入锅筒,在启动阶段没有给水流入锅筒时,省煤器再循环系统可以将锅水从锅筒引至省煤器进口集箱,以保护省煤器。 锅筒通过两根下降管和连接管将锅水送至水冷壁下联箱。联想内锅水向上流经风室水冷壁、炉膛水冷壁、经过各自的上部出口集箱通过汽水引出管引入锅筒进行汽水分离,被分离出来的水重新引入锅筒水空间。被分离出来的饱和蒸汽由蒸汽引出管引至低温过热器进口集箱,经低温过热器到一级减温器,然后到中温过热器在到二级减温器,最后到高温过热屏产生合格的蒸汽到汽机。
锅炉给水首先被引至尾部烟道省煤器进口右侧集箱,逆流向上经过顺列布置,管束采用光管布置,管式省煤器管组进入省煤器出口集箱,通过省煤器引出管从锅筒左右封头进入锅筒。在启动阶段没有建立足够量的连续给水流入锅筒时,省煤器再循环管路可以将锅水从锅筒引至省煤器进口集箱,防止省煤器管子内的水停滞汽化。本锅炉为自然循环锅炉。锅炉的水循环采用集中供水,分散引入、引出的方式。给水引入锅筒水空间,并通过集中下降管和与之相连的下水连接管及分散下降管分别引入水冷壁下集箱和水冷蒸发屏进口集箱。锅水在向上流经炉膛水冷壁、水冷蒸发屏的过程中被加热成为汽水混合物,经各自的上部出口集箱通过汽水引出管引入锅筒进行汽水分离。被分离出来的水重新进入锅筒水空间,并进行再循环,被分离出来的饱和蒸汽从锅筒顶部的蒸汽连接管引出。
最新2019-循环流化床锅炉设备及运行-PPT课件

高压流化风
1)工作原理
高压流化风
U型回料阀
水管
2)工作过程3)自平衡Fra bibliotek料原理• U型阀又称“自平衡阀”,自平衡回料是怎么实 现的呢?
ΔP2 ΔP1
小流量
大流量
小循环量
大循环量
容积式风机提供返料风
• 返料风的要求:
– 小流量 – 流量基本不随压头变化
容积式风机 如:罗茨风机
打气筒
罗茨风机
罗茨风机工作原理
旋风分离器的 旋流示意图
旋风分离器的工作原理(演示1)
旋风分离器的工作原理(演示2)
旋风分离器的工作原理(演示3)
旋风分离器的工作原理(演示4)
影响分离效率的因素
• 进口速度 • 筒体直径 • 颗粒浓度
高温绝热旋风分离器
实例: HG-440t/hCFBB旋风分离器
• 外径:8084mm • 内径:7360mm • 进口:下倾10°
实例: HG-440t/hCFBB旋风分离器
• 中心筒偏置 • 中心筒呈倒锥形 • 进口外缘加帽檐
HG-440t/hCFBB旋风分离器
• 优缺点 • 优点
– 结构简单 – 分离效率高
• 缺点
– 热惯性大,启动时间长 – 易结焦 – 体积庞大,布置困难
为克服上述缺点,冷却型高温旋风 分离器诞生了。
郑州电力高等专科学校
主讲:杨建华
第5讲 物料循环燃烧系统
第三节 气固分离器 第四节 固体物料回送装置
上节课内容回顾:
炉膛
• 又称为燃烧室 • 燃料:一进二出 • 空气:二进一出
引入:
炉膛是:
物料循环系统的组成 部分
称为固体物料的提升 段
1)工作原理
高压流化风
U型回料阀
水管
2)工作过程3)自平衡Fra bibliotek料原理• U型阀又称“自平衡阀”,自平衡回料是怎么实 现的呢?
ΔP2 ΔP1
小流量
大流量
小循环量
大循环量
容积式风机提供返料风
• 返料风的要求:
– 小流量 – 流量基本不随压头变化
容积式风机 如:罗茨风机
打气筒
罗茨风机
罗茨风机工作原理
旋风分离器的 旋流示意图
旋风分离器的工作原理(演示1)
旋风分离器的工作原理(演示2)
旋风分离器的工作原理(演示3)
旋风分离器的工作原理(演示4)
影响分离效率的因素
• 进口速度 • 筒体直径 • 颗粒浓度
高温绝热旋风分离器
实例: HG-440t/hCFBB旋风分离器
• 外径:8084mm • 内径:7360mm • 进口:下倾10°
实例: HG-440t/hCFBB旋风分离器
• 中心筒偏置 • 中心筒呈倒锥形 • 进口外缘加帽檐
HG-440t/hCFBB旋风分离器
• 优缺点 • 优点
– 结构简单 – 分离效率高
• 缺点
– 热惯性大,启动时间长 – 易结焦 – 体积庞大,布置困难
为克服上述缺点,冷却型高温旋风 分离器诞生了。
郑州电力高等专科学校
主讲:杨建华
第5讲 物料循环燃烧系统
第三节 气固分离器 第四节 固体物料回送装置
上节课内容回顾:
炉膛
• 又称为燃烧室 • 燃料:一进二出 • 空气:二进一出
引入:
炉膛是:
物料循环系统的组成 部分
称为固体物料的提升 段
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
→决定密相区高度,风口以下区域采用 小A并采取向上渐扩结构
炉膛截面收缩方式
1)下部区域小A,二次风口送入位置采 用渐扩锥形(<45°)
2)布风板上呈锥形扩口状
n 提高u0,减少床内分层和大颗粒沉底 n 利于燃烧和降低上部截面烟速 n 减小受热面磨损 n 增加物料停留t,提高燃烧效率
2021/2/26
2021/2/26
2021/2/26
物料循环系统
2021/2/26
二、燃烧室(炉膛)开口
5. 炉膛出口
采用(具有气垫的)直角转弯型式炉膛出口,可增加对固体颗粒的分 离,增加床内εp,发生内循环,增加停留t
2021/2/26
二、燃烧室(炉膛)开口
6. 其他开孔
(1)观察孔、炉门、人孔,测试孔 (2)注意事项:水冷壁“让管”时,
发展对策:须维持炉膛结构尺寸பைடு நூலகம்合理 比例内
2021/2/26
一、燃烧室(炉膛)结构
2. 炉膛尺寸结构
(3)H确定的要求
(1)A选定标准:截面热负荷、 u0
(燃尽t=3~5s→H=15~25m)
(2)L/W确定因素(膜式水冷 壁的立式方形炉)
炉膛内受热面、尾部受热面、分离 器等布置的协调
二次风在炉膛内有足够穿透力 固体颗粒的供给及其横向扩散
1)能均匀、密集分布气流,避免死区 2)出口气流动能大,产生强烈扰动、混合 3)阻力损失小,降低风机能耗 4)有足够强度和刚度,压火时防止布风板
受热变形,风帽不烧损,检修清理方便 5)结构合理,防止床料流入风室
2021/2/26
一、布风装置本体结构
1. 布风板
(1)主要功能
支撑风帽和床料 对气流产生阻力,使流化空气均匀分布,
给料装置进行密封
(2)位置确定
敷设耐火材料的炉膛下部还 原区,尽可能远离二次风入口点→ 细颗粒被夹带前停留t长
2021/2/26
二、燃烧室(炉膛)开口
2. 石灰石给料口(要求低于给煤点)
(1)给料机(大型锅炉)、气力输送装置(小型锅炉) (2)通过循环物料口或给煤口送入
2021/2/26
二、燃烧室(炉膛)开口
保证燃料完全燃烧 可布置全部或大部分蒸发受热面 返料立管有足够H维持物料循环流
动 保证脱硫所需的最短气体停留t 与尾部烟道或对流段所需高度一致 保证自然循环锅炉在设计压力下有
足够大水循环动力
2021/2/26
一、燃烧室(炉膛)结构
3. 炉膛下部区域的设计要求
二次风位置(距布风板1.5~3m)
方向选用炉膛外,炉内不能有任何 突出面,以免严重磨损
2021/2/26
第三节 布风装置
实现流态化燃烧的关键部件
1)风帽式:由一次风室、布风板、风帽(喷管)和隔热层组成 2)密孔板式:风室和密孔板组成。
风帽式工作流程
优点:布风均匀;负荷变化时流化质量稳定 缺点:帽顶易烧坏,磨损严重
布风装置的要求
循环流化床锅炉设备及系统
2021/2/26
第四章 燃烧系统及设备
第一节 燃烧系统概述 第五节 给料系统
第二节 燃烧室
第六节 烟风系统
第三节 布风装置
第七节 除渣除灰系统
第四节 物料循环系统 第八节 启动燃烧器
2021/2/26
第一节 燃烧系统概述
2021/2/26
第二节 燃烧室
燃烧室结构、特性取决于其流化状态
低u0→分密相区、稀相区 高u0→εp沿H分布,无明显浓相
控制污染物排放措施
1)控制炉温脱硫 2)分级燃烧
n 一次风(50~70%)在炉膛下部呈还原性气氛,控制NOx生成 n 二次风分级在上部位置送入炉膛,保证完全燃烧
2021/2/26
一、燃烧室(炉膛)结构
维持稳定 安装排渣管,维持正常流态化
(2)分类(按冷却条件不同)
水冷式:利于消除热负荷快速变化时热 膨胀不均
非冷却式(花板):开孔以均匀分布为 原则(等边三角形),节距大小与帽沿 尺寸、风帽个数及小孔出口流速匹配
2021/2/26
一、布风装置本体结构
2. 风帽(实现均匀布风,维持合理流动,关系安全经济运行)
3. 排渣口
(1)位置:床底部
(2)作用:排出大渣,维持床内存料量及颗粒尺寸,避免大颗粒聚集于床层 底部而影响流化质量,保证安全运行
(3)布置方式
布风板上去掉一些风帽 代之以排渣管(多数采用)
炉壁靠近布风板处
(4)排渣口个数确定
dp较小且较均匀,个数少 dp大应增加数量,并在布风
板上均匀布置
2021/2/26
二、燃烧室(炉膛)开口
4. 循环物料进口(返料口)
(1)位置
二次风口以下密相区,以增加物料停留t
(2)设计考虑
返料系统与循环物料进口点处的P平衡
(3)数量确定(影响炉内颗粒横向分布)
一个送灰器配一个返料口
(4)双腿送灰器(增加循环物料进口)
加强返料均匀性, 防止磨损及局部床温偏低
二、燃烧室(炉膛)开口
开口目的
送入、排出、观察、维修、测试、监测
开口原则
开孔数量、大小和位置应合理选择和布置 减少对水冷壁的破坏 保证密封性 孔口处采取特殊防磨处理
2021/2/26
二、燃烧室(炉膛)开口
1. 给煤口
(1)设计原则——给煤口处P> 炉膛P
原因:防止高温烟气倒流 措施:采用密封风将给煤口和上部
1. 炉膛结构形式
(1)圆形炉膛 (2)下圆上方形炉膛 结构特点
n 圆形部分不设水冷壁,完全由耐火砖砌成 优点:防磨、压火保温 缺点:启动t长、耐火材料对温升速度要求严格
n 上部炉膛悬吊,下部支承→上下结合处不易密封
2021/2/26
一、燃烧室(炉膛)结构
1. 炉膛结构形式
(3)立式方形炉膛
(1)制造材料:耐热铸铁、耐热不锈钢(抗磨损性能差)
(2)结构型式(小孔径、大孔径、定向,S,T型)
有帽头特点:阻力大,长期运行后帽沿底易卡杂物, 不易清除、不易排渣,需停炉清理;布风均匀性好
无帽头特点:阻力小,制造简单,气流分配性能差 定向风帽特点:布风均匀,大开孔可防止堵塞,定
结构特点:横截面矩形,四周由膜式水 冷壁围成,常与一次风室、布风装置一 体悬吊,可上下自由膨胀
优点:密封好,水冷壁布置方便,锅炉 体积小,启动速度快,工艺制造简单
缺点:水冷壁磨损大→水冷壁内侧衬耐 磨耐火材料
发展趋势:H、L/W↑,A/V↓;考虑给 煤点位置以便给煤分布均匀;经济角度 考量,H受限
炉膛截面收缩方式
1)下部区域小A,二次风口送入位置采 用渐扩锥形(<45°)
2)布风板上呈锥形扩口状
n 提高u0,减少床内分层和大颗粒沉底 n 利于燃烧和降低上部截面烟速 n 减小受热面磨损 n 增加物料停留t,提高燃烧效率
2021/2/26
2021/2/26
2021/2/26
物料循环系统
2021/2/26
二、燃烧室(炉膛)开口
5. 炉膛出口
采用(具有气垫的)直角转弯型式炉膛出口,可增加对固体颗粒的分 离,增加床内εp,发生内循环,增加停留t
2021/2/26
二、燃烧室(炉膛)开口
6. 其他开孔
(1)观察孔、炉门、人孔,测试孔 (2)注意事项:水冷壁“让管”时,
发展对策:须维持炉膛结构尺寸பைடு நூலகம்合理 比例内
2021/2/26
一、燃烧室(炉膛)结构
2. 炉膛尺寸结构
(3)H确定的要求
(1)A选定标准:截面热负荷、 u0
(燃尽t=3~5s→H=15~25m)
(2)L/W确定因素(膜式水冷 壁的立式方形炉)
炉膛内受热面、尾部受热面、分离 器等布置的协调
二次风在炉膛内有足够穿透力 固体颗粒的供给及其横向扩散
1)能均匀、密集分布气流,避免死区 2)出口气流动能大,产生强烈扰动、混合 3)阻力损失小,降低风机能耗 4)有足够强度和刚度,压火时防止布风板
受热变形,风帽不烧损,检修清理方便 5)结构合理,防止床料流入风室
2021/2/26
一、布风装置本体结构
1. 布风板
(1)主要功能
支撑风帽和床料 对气流产生阻力,使流化空气均匀分布,
给料装置进行密封
(2)位置确定
敷设耐火材料的炉膛下部还 原区,尽可能远离二次风入口点→ 细颗粒被夹带前停留t长
2021/2/26
二、燃烧室(炉膛)开口
2. 石灰石给料口(要求低于给煤点)
(1)给料机(大型锅炉)、气力输送装置(小型锅炉) (2)通过循环物料口或给煤口送入
2021/2/26
二、燃烧室(炉膛)开口
保证燃料完全燃烧 可布置全部或大部分蒸发受热面 返料立管有足够H维持物料循环流
动 保证脱硫所需的最短气体停留t 与尾部烟道或对流段所需高度一致 保证自然循环锅炉在设计压力下有
足够大水循环动力
2021/2/26
一、燃烧室(炉膛)结构
3. 炉膛下部区域的设计要求
二次风位置(距布风板1.5~3m)
方向选用炉膛外,炉内不能有任何 突出面,以免严重磨损
2021/2/26
第三节 布风装置
实现流态化燃烧的关键部件
1)风帽式:由一次风室、布风板、风帽(喷管)和隔热层组成 2)密孔板式:风室和密孔板组成。
风帽式工作流程
优点:布风均匀;负荷变化时流化质量稳定 缺点:帽顶易烧坏,磨损严重
布风装置的要求
循环流化床锅炉设备及系统
2021/2/26
第四章 燃烧系统及设备
第一节 燃烧系统概述 第五节 给料系统
第二节 燃烧室
第六节 烟风系统
第三节 布风装置
第七节 除渣除灰系统
第四节 物料循环系统 第八节 启动燃烧器
2021/2/26
第一节 燃烧系统概述
2021/2/26
第二节 燃烧室
燃烧室结构、特性取决于其流化状态
低u0→分密相区、稀相区 高u0→εp沿H分布,无明显浓相
控制污染物排放措施
1)控制炉温脱硫 2)分级燃烧
n 一次风(50~70%)在炉膛下部呈还原性气氛,控制NOx生成 n 二次风分级在上部位置送入炉膛,保证完全燃烧
2021/2/26
一、燃烧室(炉膛)结构
维持稳定 安装排渣管,维持正常流态化
(2)分类(按冷却条件不同)
水冷式:利于消除热负荷快速变化时热 膨胀不均
非冷却式(花板):开孔以均匀分布为 原则(等边三角形),节距大小与帽沿 尺寸、风帽个数及小孔出口流速匹配
2021/2/26
一、布风装置本体结构
2. 风帽(实现均匀布风,维持合理流动,关系安全经济运行)
3. 排渣口
(1)位置:床底部
(2)作用:排出大渣,维持床内存料量及颗粒尺寸,避免大颗粒聚集于床层 底部而影响流化质量,保证安全运行
(3)布置方式
布风板上去掉一些风帽 代之以排渣管(多数采用)
炉壁靠近布风板处
(4)排渣口个数确定
dp较小且较均匀,个数少 dp大应增加数量,并在布风
板上均匀布置
2021/2/26
二、燃烧室(炉膛)开口
4. 循环物料进口(返料口)
(1)位置
二次风口以下密相区,以增加物料停留t
(2)设计考虑
返料系统与循环物料进口点处的P平衡
(3)数量确定(影响炉内颗粒横向分布)
一个送灰器配一个返料口
(4)双腿送灰器(增加循环物料进口)
加强返料均匀性, 防止磨损及局部床温偏低
二、燃烧室(炉膛)开口
开口目的
送入、排出、观察、维修、测试、监测
开口原则
开孔数量、大小和位置应合理选择和布置 减少对水冷壁的破坏 保证密封性 孔口处采取特殊防磨处理
2021/2/26
二、燃烧室(炉膛)开口
1. 给煤口
(1)设计原则——给煤口处P> 炉膛P
原因:防止高温烟气倒流 措施:采用密封风将给煤口和上部
1. 炉膛结构形式
(1)圆形炉膛 (2)下圆上方形炉膛 结构特点
n 圆形部分不设水冷壁,完全由耐火砖砌成 优点:防磨、压火保温 缺点:启动t长、耐火材料对温升速度要求严格
n 上部炉膛悬吊,下部支承→上下结合处不易密封
2021/2/26
一、燃烧室(炉膛)结构
1. 炉膛结构形式
(3)立式方形炉膛
(1)制造材料:耐热铸铁、耐热不锈钢(抗磨损性能差)
(2)结构型式(小孔径、大孔径、定向,S,T型)
有帽头特点:阻力大,长期运行后帽沿底易卡杂物, 不易清除、不易排渣,需停炉清理;布风均匀性好
无帽头特点:阻力小,制造简单,气流分配性能差 定向风帽特点:布风均匀,大开孔可防止堵塞,定
结构特点:横截面矩形,四周由膜式水 冷壁围成,常与一次风室、布风装置一 体悬吊,可上下自由膨胀
优点:密封好,水冷壁布置方便,锅炉 体积小,启动速度快,工艺制造简单
缺点:水冷壁磨损大→水冷壁内侧衬耐 磨耐火材料
发展趋势:H、L/W↑,A/V↓;考虑给 煤点位置以便给煤分布均匀;经济角度 考量,H受限