四川省 2017级九年级上册数学周考十(无答案)

合集下载

四川省成都市成华区统考2017-2018学年九年级上期末数学检测试题(附答案可编辑精品)-物理小金刚系列

四川省成都市成华区统考2017-2018学年九年级上期末数学检测试题(附答案可编辑精品)-物理小金刚系列

2017-2018 学年度上期期末学业水平阶段性监测九年级数学注意事项:1.全卷分为 A 卷和 B 卷,A 卷满分 100 分,B 卷满分 50 分,全卷总分 150 分;考试时间 120分钟。

2.请在答题卡上作答,答在试卷、草稿纸上无效。

3.在答题卡上作答时,考生需首先准确填写自己的姓名、准考证号,并用 2B 铅笔准确填涂好自已的准考证号。

A 卷的第一题为选择题,用 2B 铅笔填涂作答;其他题,请用黑色墨水签字笔书写,字体工整、笔迹清楚。

请按照题号在各题目对应的答题区域内作答,超出答区域书写的答案无效。

4.保持答题卡面清洁,不得折叠、污染、破损等。

A 卷(共 100 分)第Ⅰ卷(选择题,共 30 分)一、选择题(本大题共 10 个小题,每小题 3 分,共 30 分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.越野车标识“BJ40”中,既是中心对称图形又是轴对称图形的数字或字母是( )A.BB.JC.4D.02.如图所示,该几何体的左视图是( )3.九年级(1)班在参加学校 4×100m 接力赛时,安排了甲、乙、丙、丁四位选手,他们的参赛顺序由抽签随机决定,则甲跑第一棒的概率为( ) A.1 B.21 C.31 D.414.已知关于 x 的方程 x 2+3x+a=0 有一个根为-2,则另一个根为( ) A.5 B.-1 C.2 D.-55.某文具 10 月份销售铅笔 100 支,11、12 两个月销售量连续增长,若月平均增长率为 x ,则该文具店 12 月份销售铅笔的支数是( )A.100(1+x)B.100(1+x)2C.100(1+x 2)D.100(1+2x)6. 某楼梯的侧面如图所示,已测得线段 AB 的长为 3.5 米,∠BAC=29°,则该楼梯的高度 BC 可表示为( )A.3.5sin29°米B.3.5cos29°米C.3.5tan29°米D.米︒29cos 5.37.如图,在矩形 ABCD 中,对角线 AC ,BD 相交于点 O ,∠AOB=60°,AC=6m ,则 AB 的长是( )A.3cmB.6cmC.10cmD.12cm8.将二次函数 y=x 2-2x+3 化为 y=(x-h)2+k 的形式,结果当( )A.y=(x+1)2+4B.y=(x+1)2+2C.y=(x-1)2+4D.y=(x-1)2+29.如图,在△ABC 中,D 、E 分別为 AB 、AC 边上的点,DE ∥BC ,点 F 为 BC 边上一点,连接AF 交 DE 于点 G ,则下列结论中一定正确的是( ) A.EC AE AB AD = B.BD AE GF AC = C.AE CE AD BD = D.EC AC AF AG = 10.如图,抛物线 y=ax 2+bx+c(a ≠0)的对称轴为直线 x=-1,给出下列四个结论:①b 2=4ac ;②2a-b >0;③abc >0;④4a-2b+c >0,其中正确的个数有( )A.1 个B.2 个C.3 个D.4 个第Ⅱ卷(非选择题,共 70 分)二.、填空题(本大题共 4 小题,每小题 4 分,共 16 分)1.已知反比例函数xk y = (k ≠0)的图象过点 A(1,-2),则 k 的值为_______. 12.关于 x 的一元二次方程 ax 2-3x-1=0 有两个不相等的实根,则 a 的取值范围是_______.13.如图,四边形 ABCD 与四边形 EFGH 是位似图形,位似中心是点 O ,已知 53=OA OE ,则BCFG =_______.13题图 14题图14.如图,矩形 ABCD 中,AB=4,AD=3,点 Q 在对角线 AC 上,且 AQ=AD,连接 DQ 并延长,与边 BC 交于点 P ,则线段段 AP=_______.三、解答题(本大题共 6 小题,共 54 分)15.(本小满分 12 分,每题 6 分)(1)计算:()|30cos 4-1|-2114.3--60tan 21-0︒⎪⎭⎫ ⎝⎛+︒π(2) 解方程:()()1-2x 1-x =+。

四川省南部中学2017届九年级上学期末考试数学试题

四川省南部中学2017届九年级上学期末考试数学试题

2016-2017学年度上期期末教学质量监测九年级数 学 试 卷满分:120分 时间:120分钟注意事项:1.本试题卷共4页,请不要在试题卷上直接作答;2. 在答题卡上作答之前,请认真阅读注意事项;3. 考试结束时,只交答题卡.一、选择题(本大题共10小题.每小题3分,共30分)1.一元二次方程x x =2的解是( )A .x=1 B.x=0 C .x 1=1,x 2=0 D .x 1=-1,x 2=02.对于二次函数2)1(2+-=x y 的图象,下列说法正确的是( )A .开口向下B .对称轴是x=-lC .顶点坐标是(1,2)D .与x 轴有两个交点3.下列图形是中心对称图形而不是..轴对称图形的是( )A B C D4. 下列说法正确的是( )A. 顶点在圆上的角叫圆周角B. 三点确定一个圆C. 等弧所对的圆心角相等D. 平分弦的直径垂直于弦,并且平分弦所对的两条弧5.如右图,圆内接四边形ABCD 两组对边的延长线分别相交于点E 、F ,∠A=550,∠E=300,则∠F 等于( )A .30°B .70°C .40°D .20°6.下列事件是必然事件的是( )A .抛掷一枚硬币四次,有两次正面朝上B .打开电视频道,正在播放《焦点访谈》C .射击运动员射击一次,命中十环D .关于x 的方程x 2-kx -1=0必有实数根7.若α,β是方程x 2+2x ﹣2005=0的两个实数根,则α2+3α+β的值为( )A .2005B .2003C .﹣2005D .4010 8.在△ABC 中,∠C=90°,BC=3,AB=5,则sinA 的值是 ( )A .3B .4C .4D .3A .12-B .7-C .1-D .110. 如右图,二次函数y =ax 2+bx +c 的图象与x 轴的交点的横坐标分别为-1、3,则下列结论:① abc >0;② 2a +b =0;③ 4a +2b +c <0;④ 对于任意x 均有ax 2-a +bx -b >0,其中正确的个数有( )A .1B .2C .3D .4二、填空题(本题共6小题,每小题3分,共18分)11.若053)2(=-+-mx x m m 是关于x 的一元二次方程,则m 的值为_____.12.将抛物线2x y =向左平移5个单位,得到的抛物线解析式为________.13.古算趣题:“笨人执竿要进屋,无奈门框拦住竹,横多四尺竖多二,没法急得放声哭.有个邻居聪明者,教他斜竿对两角,笨伯依言试一试,不多不少刚抵足.借问竿长多少数,谁人算出我佩服.”若设竿长为x 尺,16.如图,以点P (2,0)为圆心,为半径作圆,点M (a ,b )是⊙P 上的一点,则的最大值是 .三、解答题(本大题共9小题,共72分)17. (6分)计算:001060tan 45sin 2)21(2016+-+-18. (6分)某学校为了提高学生学科能力,决定开设以下校本课程:A .文学院,B .小小数学家,C .小小外交家,D .未来科学家,为了解学生最喜欢哪一项校本课程,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有 人;(2)请你将条形统计图(2)补充完整;(3)在平时的小小外交家的课堂学习中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加全国英语口语大赛,求恰好同时选中甲、乙两位同学的概率(用树状图或列表法解答).19. (8分)如图,在平面直角坐标系中,点A 、B 的坐标分别为(﹣1,3)、(﹣4,1),先将线段AB 沿一确定方向平移得到线段A 1B 1,点A 的对应点为A 1,点B 1的坐标为(0,2),再将线段A 1B 1绕原点O 顺时针旋转90°得到线段A 2B 2,点A 1的对应点为点A 2.(1)写出A 2,B 2坐标:A 2 ,B 2 ;(2)画出线段A 1B 1、A 2B 2;(3)求出在这两次变换过程中,点A 经过A 1到达A 2的路径长.20. (8分)如图,一次函数y kx b =+的图象与反比例函数m y x=的图象交于A (-2,1),B (1,n)两点. (1)试确定上述反比例函数和一次函数的表达式; (2)求△AOB 的面积.21. (8分)用矩形工件槽(如图I)可以检测一种铁球的大小是否符合要求,已知工件槽的两个底角均为90°,尺寸如图(单位:cm).将形状规则的铁球放入槽内时,若同时具有图l 所示的A 、B 、E 三个接触点,该球的大小就符合要求.图2是过球心O 及A 、B 、E 三点的截面示意图,求这种铁球的直径.22.(8分)已知关于x 的一元二次方程x 2﹣(2m+1)x+m (m+1)=0.(1)求证:无论m 取何值,方程总有两个不相等的实数根;(2)若△ABC 的两边AB 、AC 的长是这个方程的两个实数根,且BC=8,当△ABC 为等腰三角形时,求m 的值.23. (8分)如图,在Rt △ABC 中,∠C =90°,∠BAC 的平分线AD 交BC 边于点D.以AB 上一点O 为圆心作⊙O ,使⊙O 经过点A 和点D.(1)判断直线BC 与⊙O 的位置关系,并说明理由;(2)若AC =3,∠B =30°,设⊙O 与AB 边的另一个交点为E ,求线段BD ,BE 与劣弧DE 所围成的阴影部分的面积.(结果保留根号和π)24. (10分) 某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y (本)与每本纪念册的售价x (元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)请直接写出y 与x 的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?(3)设该文具店每周销售这种纪念册所获得的利润为w 元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?25. (10分)如图,开口向下的抛物线y=a (x ﹣2)2+k ,交x 轴于点A 、B (点A 在点B 左侧),交y 轴正半轴于点C ,顶点为P ,过顶点P ,作x 轴,y 轴的垂线,垂足分别为M ,N .(1)若∠CPM=45°,OC=52,求抛物线解析式. (2)在(1)的情况下,在抛物线上的对称轴上,是否存在一点G,使的值最大,若存在,求出点G 的坐标;若不存在,请说明理由。

四川省成都市2017—2018学年度第一学期九年级上数学第一次自测试题

四川省成都市2017—2018学年度第一学期九年级上数学第一次自测试题

2017—2018学年度第一学期第一次自测试题九年级数学(满分160分,120分钟完卷)A 卷(共100分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.有意义,x 的取值范围是( ). A .x ≥-3 B .x >-3 C .x ≥0 D .x ≥32. ).A B C .6 D .±6 3.下列式子中,属于最简二次根式的是( ).A B C D 4.下列属于一元二次方程的是( ). A .2213y x +-= B .2x x=C .21120x x--= D .3x +1=0 5.方程x 2=-3x 的解是( ). A .x =-3 B .x 1=-3,x 2=0 C .x 1=3,x 2=0D .x =06.下列运算正确的是( ).A =B .=C 3=D .3=7.一元二次方程x 2+x ﹣m =0的一个根为-2,则m 的值为( ). A .﹣1 B .﹣2 C .1 D .28.中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2016年人均收入人民币2600元,预计2018年人均收入将达到人民币13000元,设2016年到2018年该地区居民人均收入平均增长率为x ,可列方程为( ).A .2600(1+2x )=13000B .2600(1+x )2=13000C .2600(1+x 2)=13000D .2600+2x =130009.x ≥0是同类二次根式的个数是( ).A .1B .2C .3D .410.一元二次方程2t 2﹣4t ﹣6=0配方后化为( ).A .(t ﹣1)2=4B .(t ﹣4)2=10C .(t +1)2=4D .(x -4)2=1011.使式子256|2|x x x -+-的值等于零的x 是( ).A .2B .2或3C .3D .-2或-312. 给出一种运算:对于函数y =x n ,规定y '=nx n -1.例如:若函数y =x 5,则有y '=5x 4.已知函数y =x 3,则方程y '=54的解是( ).A .x 1=x 2=0B .x 1=x 2=﹣C .x 1=2,x 2=﹣2D .x 1=x 2=﹣二、填空题(本大题共4小题,每小题5分,共20分.请将最后答案直接写在答题卷的相应题中的横线上.)13.计算的结果是 .14.已知代数式x -4与代数式x 2的值互为相反数,那么x 的值为 .15.的结果是 .16.方程2211211x x x x +-=+的解是 .三、解答题(本大题共5小题,共44分) 17.(8分)计算:(1)12(2).18.(8分)解下列方程:(1)(2x -1)2﹣9=0; (2)x 2+2x -6=0.19.(8分)如果都是最简二次根式,又是同类二次根式,且+=0,求x 、y 的值.20.(10分)已知a 是一元二次方程x 2﹣2x -1=0的两个实数根中较小的根. (1)求a 2﹣2a +2016的值;(2)化简求值:2111a a a ---+.21.(10分)已知:关于x 的一元二次方程023)32(22=++++-k k x k x .(1)当0k =时,求这个方程的解.(2)△ABC 中,BC =5,AB 、AC 的长是这个方程的两个实数根.求k 为何值时,△ABC 是等腰三角形?B 卷(共60分)四、填空题(本大题共4小题,每小题6分,共24分.请将最后答案直接写在答题卷的相应题中的横线上.)22.若关于x 的方程1(1)1aa x x ++-=是一元二次方程,那么a 的值是 .23.已知1a +=323412a a a +--的值为 .24. 如图,四边形AOBP 是矩形,OBOA ,OC 平分∠AOB ,且PC ⊥OC 于点C .那么OAOC的值为 .25. 若ab =0且ab ≠0,则ab的值为 .五、解答题(本大题共3小题,每小题12分,共36分.解答时必须写出必要的文字说明、证明过程或推演步骤)26.计算:(1)22-(2)2222--27. 已知关于x 的一元二次方程ax 2+bx +c =0的两实数根为x 1,x 2,根据一元二次方程解的意义和因式分解法解一元二次方程可知,x 1,x 2也是(x ﹣x 1)(x ﹣x 2)=0的两个实数根,所以ax 2+bx +c =a (x ﹣x 1)(x ﹣x 2). 利用这个结论可以解决一些相关问题. (1)实数范围内因式分解:例:分解因式2x 2+2x ﹣1解:令2x 2+2x ﹣1=0,解这个方程,得24x -==12-. 即 x 1=12-,x 2=12-.PO CBA所以2x2+2x﹣1=2(x x.试仿照上例在实数范围内分解因式:x2﹣6x+1;(2)解不等式:x2+2x﹣1>0;(3)灵活运用:已知方程(x﹣a)(x﹣b)﹣x=0的两个实数根是c、d,求方程(2x﹣c)(2x﹣d)+2x=0的根.28. 如图,△ABC是直角边长为1cm的等腰直角三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q 两点停止运动,设点P的运动时间为t(s),解答下列各问题:(1)当t为何值时,△PBQ是直角三角形?(2)设四边形APQC的面积为y(cm2),求y与t的关系式;是否存在某一时刻t,使四边形APQC的面积是△ABC面积的二分之一?如果存在,求出t的值;不存在,请说明理由.2017-2018学年度第一学期第一次自测九年级数学参考答案及评分意见A卷(共100分)一、选择题(本大题共12小题,每小题3分,共36分.)1.A 2.C 3.D 4.B 5.B 6.C 7.D8.B 9.B 10.A 11.C 12.D二、填空题(本大题共4小题,每小题5分,共20分.)13.14.15.16.12-、1三、解答题(本大题共5小题,共44分)17.解:(1)12QPCBA=12×3 …………………………………… 2分=0. ……………………………………………………… 4分(2)÷=2×14÷ ……………………………………………… 6分=12×9 ………………………………………………………… 7分………………………………………………………… 8分 18.(1)解:(2x -1)2﹣9=0(2x -1)2=9 …………………………………………… 1分2x -1=±3 …………………………………………… 3分 所以 x 1=2,x 2=-1. …………………………………………… 4分 (2)解:x 2+2x -6=0.因为△=22-4×1×(-6)=28>0. …………………………………………… 5分所以 2821x -±=⨯=-1 .…………………………………………… 7分即 x 1=-1,x 2=-1…………………………………………… 8分 19.解:由题意,得3a ﹣11=19﹣2a ,…………………………… 2分解得 a =6. …………………………… 3分所以 0. ………………………4分因为00,所以 24-3x =0,y -6=0. …………………………… 6分 解得 x =8,y =6. …………………………… 8分 20. 解:解方程x 2﹣2x -1=0,得x 1=1,x 2=1. ……………………………2分因为a 是两个实数根中较小的根,所以a =1. ……………………………3分(1)原式=(1)2-2(12016=1-+2-2++2016=2017. ………………………………………………………… 5分 (注 本小题也可:将x =a 代入方程得:a 2﹣2a =1,原式=( a 2﹣2a )+2016=1+2016=2017.)(2(1)(1)1a a a +--+ ………………………………………… 6分 =1(1)1a a a ----. ……………………………………………… 7分 因为,a =1﹣,所以a -1=2-<0.所以 原式=(1)11a a a ---+- …………………………………………………8分 =-a ………………………………………………………………9分-1. …………………………………………………………10分21. 解:(1)当0k =时,原方程为2320x x -+=.……1分△=(-3)2-4×1×2=1>0. ……2分所以 321x ±=⨯. ……………………3分 即 x 1=2,x 2=1. ……………………4分 (注:也可用因式分解法求解.)(2)在方程023)32(22=++++-k k x k x 中,因为01)23(14)]32([22>=++⨯⨯-+-=∆k k k , …………………………5分所以213221)32(±+=±+=k k x即21+=k x ,12+=k x . …………………………………………………………7分因为AB 、AC 是方程的两个实数根, 所以AB ≠AC. 因为BC =5,所以当25k +=,或15k +=时,△ABC 是等腰三角形. ………………………9分 综上,k =3或4. …………………………………………………………… 10分B 卷(共60分)四、填空题(本大题共4小题,每小题6分,共24分.)22.1;23.-6;24.2;25.32±.24题解析提示:设OC 交AP 于点D ,所以OC =OD +DC .易知,OD OA ,DC =2DP .所以OC OA +2DP OA +2(AP -AD OA +2(OB -OA ),OC OB +OA ),因为OB OA ,所以OC (1)OA ,解得,OAOC=2.25题解析提示:因为ab ≥0,ab ≠0,所以ab >0.所以a 、b 同号.当a >0,b >0时,1a b +-=0,即21+=0,12-±=,0>,所以12-=,所以ab=;当a <0,b <0时,1a b +=0,即21=012=0>12+=,所以a b =32+.综上,a b=32±.五、解答题(本大题共3小题,每小题12分,共36分.)26. 解:(1)22-=2]+- …………………………3分=222- ………………………………………………4分=3-+7-4 …………………………………………5分=6- …………………………………………………6分(2)2222--=2222+⋅--………10分=4⨯ ………………………………………………………………11分=………………………………………………………………12分27.解:(1)令x 2-6x +1=0,解这个方程,得3x ==±……………………………2分 所以,x 2-6x +1=(33x x --+. ……………………………4分 (2)令x 2+2x -1=0,解这个方程,得1x ==-.…………………………………5分 所以 x 2+2x -1=(11x x ++.…………………………6分 所以(11x x +-++>0.所以1010x x ⎧+>⎪⎨++>⎪⎩,或1010x x ⎧+<⎪⎨++⎪⎩.…………………………7分解这两个不等式组,得1x >,或1x <. …………………………………8分(3)因为方程(x ﹣a )(x ﹣b )﹣x =0的两根是c 、d ,所以 (x ﹣a )(x ﹣b )﹣x =(x -c )(x -d ). ……………………………9分 所以 (x -c )(x -d )+x =(x ﹣a )(x ﹣b ). 因为当x =a 时,代入上式,得(a -c )(a -d )+a =(a ﹣a )(a ﹣b )=0,所以x =a 是方程(x -c )(x -d )+x =0的一个根, 同理,x =b 也是方程(x -c )(x -d )+x =0的一个根.所以方程 (x -c )(x -d )+x =0的两个根为x =a 或b .………………………11分 在方程(2x ﹣c )(2x ﹣d )+2x =0中,设2x =y ,得(y ﹣c )(y ﹣d )+y =0. 所以 y =a 或b .所以 2x =a 或b ,解得x 1=2a ,x 2=2b. 所以,方程(2x ﹣c )(2x ﹣d )+2x =0的根是x 1=2a ,x 2=2b.…………………12分 28. 解:(1)根据题意,BP =1-t ,BQ =t .当∠BQP =90°时,BQ 2+PQ 2=BP 2. …………………1分 因为△ABC 是等腰直角三角形,所以∠B =45°,所以∠BPQ =45°,所以∠B =∠BPQ ,所以BQ =QP .所以2BQ 2=BP 2. 所以2t 2=(1-t )2.QPCBA解这个方程,得t 1-1,t 2-1<0,舍去.…………………3分 当∠BPQ =90°时,BP +PQ 2=BQ 2. …………………4分因为△ABC 是等腰直角三角形,所以∠B =45°,所以∠BQP =45°,所以∠B =∠BQP ,所以BP =QP .所以2BP 2=BQ 2.所以2(1-t )2=t 2.解这个方程,得 t 1=2,t 2=2,因为t ≤1,所以t 2舍去.综上,t1,2. …………………………………………………6分 (2)如图,过点P 作PH ⊥BC 于点H .所以BH 2+PH 2=BP 2. ………………7分 根据题意,BP =1-t ,BQ =t .因为△ABC 是等腰直角三角形,所以∠B =45°,所以∠BPH =45°,所以BH =PH . 所以2PH 2=BP 2=BP .PH =1-t ,解得,PH=2(1-t ).……8分 因为S 四边形APQC =S △ABC -S △PBQ . 所以y =12AB ×AC -12BQ ×PH . y =12×1×1-12t×2(1-t ) y=21442t -+.……………………………………………………9分 不存在t 的值,使四边形APQC 的面积是△ABC 面积的二分之一. …………10分理由如下:因为S △ABC =12×1×1=12.所以21442-+=12×12.…………………………………………………11分 整理,得21+=0.△=2(-41=2-0,所以这个一元二次方程无实数解.所以,不存在t 的值,使四边形APQC 的面积是△ABC 面积的二分之一.……12分H Q PCB A。

四川省遂宁市市城区2017届九年级上学期教学水平监测数学试题

四川省遂宁市市城区2017届九年级上学期教学水平监测数学试题

遂宁市市城区初中2017级第五学期教学水平监测数 学 试 题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

总分150分。

考试时间120分钟。

第Ⅰ卷(选择题,满分60分)注意事项:1.答第I 卷前,考生务必将自己的姓名、考号、考试科目用铅笔涂写在机读卡上;2.1—20小题选出答案后,用2B 铅笔把机读卡上对应的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试卷上;3.考试结束后,将第I 卷的机读卡和第Ⅱ卷的答题卡一并交回。

一、选择题 (每小题3分,共60分) 1. 下列根式中,属于最简二次根式的是 A.27 B. 21x + C.12D. 2a b2.下列计算正确的是 A .532-=B .623÷=C .2·36=D .842= 3. 已知25523,2y x x xy =-+--则的值为 A .-15 B .15 C .-152 D .1524. 若22(2)10mm x x ---+=是一元二次方程,则m 的值为A. ±2B. 2C. -2D. 以上都不对 5. 方程0522=-+x x 经过配方后,其结果正确的是 A .5)1(2=+xB .5)1(2=-xC .6)1(2=+xD .6)1(2=-x6. 设12,x x 是方程22430x x --=的两根,则12x x +的值是A .2B .-2C .21D . 21-7. 关于x 的方程2210x kx +-=有两个不相等的实数根,则k 的取值范围是 A .0k ≥ B .0k > C .1k ≥- D .1k >- 8. 若875cb a ==,且323a bc -+=,则243a b c +-的值是 A. 14B. 42C. 7D.3149. 如图,在△ABC 中,M ,N 分别是边AB ,AC 的中点, 则△AMN 的面积与四边形MBCN 的面积比为 A. 12B. 13C. 14D. 2310. 如图,在正△ABC 中,D ,E 分别在AC ,AB 上,且13AD AC =,AE =BE ,则有A .△AED ∽△ABCB .△ADB ∽△BEDC .△BCD ∽△ABC D .△AED ∽△CB D 11. 下列图形中不是位似图形的是A B C D12. 在平面直角坐标系中,已知点O (0,0),A (2,4).将线段OA 沿x 轴向左平移2个单位,记点O ,A 的对应点分别为点O 1,A 1,则点O 1,A 1的坐标分别是 A .(0,0),(2,4) B .(0,0),(0,4) C .(2,0),(4,4) D .(-2,0),(0,4)13. 如图,P 是Rt △ABC 的斜边BC 上异于端点B ,C 的点,过P 点作直线截△ABC ,使截得的三角形与△ABC 相似,满足这样条件的直线共有A .1条B .2条C .3条D .4条 14. 在△ABC 中,90C ∠=︒,1tan 3A =, 那么sin A 的值是 A.21 B. 1010 C. 33 D. 23 15.如图,在△ABC 中,∠ABC =90°,DE 垂直平分AC ,垂足为O ,AD ∥BC ,且AB =3,BC =4,则AD 的长为 A .425 B .825 C .415 D .81516. 化简:2)52sin 1(︒--2)52tan 1(︒-的结果是A. tan 52sin 52︒-︒B. sin 52tan 52︒-︒C. 2sin 52tan 52-︒-︒D. sin 52tan 52-︒-︒17. 如图,先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB 为 A .5cos α m B .5cos αm C .5sin α m D .5sin αm 18. 如图,在菱形ABCD 中,⊥DE AB ,3cos 5A =,3BE =,则tan ∠DBE 的值是A .43B .2C .52 D .5519. 下列说法正确的是A .“明天降雨的概率是80%”表示明天有80%的时间都在降雨B .“抛一枚硬币正面朝上的概率为21”表示每抛2次就有一次正面朝上 C .“彩票中奖的概率为1%”表示买100张彩票肯定会中奖 D .“抛一枚正方体骰子,朝上的点数为2的概率为61”表示随着抛掷次数的增加,“抛出朝上的点AB CDP 数为2”这一事件发生的频率稳定在61附近 20. 二次函数267y x x =-+-,当x 取值为2t x t ≤≤+时,有最大值2(3)2y t =--+,则t 的取值范围为A. t ≤0B. 0≤t ≤3C. t ≥3D. 以上都不对第Ⅱ卷(非选择题,满分90分)注意事项:1. 用钢笔或圆珠笔在第Ⅱ卷答题卡上作答,不能答在此试卷上。

2017四川成都中考数学试卷解析版

2017四川成都中考数学试卷解析版

2017年四川省成都市中考数学试卷 满分:150分 版本:湘教版A 卷 共100分一、选择题(每小题3分,共10小题,合计30分)1.(2017四川成都,3分)《九章算术》中注有“今 两算得失相反,要令正负以名之”,意思是今有两数若其意义相反,则分别叫做正数与负数.若气温为零上10℃记作+10℃,则-3℃表示气温为 A . 零上3℃ B .零下 3℃ C .零上7℃ D .零下7℃ 答案:B ,解析:若气温为零上10℃记作+10℃,由相反意义的量的意义,则-3℃表示气温为零下 3℃ .2.(2017四川成都,3分)如图所示的几何体是由4个大小相同的小立方块搭成,其俯视图是A .B .C .D .答案:C ,解析:俯视图是对几何体从上向下看的正投影,故选C .3.(2017四川成都,3分)总预算647亿元的西成高速预计2017年11月竣工,届时成都到西安只需3小时.用科学计数法表示647亿为 A .664710⨯B .86.4710⨯C .106.4710⨯D .116.4710⨯答案:C ,解析:647亿=8821064710 6.471010 6.4710⨯=⨯⨯=⨯.4.(2017四川成都,3分)二次根式1x -中,x 的取值范围是 A .x ≥1 B .x >1 C .x ≤1 D .x <1 答案:A ,解析:由x -1≥0得.x ≥1.5.(2017四川成都,3分)下列图形中,既是轴对称图形又是中心对称图形的是A .B .C .D . 答案:D ,解析:A 是轴对称图形.故A 不合题意;B 是中心对称图形,故B 不合题意;C 是轴对称图形.故C 不合题意;D 既是轴对称图形又是中心对称图形,故D 符合题意.6.(2017四川成都,3分)下列计算正确的是 A .5510a a a += B .76a a a ÷=C .326a a a ⋅=D .326()a a -=-答案:B ,解析:A .5552a a a +=,故A 错误;B .76a a a ÷=正确;C .325a a a ⋅=,故C错误;D .326()a a -=,故D 错误.7.(2017四川成都,3分)学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,得分(分)60 70 80 90 100 人数(人)7 12 10 8 3 A .70分,70分 B .80分,80分 C .70分,80分 D .80分,70分 答案:C ,解析:全班有40人,取得70分的人数最多,故众数是70分;把这40人的得分按大小排列后知,中间的数为第20个与第21个,这两个得分都是80分,故中位数是80分.8.(2017四川成都,3分)如图四边形ABCD 和A ′B ′C ′D ′是以点O 为位似中心的位似图形,若OA :OA ′=2∶3,则四边形ABCD 和A ′B ′C ′D ′的面积比为A .4∶9B .2∶5C .2∶3D .2:3 答案:A ,解析:由位似的性质得,ABCD 和A ′B ′C ′D ′的位似比为2∶3,所以四边形ABCD 和A ′B ′C ′D ′的面积比为4∶9 .9.(2017四川成都,3分)已知x =3是分式方程2121kx k x x--=-的解,那么实数K 的值为 A .-1B . 0C .1D .2答案:D ,解析:把x =3代入分式方程2121kx k x x --=-,得321223k k --=,解此一元一次方程,得k =2.10. (2017四川成都,3分)在平面直角坐标系xOy 中,二次函数2y ax bx c =++的图像如图所示,下列说法正确的是 ( )A .20,40abc b ac <-> B .20,40abc b ac >->C. 20,40abc b ac <-<D .20,40abc b ac >-<答案:B ,解析:由二次函数2y ax bx c =++的图象开口向上,则a >0,与y 轴交点在y 轴的负半轴上,由c <0,对称轴在y 轴的左侧,则2ba->0,所以b <0,所以0abc >;图象与x 轴有两点交点,则240b ac ->,综上,故选B .二、填空题:(每小题3分,共8小题,合计24分)11.(2017四川成都,3分)020171)= .答案:1,解析:020171)1=.12.(2017四川成都,3分)在△ABC 中,∠A :∠B :∠C =2∶3∶4,则∠A 的度数为 . 答案:40°,解析:设∠A ,∠B ,∠C 的度数分别是2x ,3x ,4x ,则有2x +3x +4x =180°,解得x =20°,所以∠A =2x =40°.13.(2017四川成都,3分)如图,正比例函数11y k x =和一次函数22y k x b =+的图象相交于点A(2,1),当x <2时,1y2y .(填“>”或“<”)答案:<,解析:由图象得,点A 的横坐标为2,所以当x <2时,1y <2y .14.(2017四川成都,3分)如图,在□ABCD 中,按以下步骤作图:①以A 为圆心,任意长为半径作弧,分别交AB ,AD 于点M ,N ;②分别以点M ,N 为圆心,以大于12MN 的长为半径作弧,两弧相交于点P ;③作射线AP 交边CD 于点Q .若DQ =2QC ,BC =3,则□ABCD 的周长为 .答案:10,解析:由作图知,AQ 是∠BAD 的角平分线.又∵□ABCD ,∴∠DQA =∠BAD ,∴DA =QD .∵DQ =2QC ,BC =3,∴DQ =3,QC =1,∴□ABCD 的周长为2(BC +CD )=2×5=10.三、解答题:本大题共6个小题,满分60分. 15.(本小题满分12分,每题6分) (1)(2017四川成都,6212182sin 45()2--+o221222432-⨯+=. (2)(2017四川成都,6分)解不等式组:273(1)423133x x x x -<-⎧⎪⎨+≤-⎪⎩解:整理不等式组,得422x x -<⎧⎨-⎩≤,即41x x >-⎧⎨≤-⎩,所以-4<x ≤-1.16.(2017四川成都,6分)化简求值:212(1)211x x x x -÷-+++,其中31x =解:原式=2211111(1)1(1)11x x x x x x x x x ---+÷=⋅=+++-+, 将31x =33113==-+17.(2017四川成都,8分)随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将检查结果绘制成下面两个统计图.(1)本次调查的学生共有__________人,估计该校1200 名学生中“不了解”的人数是__________人. (2)“非常了解”的4 人有12,A A 两名男生,12,B B 两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.解析:(1)由饼图可知“非常了解”为8%,由条形图可知“非常了解”为4人,故本次调查的学生有4508%=(人); 由扇形图可知:“不了解”的概率为18%22%40%30%---=,故1200名学生中“不了解”的人数为120030%360⨯=(人).(2)树状图: 由树状图可知共有12种结果,抽到1男1女分别为1112212212112122A B A B A B A B B A B A B A B A 、、、、、、、 共8种.∴82123P ==.18.(2017四川成都,8分)科技改变生活,手机导航极大地方便了人们的出行,如图,小明一家自驾到古镇C 游玩,到达A 地后,导航显示车辆应沿北偏西60°方向行驶4千米至B 地,再沿北偏东45°方向行驶一段距离到达古镇C ,小明发现古镇C 恰好在A 地的正北方向,求B ,C 两地的距离.思路分析:由小明发现古镇C 恰好在A 地的正北方向,确定AC ∥BD ,通过已知∠CAB =60°,∠CBD =45°可得∠C =45°.通过作BE ⊥AC ,因为已知AB =4,所以先在Rt △AEB 中求得BE 的长,然后再在Rt △CEB 中求得BC 的长.解:由题意知:AB =4,∠CAB =60°,∠CBD =45°,AC ∥BD , 作BE ⊥AC ,∴∠CEB =90°,∠EBA =90°-∠CAB =30°,∠CBE =90°-∠CBD =45°,∴△CEB是等腰直角三角形.∴BE=cos304AB⋅︒==∴BC==千米),即,B,C两地的距离为千米.19.(2017四川成都,10分)如图,在平面直角坐标系xOy中,已知正比例函数12y x=与反比例函数kyx=的图象交于A(a,-2),B两点.(1)求反比例函数表达式和点B的坐标;(2)P是第一象限内反比例函数图象上一点,过点P作y轴的平行线,交直线AB于点C,连接PO,若△POC的面积为3,求点P的坐标.思路分析:(1)由点A(a,-2)在正比例函数12y x=图象上可求得a的值,进而得出点A(-4,-2),再由点A(-4,-2)在在反比例函数kyx=的图象上,求得k值,进而求得反比例函数的表达式为8yx=;由A,B两点关于原点O中心对称,求得点B的坐标为(4,2).(2)设第一象限内反比例函数8yx=点P8(,)aa,根据PC∥y轴,点C在直线12y x=上,表示出PC的长度,利用已知的△POC的面积为3,求出点P的坐标.解:(1)∵点A(a,-2)在正比例函数12y x=图象上,∴122a-=,∴4a=-,∴点A(-4,-2).又∵点A(-4,-2)在反比例函数kyx=的图象上,∴4(2)8k xy==-⨯-=,∴反比例函数kyx=的表达式为8yx=.∵A,B既在正比例函数图象上,又在反比例函数图象上,∴A,B两点关于原点O中心对称,∴点B的坐标为(4,2).(2)如图,设第一象限内反比例函数8yx=点P8(,)aa,∵PC∥y轴,点C在直线12y x=上,∴点C的坐标为1(,)2a a,∴2181622aPC aa a-=-=,∴2211161632224POCa aS PC a aa∆--=⋅=⋅==,当21634a-=时,解得a==P为7;当21634a -=-时,解得2a =,∴点P 为(2,4). 综上,符合条件的点P 的坐标为47(27,)7,(2,4). 20.(2017四川成都,10分) 如图,在ABC ∆中,AB AC =,以AB 为直径作圆O ,分别交BC 于点D ,交CA 的延长线于点E ,过点D 作DH AC ⊥于点H ,连接DE 交线段OA 于点F . (1)求证:DH 是圆O 的切线;(2)若A 为EH 的中点,求EFFD的值;(3)若1EA EF ==,求e O 的半径.思路分析:(1)连接OD ,因为DH AC ⊥于点H ,只需证明//OD AC ,即可得到DH OD ⊥,得证,或者再连接AD ,利用直径所对的圆周角为直角,证明∠ODA +∠ADH =90°也可; (2)通过证明AEF ODF ∆∆∽,可得到,EF AEFD OD=再利用OD 是△ABC 的中位线,等腰△DEC 的性质,求出AE AC 的比值,进而求得EFFD的值; (3)由EA =EF ,OD ∥EC ,可得△ODF 和△BDF 都是等腰三角形,设O e 半径为r ,则DF =OD =r ,所以BF =BD =DC =DE =DF +EF =r +1,AF =AB -BF =2r -(r +1)=r -1.通过BFD EFA ∆∆∽,即可求出r .解:(1)连接OD ,∵OB OD =,∴OBD ∆是等腰三角形,OBD ODB ∠=∠ ①, 又 ∵AB AC =,∴ABC ACB ∠=∠ ②, ∴ODB OBD ACB ∠=∠=∠, ∴//OD AC ,∵DH AC ⊥,∴DH OD ⊥, ∴DH 是O e 的切线;(2)∵E B ∠=∠,E B C ∠=∠=∠,∴EDC ∆是等腰三角形,又∵DH AC ⊥,点A 是EH 中点,设,4AE x EC x ==,则3AC x =, 连接AD ,由090ADB ∠=,即AD BD ⊥,又∵ABC ∆是等腰三角形,∴D 是BC 中点,∴OD 是ABC ∆中位线,∴13//,22OD AC OD x =, ∵//OD AC , ∴E ODF ∠=∠,在AEF ∆和ODF ∆中,E ODFOFD AFE∠=∠⎧⎨∠=∠⎩, ∴AEF ODF ∆∆∽,∴2,332EF AE AE x FD OD OD x ===,∴23EF FD =. (3)设O e 半径为r ,即OD OB r ==, ∵EF EA =, ∴EFA EAF ∠=∠, 又∵//OD EC , ∴FOD EAF ∠=∠,则FOD EAF EFA OFD ∠=∠=∠=∠, ∴DF OD r ==, ∴1DE DF EF r =+=+,∴1BD CD DE r ===+,∵BDE EAB ∠=∠,∴BFD EFA EAB BDE ∠=∠=∠=∠, ∵BF BD =,BDF ∆是等腰三角形,∴1BF BD r ==+, ∴()2211AF AB BF OB BF r r r =-=-=-+=-,在BFD ∆与EFA ∆中BFD EFAB E∠=∠⎧⎨∠=∠⎩,∵BFD EFA ∆∆∽,∴11,1EF BF r FA DF r r+==-,解得121515,22r r +-==(舍) ∴综上,O e 的半径为15+.B 卷(共50分)一、填空题(本大题共5 个小题,每小题4 分,共20 分,答案写在答题卡上) 21. (2017四川成都,4分)如图,数轴上点A 表示的实数是________.512221=55-1OA +,.22.(2017四川成都,4分)已知12,x x 是关于x 的一元二次方程250x x a -+=的两个实数根,且221210x x -=,则a =___________.答案:214a =,解析:由题意得,1212+=5=x x x x a ⋅,.∵2212121212()()10,2x x x x x x x x -=+-=∴-=.由22121212()()44x x x x x x -=+-=,即,221544,4a a -=∴=. 23.(2017四川成都,4分)已知O e 的两条直径,AC BD 互相垂直,分别以,,,AB BC CD DA 为直径向外作半圆得到如图所示的图形.现随机地向该图形内掷一枚小针,记针尖落在阴影区域内的概率为1P ,针尖落在O e 内的概率为2P ,则12P P =______________.答案:2π,解析:设O e 的半径为1,则O S π=e ,AO =1,AD 2. ∴21211=4[()()]22242S ππ⋅--=阴影,∴该图形的总面积为2π+. ∴112222,,22P P P P ππππ==∴=++. 24.(2017四川成都,4分)在平面直角坐标系xOy 中,对于不在坐标轴上的任意一点(),P x y ,我们把点11,P x y ⎛⎫' ⎪⎝⎭称为点P 的 “倒影点”.直线1y x =-+上有两点,A B ,它们的倒影点,A B ''均在反比例函数ky x=的图像上.若22AB =k =____________.答案:43-,解析:∵A ,B 两点在直线1y x =-+上,设A (a ,-a +1),B (b ,-b +1),∴22222()(11)2()(22)AB a b a b a b =-+-++-=-=,∴2()4,2a b a b -=∴-=±.∴A ,B 两点的“倒影点”1111(,),(,)11A B a a b b''--.∵点,A B ''均在反比例函数k y x =的图像上,∴111111k a a b b⋅==⋅--,∴(1)(1)a a b b -=-,变形因式分解得()(1)0a b a b ---=,∵2a b -=±,∴10a b --=.由210a b a b -=⎧⎨--=⎩解得3212a b ⎧=⎪⎪⎨⎪=-⎪⎩,∴1124(2)133k a a =⋅=⨯-=--;由210a b a b -=-⎧⎨--=⎩解得1232a b ⎧=-⎪⎪⎨⎪=⎪⎩,∴1124(2)133k a a =⋅=-⨯=--.综上,43k =-.25.(2017四川成都,4分)如图1,把一张正方形纸片对折得到长方形ABCD ,再沿ADC ∠的平分线DE 折叠,如图2,点C 落在点C '处,最后按图3所示方式折叠,使点A 落在DE 的中点A '处,折痕是FG .若原正方形纸片的边长为6cm ,则FG =______cm .答案:210,解析:∵原正方形纸片的边长为6,∴AD =6,AB =3,DC ′=CD =AB =3,∴DE =32在图3中,A ′是DE 的中点,折痕是FG ,∴FG 垂直平分AA ′垂足为P ,AF =A ′F .作A ′M ⊥AD ,垂足为M ,由A ′M =12AB =32,AM =3+32=92, ∴AA ′222239310()()222AM A M '+=+=,∴AP =131024AA '=.设AF =x ,则FC ′=3-x ,由222,FA MA MA ''=+即22233()(3)22x x =+-+,解得52x =.作GN ⊥AD ,垂足为N ,∴GF =AB =3, ∵1122AGF S AF GN GF AP ∆=⋅=⋅,即,151********⨯⨯=⨯,∴210GF =二、解答题(共3个小题 ,共30分)26.(2017四川成都,8分) 随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的,,,,A B C D E 中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x (单位:千米),乘坐地铁的时间1y (单位:分钟)是关于x 的一次函数, 地铁站 ABCDEx (千米)8 9 10 11.5 13 1y (分钟)1820222528(1)求1关于的函数表达式;(2)李华骑单车的时间(单位:分钟)也受x 的影响,其关系可以用22111782y x x =-+来描述,请问:李华应选择在哪一站出地铁,才能使他从文化宫回到家里所需的时间最短?并求出最短时间. 解:(1)设乘坐地铁的时间1y 关于x 的一次函数是1y kx b =+, 把x =8,118y =;x =10,122y =代入,得1882210k b k b =+⎧⎨=+⎩,解得22k b =⎧⎨=⎩,∴1y 关于x 的函数表达式是122y x =+; (2)设骑单车的时间为y ,12y y y =+,即,22211179221178980(9)2222y x x x x x x =++-+=-+=-+, ∴当9x =时,79=2y 最小(分钟).∴李华选择从B 地铁口出站,骑单车回家的最短时间为792分钟.27.(2017四川成都,10分)问题背景:如图1,等腰ABC ∆中,0,120AB AC BAC =∠=,作AD BC⊥于点D ,则D 为BC 的中点,01602BAD BAC ∠=∠=,于是23BC BD AB AB==;迁移应用:如图2,ABC ∆和ADE ∆都是等腰三角形,0120BAC DAE ∠=∠=,,,D E C 三点在同一条直线上,连接BD .① 求证:ADB AEC ∆≅∆; ② 请直接写出线段,,AD BD CD 之间的等量关系式;拓展延伸:如图3,在菱形ABCD 中,∠BAC =120°,在∠BAC 内作射线BM ,作点C 关于BM 的对称点E ,连接AE 并延长交BM 于点F ,连接CE ,CF .① 证明:CEF ∆是等边三角形; ②若5,2AE CE ==,求BF 的长.解:迁移应用:①证明:∵ABC ∆和ADE ∆都是等腰三角形,0120BAC DAE ∠=∠=, ∴AD =AE ,AB =AC ,∵∠DAB =∠DAE -∠BAE ,∠CAE =∠BAC -∠BAE ,∴∠DAB =∠CAE ,∴△ADB ≌△AEC ; ②BD 3=CD .拓展延伸:①证明:如答图所示,连接BE ,作BG ⊥AE ,∵点C 关于BM 的对称点E ,∴BM 垂直平分CE ,∴FE =FC ,BE =BC ,∴△CEF 和△BEC 都是等腰三角形,∴∠ABG =∠EBG ,∠EBF =∠CBF ,∴∠GBF =∠EBG +∠EBF =12∠ABC =60°, ∴∠GFB =30°,∴∠EFC =60°,∴△CEF 是等边三角形;②∵AE =5,,在等腰三角形ABE 中,GF =GA =52. ∵EF =2,∴GF =GE +EF =9,2在直角三角形GBF 中,∵∠GFB =30°,∴FG =3BG =,∴BF =2333⨯=. 28.(2017四川成都,12分)如图1,在平面直角坐标系xOy 中,抛物线2:C y ax bx c =++与x轴相交于,A B 两点,顶点为()0,4D ,42AB =,设点(),0F m 是x 轴的正半轴上一点,将抛物线C 绕点F 旋转180°,得到新的抛物线C '.(1)求抛物线C 的函数表达式;(2)若抛物线C '与抛物线C 在y 轴的右侧有两个不同的公共点,求m 的取值范围;(3)如图2,P 是第一象限内抛物线C 上一点,它到两坐标轴的距离相等,点P 在抛物线C ′上的对应点为P ′,设M 是C 上的动点,N 是C ′上的动点,试探究四边形PMP ′N 能否成为正方形,若能,求出m 的值;若不能,请说明理由.解:(1)∵抛物线2:C y ax bx c =++与x 轴相交于,A B 两点,顶点为()0,4D ,42AB = ∴抛物线C 的对称轴是y 轴,A (2,0),(22,0),B -设抛物线C 的解析式为(2)(22)y a x x =+-,即,28y ax a =-,∴84a -=,∴12a =-,抛物线C 的解析式为2142y x =-+; (2)如图,∵点(),0F m 是x 轴的正半轴上一点,将抛物线C 绕点F 旋转180°,得到新的抛物线C ',∴(2,4)D m '-,∴设抛物线C '的解析式为21(2)42y x m =--. 令抛物线C '过点D (0,4),有214442m =⋅-,∴24m =,∴2m =(舍去负值); 由221(2)42142y x m y x ⎧=--⎪⎪⎨⎪=-+⎪⎩,有22114(2)422x x m -+=--,即222280x mx m -+-=, 当抛物线C '与抛物线C 有唯一交点时,有2222444(28)4320b ac m m m ∆=-=--=-+=,∴m =(舍去负值).∴m 的取值范围是2<m<(3)∵P 是第一象限内抛物线C 上一点,它到两坐标轴的距离相等,∴点P 在y =x 上,由2142x x =-+,解得122,4x x ==-(不合题意,舍去), ∴点P 的坐标为(2,2).∵抛物线C '的解析式为21(2)42y x m =--,F (m ,0),由对称性可知,四边形PMP ′N 能成为正方形,即△PMF 为以F 为顶点的等腰直角三角形.①若0<m ≤2时,如图2①,过点F 、P 、M 分别向坐标轴作垂线交点分别为K 、L ,易得△KPF ≌△LFM ,∴KF =LM =2,KP =FL =2-m ,∴M (m +2,m -2), 代入2142y x =-+中,得2680m m +-=,解得,1233m m =-=-(不合题意,舍去).②若m >2,如图2②过点F 、P 、M 分别向坐标轴作垂线交点分别为K 、L ,易得△KPF ≌△LFM , ∴KP =FL =2-m ,∴M (m -2,2-m ), 代入2142y x =-+中,得260m m -=,解得,126,0m m ==(不合题意,舍去).综上,m 的值为3- 6.。

四川省乐山市2017年中考数学真题试题(含答案)

四川省乐山市2017年中考数学真题试题(含答案)

1 (B)
2
1 (C) 0 或
2
(D) 1 或 2
7. 图 2 是“明清影视城”的一扇圆弧形门,小红到影视城游玩,他了解到这扇门的相关数据:这扇圆弧
形门所在的圆与水平地面是相切的, AB CD 0.25 米, BD 1.5 米,且 AB 、 CD 与水平地面都
是垂直的.根据以上数据,请你帮小红计算出这扇圆弧形门的最高点离
19. 证明:□ ABCD中, AB CD , AB BE , CD DF ,∴ BE DF .
A
D
F
AD BC , ∴ AF EC ………………(6 分)
1 (A)
2
1 (B)
2
(C) 2
(D) 2
2.随着经济发展,人民的生活水平不断提高,旅游业快速增长,2016 年国民出境旅游超过 120 000 000
人次,将 120 000 000 用科学记数法表示为
(A) 1.2 109
(B) 12 107
(C) 0.12 109
3. 下列图形中,既是轴对称图形又是中心对称图形的是
4
三、本大题共 3 小题,每小题 9 分,共 27 分.
17. 计算: 2sni60 1 3 20170 27 .
2x 1 3x, 18. 求不等式组 x 1 x 2 的所有整数解. 5 2 0
19. 如图 7, 延长□ ABCD 的边 AD 到点 F ,使 DF DC ,延长 CB 到点 E ,使 BE BA ,分别连结
B 、 A ,且 B 为线段 AO 的中点.
a
(1)求 的值;
b (2)若 OC AC ,求 OAC 的面积;

四川成都嘉祥外国语学校九年级上第10周周考数学试卷(Word)-最新学习文档

四川成都嘉祥外国语学校九年级上第10周周考数学试卷(Word)-最新学习文档

成都嘉祥外国语学校 2019-2019 年度九年级上第十周数学周考试卷(时间 120分钟,满分 150 分) 一、选择题(每小题 3 分,共 30 分).1、一元二次方程 x 2 -9 = 0 的解是( )A 、 x = 3B 、 x = -3C 、x 1 = 3, x 2 = -3 D 、 x 1 x 2 2、某种零件模型如图 1 所示,该几何体(空心圆柱)的俯视图( )A B C D3、如图是我们学过的反比例函数图象,它的函数解析式可能是() A 、 y = x 2 B 、 y = 4x C 、 y =-3x D 、 y = 12x 4、已知抛物线 y = -2x 2 + 4x + 2 ,则( ).A 、其开中向上B 、其对称轴为直线 x = -1C 、其最大值为 4D 、当 x < 1时, y 随 x 增大而减少5、下列命题中的假命题是( )A 、一组邻边相等的平行四边形是菱形B 、一组邻边相等的矩形是正方形C 、一个角是直角的四边形是矩形D 、一组对边行且相等的四边形是平行四边形6、到三角形各顶点的距离相等的点是三角形( )A 、三条角平分线的交点B 、三条高的交点C 、三条中线的交点D 、三边的垂直平分线的交点7、小明在一只装有红色和白色球各一只的口袋中摸出一只球,然后放回搅匀再摸出一只球,反复多 次实验后,发现某种“状况”出现的机会约为 50%,则这种状况可能是() A 、两次摸到红色球B 、两次摸到白色球C 、两次摸到不同颜色的球D 、先摸到红色球,后摸到白色球8、如图,Rt △ABC 中,∠ACB=90°,CD ⊥AB ,D 为垂足,若 AC=4,BC=3,则 sin ∠ACD 的值为A 、43B 、34C 、45D 、359、如图,在△ABC 中,AB=AC ,∠A=36∘,BD 平分∠ABC 交 AC 于点 D ,若 A C=2,则 AD 的长是A 、12B 、12C 1D 110、函数 y =ax 2+bx +c 的图象如图所示,那么关于 x 的方程 ax 2+bx +c +2=0 的根的情况是()A 、无实数根B 、有两个相等实数根C 、有两个异号实数根D 、有两个同号不等实数根二、填空题(每小题 4 分,共 16 分). 11、分解因式:3a 2 - 12ab + 12b 2 = . 12、已知反比例函数 y =k x的图象分布在第二、四象限,则一次函数 y = kx + b 中, y 随 x 的增大而 . (填“增大”、“减小”、“不变”)13、如图,在△ABC 中,分别以点 A 和点 B 为圆心,大于 12AB 的长为半径画弧,两弧相交于点 M 、N ,作直线 MN ,交 BC 于点 D ,连接 AD.若△AD C 的周长为 10,A B=7,则△A BC 的周长为14、为了估计水库中鱼的数量,先从水库中捕捉 50 条鱼做记号,后放回水库里,经过一段时间,等 带有记号的鱼完全混于鱼群中之后,再捕捞 300 条鱼,发现有 10 条鱼做了记号,则可估计水库中大 约有 条鱼.三、解答题(共 54 分).15、(1)(5 分)计算:sin 2 45 + 01tan 602-- (- cos 30 ) (2)(5 分)解方程: 2 x 2 - 5x - 3 = 016、(8 分)小明、小颖利用灯光下自己的影子长度来测量一路灯的高度.如图,在同一时间,身高为1.6m 的小明(AB)的影子 BC 长是 3m ,而小颖(EH)刚好在路灯灯泡的正下方 H 点,并测得 HB=6m 。

四川省乐山市2017年中考数学真题试题(含答案)[精品]

四川省乐山市2017年中考数学真题试题(含答案)[精品]

B 、 A ,且 B 为线段 AO 的中点.
a
(1)求 的值;
b (2)若 OC AC ,求 OAC 的面积;
(3)抛物线 C2 的对称轴为 l ,顶点为 M ,在(2)的条件下:
①点 P 为抛物线 C2 对称轴 l 上一动点,当 PAC 的周长最小时,求点 P 的坐标;
②如图 12.2,点 E 在抛物线 C2 上点 O 与点 M 之间运动,四边形 OBCE 的面积是否存在最大值? 若存在,求出面积的最大值和点 E 的坐标;若不存在,请说明理由.
理由.
(2)如图 11.2,若将(1)中的条件“ B 90 ”去掉,(1)中的结论是否成立?请说明理由.
(3)如图 11.3,若 DAB 90 ,探究边 AD 、 AB 与对角线 AC 的数量关系并说明理由.
D
D
C
D
C
A
CA
A
B
图 11.1
B
图 11.2
B
图 11.3
26.如图 12.1,抛物线 C1 : y x 2 ax 与 C2 : y x 2 bx 相交于点 O 、C , C1 与或
2
(D) 1 或 2
7. 图 2 是“明清影视城”的一扇圆弧形门,小红到影视城游玩,他了解到这扇门的相关数据:这扇圆弧
形门所在的圆与水平地面是相切的, AB CD 0.25 米, BD 1.5 米,且 AB 、 CD 与水平地面都
是垂直的.根据以上数据,请你帮小红计算出这扇圆弧形门的最高点离
19. 证明:□ ABCD中, AB CD , AB BE , CD DF ,∴ BE DF .
A
D
F
AD BC , ∴ AF EC ………………(6 分)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

天府师大一中初2017级九(上)数学周考十
一.选择题(共10小题,每小题4分,共40分.)
1.若=,则的值为()
A.B.C.D.
2.如图所示,用KT板制作的“中”字的俯视图是()
A.B.C.D.
3.若x1=﹣1是关于x的方程x2+mx﹣5=0的一个根,则此方程的另一个根x2=()A.﹣5B.C.5D.﹣
4.下列判断中,不正确的有()
A.三边对应成比例的两个三角形相似
B.两边对应成比例,且有一个角相等的两个三角形相似
C.斜边与一条直角边对应成比例的两个直角三角形相似
D.有一个角是100°的两个等腰三角形相似
5.在平面直角坐标系中,已知点E(﹣4,2),F(﹣1,﹣1).以原点O为位似中心,把△EFO扩大到原来的2倍则点E的对应点E'的坐标为()
A.(﹣8,4)B.(8,﹣4)C.(8,4)或(﹣8,﹣4)D.(﹣8,4)或(8,﹣4)6.一个不透明的袋中只装有1个红球和2个蓝球,它们除颜色外其余均相同.现随机从袋中摸出两个球,颜色是一红一蓝的概率是()
A.B.C.D.
7.在函数y=(a为常数)的图象上有三个点(﹣1,y1),(﹣,y2),(,y3),则函数值y1、y2、y3的大小关系是()
A.y2<y1<y3B.y3<y2<y1 C.y1<y2<y3 D.y3<y1<y2
8.在同一平面直角坐标系中,反比例函数y=与一次函数y=kx﹣k的图象可能是下面的()
A.B.C.D.
9.在菱形ABCD中,AC是对角线,CD=CE,连结DE.AC=16,CD=10,则DE的长为()
A.B.C.或D.
10.如图,正方形ABCD,对角线AC,BD相交于点O,过点D作∠ODC的角平分线交OC 于点G,过点C作CF⊥DG,垂足为F,交BD于点E,则S△ADG:S△BCE的比值为()A.B.C.2:1D.5:2
二.填空题(共4小题,每小题5分,共20分.)
11.若函数y=(m﹣2)x是反比例函数,则m=.
12.如图,在平面直角坐标系中,点A是函数y=(x<0)图象上的点,过点A作y轴的垂线交y轴于点B,点C在x轴上,若△ABC的面积为1,则k的值为.13.如图,当太阳光与地面上的树影成45°角时,树影投射在墙上的影高CD等于2米,若树根到墙的距离BC等于8米,则树高AB等于米.
14.如图,已知M是平行四边形ABCD中AB边的三等分点,BD与CM交于E,则阴影部分面积与平行四边形面积比为.
三.解答题.
15.(12分)解方程(1)(x+3)2﹣2(x+3)=0.(2)2|1﹣sin60°| +
16.(6分)先化简,再求值:,其中a2+a﹣1=0.
17.(10分)2019年,成都马拉松成为世界马拉松大满贯联盟的候选赛事,这大幅提升了成都市的国际影响力,如图,在一场马拉松比赛中,某人在大楼A处,测得起点拱门CD 的顶部C的俯角为35°,底部D的俯角为45°,如果A处离地面的高度AB=20米,求起点拱门CD的高度.(结果精确到1米;参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)
18(12分).如图,在△ABC中,∠ACB=90°,CD是高,BE平分∠ABC.BE分别与AC,CD相交于点E,F.
(1)求证:△AEB~△CFB;
(2)求证:;
(3)若CE=5,EF=2,BD=6.求AD的长.。

相关文档
最新文档