初二上学期数学期末考试试卷及答案解析
广西桂林市2023-2024学年八年级上学期期末考试数学试卷(含解析)

八年级数学(考试用时120分钟,满分120分)注意事项:1.试卷分为试题卷和答题卡两部分,请在答题卡上作答,在本试题卷上作答无效.2.考试结束后,将本试卷和答题卡一并交回.3.答题前,请认真阅读答题卡上的注意事项.一、选择题(共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑)1. 下列实数中,属于无理数的是()A. B. 3 C. D.答案:A解析:解析:解:,3,,中,只有是无理数;故选A.2. 如果二次根式有意义,那么的值可以是()A. B. C. D. 1答案:D解析:解析:解:由题意,得:,故的值可以是1;故选:D.3. 分式和的最简公分母是()A. B. C. D.答案:C解析:解析:解:分式的分母分别为,,故最简公分母是:,故选C.4. 不等式的解集是()A. B. C. D.答案:D解析:解析:解:,∴,∴;故选:D.5. 下列命题是真命题的是()A. 相等的角是对顶角B. 两直线平行,同旁内角相等C. 两点之间直线最短D. 邻补角互补答案:D解析:解析:解:A、对顶角相等,但相等的角不一定是对顶角,原说法错误,故该选项是假命题;B、两直线平行,同旁内角互补,原说法错误,故该选项是假命题;C、两点之间线段最短,原说法错误,故该选项是假命题;D、邻补角互补是指两个相邻角,它们的互为补角,该说法正确,故该选项是真命题;故选:D.6. 下列计算正确的是()A. B.C. D.答案:C解析:解析:解:A、,此项错误;B、,此项错误;C、,此项正确;D、,此项错误;故选:C.7. 2023年10月26日17时46分,神舟十七号载人飞船与中国空间站交会对接的过程犹如“万里穿针”,其核心部件高精度“传感器加速度计”仅为探测器升空过程中最大加速度的0.0001量级,用科学记数法表示数0.0001是()A. B. C. D.答案:B解析:解析:解:;故选:B.8. 将质量分别为的物体放入天平中,两个天平均保持平衡,则下列不等关系成立的是()A. B. C. D.答案:A解析:解析:解:由题图知,,∴,∴.故选:A.9. 如图,已知,,,则的长是()A. B. C. D.答案:B解析:解析:解:∵,∴cm,cm,即cm,故选:B.10. 如图,都是的中线,连接的面积是,则的面积是()A. B. C. D.答案:C解析:解析:解:∵是的中线,∴,∵是的中线,∴为的中线,即,故选:C.11. 我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了下面的公式:如果一个三角形的三边长分别为,则该三角形的面积为.已知的三边长分别为,则的面积是()A. B. C. D.答案:C解析:解析:解:∵的三边长分别为,∴,故选:C.12. 如图,在中,的平分线交于点,点分别是上的动点,若的最小值为3,则的长是()A. 3B.C.D. 6答案:D解析:解析:解:作点P关于直线的对称点,连接交于点Q,如图:则,∵根据对称的性质知,∴,又∵是的平分线,点P在边上,点Q在直线上,∴,∴,∴点在边上.∵当时,线段最短.∵的最小值为3,即最短∵在中,∴故选D二、填空题(共6小题,每小题2分,共12分,请将答案填在答题卡上)13. 9的算术平方根是_____.答案:3解析:解析:∵,∴9算术平方根为3.故答案为:3.14. 将分式化简的结果是______.答案:解析:解析:解:,故答案为:.15. 三根长分别为的小木棒首尾相接构成一个三角形,则的取值范围是______.答案:解析:解析:由题意得:,即:,故答案为:.16. 计算:________.答案:解析:解析:.故答案:.17. 某校组织开展了“读书立志,强国有我”的知识竞赛,共20道竞赛题,选对得6分,不选或错选扣2分,得分不低于80分获奖,那么同学们要获奖至少应选对______道题.答案:15解析:解析:解::设应选对x道题,则不选或选错的有道,依题意得:,得:∴至少应选对15道题,故答案为:15.18. 如图①,点、分别为长方形纸带的边、上的点,,将纸带沿折叠成图②(为和的交点),再沿折叠成图③(为和的交点),则图③中的______(结果用含的代数式表示).答案:解析:解析:解:图①中四边形的长方形,,,,,此时图②中也有,由折叠性质得:图②中,,是的一个外角,,由折叠性质得:图③中,,,是的一个外角,,在四边形中,.故答案为:.三、解答题(本大题共8题,共72分,请将解答过程写在答题卡上)19 计算:.答案:3解析:解析:解:原式.20. 解分式方程:答案:x=1解析:解析:解:x-3+(x-2)=-3x+x=-3+3+22x=2x=1检验:当x=1时,左边=3=右边∴x=1是原方程的解21. 解不等式组:,并把解集在数轴上表示出来.答案:,图见解析解析:解析:解:由①,得:,由②,得:,在数轴上表示解集如图:∴不等式组的解集为:.22. 先化简,再求值:,请从0,1,2,3四个数中选取一个你喜欢的数代入求值.答案:,当时,原式(当时,原式)解析:解析:解:原式=由题意可知:,∴当时,原式(当时,原式)23. 如图,,,与相交于点.(1)求证:≌;(2)若,求的度数.答案:(1)证明见解析(2)解析:小问1详解:证明:在中,,∴;小问2详解:解:由(1)可得,∴,∵是的一个外角,∴,∴的度数为.24. 综合与实践(1)实践操作::已知:线段,如图1,作图:用尺规作图,作线段的垂直平分线与交于点.(只保留作图痕迹,不要求写出作法)发现:在直线上任取一点(点除外),连接后发现是______三角形.(2)类比探究::已知:如图2,在中,,作图:在线段上求作点,连接,使得和都是等腰三角形.(尺规作图,只保留作图痕迹,不要求写出作法)(3)推理证明::在(2)所作的图2中,求证:和都是等腰三角形.答案:(1)图见解析,等腰(2)图见解析(3)证明见解析解析:解析:解:如图,直线即为所求;∵直线垂直平分,∴,∴即为等腰三角形;故答案为:等腰;(2)如图,点即为所求;(3)延长至点,使,∵,,∴,∴,,∴,∴,又,∴,∴,∴,∴和都是等腰三角形.25. 为赓续中华优秀文脉,促进文明交流互鉴,某社区准备聘请甲、乙两支施工队参与布置一条长为1200米的宣传长廊.已知甲队单独布置完成工程比乙队单独布置完成工程多用10天,乙队每天布置的数量是甲队每天布置的数量的1.5倍.(1)求甲、乙两支施工队每天分别布置完成多少米宣传长廊?(2)现将宣传长廊布置任务交给乙队并要求25天内完成.乙队布置若干天后因接到其它布置任务,经社区同意将余下布置任务全部交给甲队完成.求在转交给甲队之前乙队至少要布置多少天才能按时完成全部任务?答案:(1)甲施工队每天分别布置40米宣传长廊,则乙两支施工队每天分别布置60米宣传长廊;(2)在转交给甲队之前乙队至少要布置10天,才能按照村委会要求按时完成解析:小问1详解:解:设甲施工队每天分别布置x米宣传长廊,则乙两支施工队每天分别布置米宣传长廊,根据题意得:,解得:,经检验,是所列方程的解,且符合题意,∴.答:甲施工队每天分别布置40米宣传长廊,则乙两支施工队每天分别布置60米宣传长廊;小问2详解:设在转交给甲队之前乙队施工y天,根据题意得:,解得:,∴y的最小值为10.答:在转交给甲队之前乙队至少要布置10天,才能按照村委会要求按时完成.26. 如图,已知:和都是等边三角形,点分别是上的点,点是线段延长线上的一点,连接.(1)如图1,求证:;(2)如图1,若,求证:;(3)如图2,在(2)的条件下,点是线段的中点,连接并延长至使得,交于,连接,求证:是等边三角形.答案:(1)见解析(2)见解析(3)见解析解析:小问1详解:证明:∵和都是等边三角形,∴,∴;小问2详解:∵和都是等边三角形,∴,∴,∴,∵,∴,∴,∴;小问3详解:∵为等边三角形,∴,连接,∵,∴,∴,∴,∴,∴,∴,由(2)知:,∴,又,∴,∴,∴,∴是等边三角形.。
河南省洛阳市2023-2024学年八年级上学期期末考试数学试卷(含解析)

洛阳市2023—2024学年第一学期期末考试八年级数学试卷注意事项:1.本试卷分试题卷和答题卡两部分,试题卷共6页,满分120分,考试时间100分钟.2.试题卷上不要答题.请用0.5毫米黑色签字水笔直接把答案写在答题卡上.答在试题卷上的答案无效.3.答题前,考生务必将本人姓名、准考证号填写在答题卡第一面的指定位置上.一、选择题(每小题3分,共30分)1.2023年9月,第19届亚运会在杭州举行.如图所示是以往四届亚运会会徽设计的部分图案,其中是轴对称图形的是()A.B.C. D.2.“洛阳牡丹甲天下”,某品种的牡丹花粉直径约为米,则数据用科学记数法表示为()A.B.C.D.3.如图,为估计湖岸边、两点之间的距离,小洛在湖的一侧选取一点.测得米,米,则、间的距离可能是()A.50米B.70米C.200米D.250米4.已知,下列计算正确的是()A.B.C.D.5.若点的坐标是,点的坐标是,则与满足()A.关于轴对称B.关于轴对称C.轴D.轴6.已知分式有意义,则满足的条件是()A.B.C.D.任何实数7.如图,用一条宽度相等的足够长的纸条打一个结(如图1所示),然后轻轻拉紧、压平就可以得到如图2所示的正五边形.图2中,的大小是()A.B.C.D.8.位于高新区的火炬大桥是洛阳市区目前最靠西的一座跨洛河桥,也是洛阳市宽度最宽、承重能力最强、单孔跨度最大、配建立交规模最大的桥梁,其侧面示意图如图所示,其中,现添加以下条件,不能判定的是()A.B.C.D.9.如图1,将边长为的正方形纸片,剪去一个边长为的小正方形纸片.再沿着图1中的虚线剪开,把剪成的两部分(1)和(2)拼成如图2的平行四边形,这两个图能解释的数学公式是()A.B.C.D.10.某工厂要加工个零件,甲队单独完成需小时,乙队单独完成比甲队少用3小时,则两队一起加工这批零件需要()小时.A.B.C.D.二、填空题(每小题3分,共15分)11.计算:.12.分解因式:x2(x﹣3)﹣x+3=.13.回顾尺规作图法中作一个角等于已知角的过程不难发现,实质上是我们首先作一个三角形与另一个三角形全等,再根据全等三角形对应角相等完成的.那么两个三角形全等的理论依据是.14.某兴趣小组利用几何图形画出螳螂的简笔画,如图,已知,,且,则.15.如图,在锐角三角形中,,.的平分线交于点,、分别是和上的动点,则的最小值是.三、解答题(本大题共8个小题,共75分)16.(1)计算:(2)解方程:17.先化简,再求值:,其中,.18.已知,在中,,.请根据要求完成以下任务:(1)利用直尺和圆规,作的角平分线交于点,作的垂直平分线,垂足为,与交于点;(2)求的度数.19.如图,点,,,在同一条直线,,.有下列三个条件:①,②,③.(1)请在上述三个条件中只选取其中一个,使得,写出你选的条件并证明;(2)求证:.20.在四边形中,.,点、分别在边、上,且平分.(1)求证:平分;(2)若,求的度数.21.为深入学习二十大重要讲话精神,落实立德树人根本任务,某中学开展了以“品红色文化”为主题的研学活动.现去中共洛阳组诞生地纪念馆有两条路线可供选择,路线A的全程是27千米,但交通比较拥堵,路线B比路线A的全程多6千米,但平均车速比走路线A时能提高.若走路线B能比走路线A少用10分钟.求走路线A和路线B的平均速度分别是多少?22.将完全平方公式进行适当的变形,可以解决很多的数学问题,例如:若,求的值.解:,,即.又,,得.根据上面的解题思路与方法,解决下列问题:(1)若,,则______;(2)为推动学生劳动实践的有效进行,某学校在校园开辟了劳动教育基地,培养学生劳动品质.如图,校园内有两个正方形场地、,()它们面积和为,边长和为,学校计划在中间阴影部分摆放花卉,其余地方分配给各班作为种植基地.请求出摆放花卉场地的面积.23.(1)问题发现:如图1,和都是等边三角形,连接、,延长交于点,求证:,;(2)类比探究:如图2,和都是等腰直角三角形,即,,,则与存在怎样的数量关系及位置关系,并说明理由;(3)问题解决:若和都是等腰三角形,且,,,请直接写出线段和的数量关系及它们所在直线的夹角.参考答案与解析1.D解析:A、B、C选项均无法找到这样的一条直线,使得沿着这条直线折叠之后,直线两旁的部分能完全重合,故它们都不是轴对称图形;D选项,沿着如图所示的虚线折叠,直线两旁的部分能够完全重合,故它是轴对称图形.故选:D2.C解析:解:,故选C.3.C解析:解:∵,则,即.则符合条件的只有C.故选C.4.D解析:解:A、,计算错误,不符合题意;B、,计算错误,不符合题意;C、,计算错误,不符合题意;D、,计算正确,符合题意;故选D.5.A解析:解:∵点的坐标是,点的坐标是,∴点与点的横坐标相同,纵坐标互为相反数,∴这两个点关于轴对称,故选:A.6.D解析:解:∵分式有意义,而,∴满足的条件是:为全体实数;故选D7.C解析:解:∵是正五边形,∴,∵,∴,∴,故选C.8.A解析:解:∵,∴,∵,∴若添加,无法证明,A选项符合题意;若添加,可利用证明,B选项不符合题意;若添加,可借助证明,C选项不符合题意;若添加,可借助证明,D选项不符合题意;故选:A.9.B解析:解:图1中(1)(2)两部分的面积和可以看作两个正方形的面积差,即,图2是由(1)(2)两部分拼成的底为,高为的平行四边形,因此面积为,因此有,故选:B.10.B解析:解:由题意可得:,故选B.11.####1.5解析:.故答案为:12..解析:解:===.故答案为:.13.##边边边解析:解:如图,由作图可知:,∴;故答案为:.14.##20度解析:过点C作,∴∵,,∴,∴,∵.故答案为:15.5解析:解:过作于,作关于的对称点,连接,∵平分,∴在上,∴,当,,共线,且垂直时,最短,即,在上,即的长,,,,∴的最小值是5.故答案为:516.(1);(2)解析:解:(1);(2),去分母得:,去括号得:,∴,解得:;经检验:是原方程的根,∴原方程的根为.17.,.解析:解:,当,时,原式.18.(1)画图见解析(2)解析:(1)解:如图,射线,直线即为所求;.(2)∵,,∴,∵平分,∴,∵是的垂直平分线,∴,∴.19.(1)选③,证明见解析(2)证明见解析解析:(1)解:选择③,在与中,,∴.(2)∵,∴,∴.20.(1)证明见解析(2)解析:(1)解:如图,过作于,平分,,.,,又∵,;∴平分;(2)在和中,,,,由(1)知,∴,∴,∵,∴.21.走路线A的平均速度是30千米/时,走路线B的平均速度是45千米/时解析:设走路线A的平均速度为x千米/时,则走路线B的平均速度为千米/时.根据题意,得,解得:,经检验,是该分式方程的解.∴.答:走路线A的平均速度是30千米/时,走路线B的平均速度是45千米/时.22.(1)(2)解析:(1)解:∵,∴,∵,∴,解得:;(2)设大正方形的边长为,正方形的边长为,面积和为,边长和为,,,,,解得:,,,②,由①②解得:,.23.(1)证明见解析,(2),;(3),它们所在直线的夹角为解析:证明:(1)和都是等边三角形,∴,,,∴,∴,在和中,,∴,∴,,记,的交点为,则,∴.(2)和都是等腰直角三角形,∴,,,∴,∴,在和中,,∴,∴,,记,的交点为,则,∴,∴.(3)如图,∵,,,∴∴,∴,在和中,,∴,∴,,延长,相交于,∵,∴,即和所在直线的夹角为。
2023-2024学年全国初二上数学人教版期末考试试卷(含答案解析)

专业课原理概述部分一、选择题:5道(每题1分,共5分)1. 下列哪个选项不属于《春》这篇文章的主题?A. 春天的美好B. 祖国河山的壮丽C. 人与人之间的情感D. 劳动人民的辛勤2. 下列哪个选项不属于《背影》这篇文章的写作手法?A. 白描B. 拟人C. 对比D. 渲染3. 下列哪个选项不属于《观潮》这篇文章的修辞手法?A. 比喻B. 拟人C. 排比D. 反问4. 下列哪个选项不属于《散步》这篇文章的写作特点?A. 语言简练B. 情感真挚C. 想象丰富D. 结构紧凑5. 下列哪个选项不属于《济南的冬天》这篇文章的写作风格?A. 深情B. 哲理C. 简洁D. 幽默二、判断题5道(每题1分,共5分)1. 《春》这篇文章的作者是朱自清,是现代散文家。
()2. 《背影》这篇文章的写作背景是作者与父亲的一次分别。
()3. 《观潮》这篇文章的作者是鲁迅,是现代文学家。
()4. 《散步》这篇文章的作者是莫言,是当代作家。
()5. 《济南的冬天》这篇文章的作者是老舍,是现代作家。
()三、填空题5道(每题1分,共5分)1. 《春》这篇文章中,作者通过描写春天的美景,表达了对______的热爱和赞美。
2. 《背影》这篇文章中,作者通过描写父亲的背影,表达了对______的思念和感激。
3. 《观潮》这篇文章中,作者通过描写潮水的壮观,表达了对______的敬畏和赞美。
4. 《散步》这篇文章中,作者通过描写散步的过程,表达了对______的热爱和珍惜。
5. 《济南的冬天》这篇文章中,作者通过描写冬天的美景,表达了对______的喜爱和赞美。
四、简答题5道(每题2分,共10分)1. 请简述《春》这篇文章的主题思想。
2. 请简述《背影》这篇文章的写作手法。
3. 请简述《观潮》这篇文章的修辞手法。
4. 请简述《散步》这篇文章的写作特点。
5. 请简述《济南的冬天》这篇文章的写作风格。
五、应用题:5道(每题2分,共10分)1. 请根据《春》这篇文章的内容,写一段描述春天美景的段落。
八年级上学期期末考试数学试卷(附答案解析)

八年级上学期期末考试数学试卷(附答案解析)一、选择题1.下列各式中,无论x取何值,分式都有意义的是()A. xx2+2x+4B. 2x22x+1C. x+1x2D. x2x2.已知△ABC(如图1),按图2图3所示的尺规作图痕迹,(不需借助三角形全等)就能推出四边形ABCD是平行四边形的依据是()A. 两组对边分别平行的四边形是平行四边形B. 对角线互相平分的四边形是平行四边形C. 一组对边平行且相等的四边形是平行四边形D. 两组对边分别相等的四边形是平行四边形3.某中学篮球队12名队员的年龄情况如下:年龄(单位:岁)1415161718人数15321则这个队队员年龄的众数和中位数分别是()A. 15,16B. 15,15C. 15,15.5D. 16,154.若关于x的方程x−1x−2=mx−2+2产生增根,则m的值是()A. 2B. 0C. 1D. −15.如图,在正方形ABCD内,以BC为边作等边三角形BCM,连接AM并延长交CD于N,则下列结论不正确的是()A. ∠DAN =15°B. ∠CMN =45°C. AM =MND. MN =NC6. 如图,在△ABC 中,点M 为BC 的中点,AD 为∠BAN 的平分线,且AD ⊥BD ,若AB =6,AC =9,则MD 的长为( )A. 3B. 92C. 5D. 152 7. 如图,△ABC 中,AD 垂直BC 于点D ,且AD =BC ,BC 上方有一动点P 满足S △PBC =12S △ABC ,则点P 到B 、C 两点距离之和最小时,∠PBC 的度数为( )A. 30°B. 45°C. 60°D. 90°8. 如图,AD ⊥BC ,BD =DC ,点C 在AE 的垂直平分线上,则AB ,AC ,CE 的长度关系为( )A. AB >AC =CEB. AB =AC >CEC. AB >AC >CED. AB =AC =CE 9. 若x 2=y 7=z 5,则x+y−z x 的值是( ) A. 1 B. 2C. 3D. 4 10. 如图,在△ABC 中,∠A =40°,D 点是∠ABC 和∠ACB 角平分线的交点,则∠BDC =( )A. 110°B. 100°C. 90°D. 80°11. 如果把分式2xy x+y 中的x 和y 都扩大3倍,那么分式的值( )A. 扩大3倍B. 缩小3倍C. 缩小6倍D. 不变 12. 已知x 为整数,且分式2x−2x 2−1的值为整数,满足条件的整数x 的个数有( )A. 1个B. 2个C. 3个D. 4个13. 如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,BC =16,F 是线段DE 上一点,连接AF 、CF ,DE =4DF ,若∠AFC =90°,则AC 的长度是( )A. 6B. 8C. 10D. 12二、填空题14.数学老师计算同学们一学期的平均成绩时,将平时、期中和期末的成绩按3:3:4计算,若小红平时、期中和期末的成绩分别是90分、100分、90分,则小红一学期的数学平均成绩是______分.15.如图(1)是长方形纸带,∠DEF=20°,将纸带沿EF折叠图(2)形状,则∠FGD等于______度.16.若a:b=1:3,b:c=2:5,则a:c=______.17.已知点A(a,1)与点B(5,b)关于y轴对称,则ba +ab=______.18.如图,在梯形ABCD中,AD//BC,若AB=AD=DC=3,∠A=120°,则梯形ABCD的周长为______.19.如图,依据尺规作图的痕迹,计算∠α=______°.三、解答题(20.(1)计算:1−x−2yx+y ÷x2−4xy+4y2x2−y2(2)先化简,再求值:(9x+3+x−3)÷(xx2−9),其中x=−2.21.过矩形ABCD的对角线AC的中点O作EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE,CF.(1)求证:四边形AECF是菱形;(2)若AB=6,AC=10,EC=254,求EF的长.参考答案和解析1.【答案】A【解析】解:A、xx2+2x+4=x(x+1)2+3,(x+1)2≥0,则(x+1)2+3≥3,无论x取何值,分式都有意义,故此选项正确;B、当x=−12时,分式分母=0,分式无意义,故此选项错误;C、x=0时,分式分母=0,分式无意义,故此选项错误;D、x=0时,分式分母=0,分式无意义,故此选项错误;故选:A.2.【答案】B【解析】解:由图可知先作AC的垂直平分线,再连接AC的中点O与B点,并延长使BO=OD,可得:AO=OC,BO=OD,进而得出四边形ABCD是平行四边形,故选:B.3.【答案】C【解析】解:∵这组数据中15出现5次,次数最多,∴众数为15岁,中位数是第6、7个数据的平均数,=15.5岁,∴中位数为15+162故选:C.4.【答案】C【解析】解:分式方程去分母得:x−1=m+2x−4,根据题意得:x−2=0,即x=2,代入整式方程得:2−1=m+4−4,解得:m=1.故选C5.【答案】D【解析】解:作MG⊥BC于G.∵四边形ABCD是正方形,∴BA=BC,∠ABC=∠DAB=°∠DCB=90°∵△MBC是等边三角形,∴MB=MC=BC,∠MBC=∠BMC=60°,∵MG⊥BC,∴BG=GC,∵AB//MG//CD,∴AM=MN,∴∠ABM=30°,∵BA=BM,∴∠MAB=∠BMA=75°,∴∠DAN=90°−75°=15°,∠CMN=180°−75°−60°=45°,故A,B,C正确,故选:D.6.【答案】D【解答】解:延长BD交CA的延长线于E,∵AD为∠BAE的平分线,BD⊥AD,∴BD=DE,AB=AE=6,∴CE=AC+AE=9+6=15,又∵M为△ABC的边BC的中点,∴DM是△BCE的中位线,∴MD=12CE=12×15=7.5.故选:D.7.【答案】B【解析】解:∵S△PBC=12S△ABC,∴P在与BC平行,且到BC的距离为12AD的直线l上,∴l//BC,作点B关于直线l的对称点B′,连接B′C交l于P,如图所示:则BB′⊥l,PB=PB′,此时点P到B、C两点距离之和最小,作PM⊥BC于M,则BB′=2PM=AD,∵AD⊥BC,AD=BC,∴BB′=BC,BB′⊥BC,∴△BB′C是等腰直角三角形,∴∠B′=45°,∵PB=PB′,∴∠PBB′=∠B′=45°,∴∠PBC=90°−45°=45°;故选:B.8.【答案】D【解答】解:∵AD⊥BC,BD=DC,∴AD垂直平分BC,∴AB=AC,又∵点C在AE的垂直平分线上,∴AC=EC,∴AB=AC=CE.故选D.9.【答案】B【解答】解:设x2=y7=z5=k,则x=2k,y=7k,z=5k,把x=2k,y=7k,z=5k代入x+y−zx =2k+7k−5k2k=2,故选B.10.【答案】A【解析】解:∵D点是∠ABC和∠ACB角平分线的交点,∴∠CBD=∠ABD=12∠ABC,∠BCD=∠ACD=12∠ACB,∴∠ABC+∠ACB=180°−40°=140°,∴∠DBC+∠DCB=70°,∴∠BDC=180°−70°=110°,故选:A.11.【答案】A【解析】解:把原分式中的x换成3x,把y换成3y,那么2⋅3x⋅3y 3x+3y =6xyx+y=3×2xyx+y.故选:A.12.【答案】C【解析】解:∵原式=2(x−1)(x+1)(x−1)=2x+1,∴x+1为±1,±2时,2x+1的值为整数,∵x2−1≠0,∴x≠±1,∴x为−2,0,−3,个数有3个.故选:C.13.【答案】D【解析】解:∵D、E分别是AB、AC的中点,BC=8,∴DE=12∵DE=4DF,DE=2,∴DF=14∴EF=DE−DF=6,∵∠AFC=90°,点E是AC的中点,∴AC=2EF=12,故选:D.14.【答案】93【解析】解:根据题意得:90×3+100×3+90×4=93(分),3+3+4答:小红一学期的数学平均成绩是93分;故答案为:93.15.【答案】40【解析】解:根据折叠可知:∠AEG=180°−20°×2=140°,∵AE//BF,∴∠EGB=180°−∠AEG=40°,∴∠FGD=40°.故答案为:40.16.【答案】2:15【解析】解:∵a:b=1:3=2:6,b:c=2:5=6:15,∴a:c=2:15,故答案为:2:1517.【答案】−265【解析】解:∵点A(a,1)与点A′(5,b)关于y轴对称,∴a=−5,b=1,∴ba +ab=−15+(−5)=−265,故答案为:−265.18.【答案】15【解析】解:过点A作AE//CD,交BC于点E,∵AD//BC,∴四边形AECD是平行四边形,∠B=180°−∠BAD=180°−120°=60°,∴AE=CD,CE=AD=3,∵AB=DC,∴△ABE是等边三角形,∴BE=AB=3,∴BC=BE+CE=6,∴梯形ABCD的周长为:AB+BC+CD+AD=15.故答案为:15.首先过点A作AE//CD,交BC于点E,由AB=AD=DC=2,∠A=120°,易证得四边形AECD 是平行四边形,△ABE是等边三角形,继而求得答案.19.【答案】56【分析】本题考查的是作图−基本作图,熟知角平分线及线段垂直平分线的作法是解答此题的关键.先根据矩形的性质得出AD//BC,故可得出∠DAC的度数,由角平分线的定义求出∠EAF的度数,再由EF是线段AC的垂直平分线得出∠AEF的度数,根据三角形内角和定理得出∠AFE的度数,进而可得出结论.【解答】解:∵四边形ABCD是矩形,∴AD//BC,∴∠DAC=∠ACB=68°.∵由作法可知,AF是∠DAC的平分线,∴∠EAF=12∠DAC=34°.∵由作法可知,EF是线段AC的垂直平分线,∴∠AEF=90°,∴∠AFE=90°−34°=56°,∴∠α=56°.故答案为:56.20.【答案】解:(1)原式=1−x−2yx+y ⋅(x+y)(x−y)(x−2y)2=1−x−yx−2y=x−2yx−2y−x−yx−2y=−y2x−y;(2)原式=(9x+3+x2−9x+3)÷x(x+3)(x−3)=x2x+3⋅(x+3)(x−3)x=x(x−3),当x=−2时,原式=(−2)×(−2−3)=10.【解析】(1)根据分式的混合运算顺序和运算法则计算可得;(2)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.21.【答案】解:(1)∵四边形ABCD是矩形,∴AD//BC,∴∠ACB=∠DAC,∵O是AC的中点,∴AO =CO ,在△AOF 和△COE 中,{∠ACB =∠DACAO =CO ∠AOF =∠COE,∴△AOF ≌△COE(ASA),∴OE =OF ,且AO =CO ,∴四边形AECF 是平行四边形,又∵EF ⊥AC ,∴四边形AECF 是菱形;(2)∵菱形AECF 的面积=EC ×AB =12AC ×EF ,又∵AB =6,AC =10,EC =254, ∴254×6=12×10×EF ,解得EF =152.【解析】(1)由矩形的性质可得∠ACB =∠DAC ,然后利用“ASA ”证明△AOF 和△COE 全等,根据全等三角形对应边相等可得OE =OF ,即可证四边形AECF 是菱形;(2)由菱形的性质可得:菱形AECF 的面积=EC ×AB =12AC ×EF ,进而得到EF 的长.。
湖北省黄石市阳新县2022-2023学年八年级上学期期末考试数学试题(含答案解析)

湖北省黄石市阳新县2022-2023学年八年级上学期期末考试数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列生活实物中,没有用到三角形的稳定性的是()A .B .C .D .2.下列等式中,从左到右的变形是因式分解的是()A .()21x x x x +=+B .()233x xy x x y +-=-+C .()226435x x x ++=+-D .()22211x x x ++=+3.如图,在ABC 中AD BC ⊥于点D E ,为AC 上一点连结BE 交AD 于点F ,若BF AC =,DF DC =,则1∠与2∠的和为()A .35︒B .40︒C .45︒D .50︒4.下列运算正确的是()A .224235a a a +=B .3332b b b ⋅=C .()5210a a =D .()236a b a b =5.如图,Rt ABC 中,90C ∠=︒,30B ∠=︒,要求用圆规和直尺作图,把它分成两个三角形,其中一个三角形是等腰三角形.其作法错误的是()A.B.C.D .6.下列说法正确的是()A .分式242x x --的值为零,则x 的值为±2B .根据分式的基本性质,等式22m mx n nx=C .把分式50.6320.75a b a b --的分子与分母的各项系数都化为整数的结果为18502112a b a b --D .分式()()3485x y x y -+是最简分式7.正六边形ABCDEF 与正方形ABMN 摆放如图所示,连接NF ,则ANF ∠的度数为()A .70︒B .80︒C .75︒D .85︒8.如图,点C 是线段BG 上的一点,以BC ,CG 为边向两边作正方形,面积分别是1S 和2S ,两正方形的面积和1220S S +=,已知BG =6,则图中阴影部分面积为()A .4B .6C .7D .89.某开发区在一项工程招标时,接到甲、乙两个工程队的投标书,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:①甲队单独完成这项工程,刚好如期完成;②乙队单独完成此项工程要比规定工期多用5天;③,剩下的工程由乙队单独做,也正好如期完工.小亮设规定的工期为x 天,根据题意列出了方程:415x x x +=+,则方案③中被墨水污染的部分应该是()A .甲先做了4天B .甲乙合作了4天C .甲先做了工程的14D .甲乙合作了工程的1410.如图,M ,A ,N 是直线l 上的三点,3AM =,5AN =,P 是直线l 外一点,且60PAN ∠=︒,1AP =,若动点Q 从点M 出发,向点N 移动,移动到点N 停止,在APQ △形状的变化过程中,依次出现的特殊三角形是()A .等腰三角形—等边三角形—直角三角形—等腰三角形B .直角三角形—等腰三角形—直角三角形—等边三角形C .等腰三角形—直角三角形—等边三角形—直角三角形D .等腰三角形—直角三角形—等腰三角形—直角三角形二、填空题11.芯片是手机、电脑等高科技产品最核心的部件,更小的芯片意味着更高的性能.目前我国芯片的量产工艺已达到14纳米,已知14纳米等于0.000000014米,请将0.000000014用科学记数法表示可记为______.12.已知()115P a -,和()221P b -,关于x 轴对称,则()2022a b +的值为______.13.已知x 2-2kxy +64y 2是一个完全平方式,则k 的值是_______.14.分式方程4233mx x x-=--无解,则m =______.15.如图,已知30AOB ∠=︒,OC 平分AOB ∠,在OA 上有一点M ,OM =,现要在,OC OA 上分别找点Q ,N ,使QM QN +最小,则其最小值为______cm .16.如图,在Rt ABC △中,90ACB ∠=︒,AC BC =,射线AF 是BAC ∠的平分线,交BC 于点D ,过点B 作AB 的垂线与射线AF 交于点E ,连接CE ,M 是DE 的中点,连接BM 并延长与AC 的延长线交于点G ,则下列结论:①BCG ACD ≅△△;②BG 垂直平分DE ;③BE CG AC +=,④2G GBE ∠=∠;把所有正确结论序号填在横线上______.三、解答题17.(1)计算:()224333a a a a ⎡⎤⋅-÷⎢⎥⎣⎦;(2)分解因式:22363x xy y -+.18.如图,点A ,E ,F 在直线l 上,AE=BF ,AC//BD ,且AC=BD ,求证:CF=DE19.在如图所示的正方形网格中,每个小正方形的边长都是1,已知△ABC 的三个顶点的坐标分别为(3,6)A -,(1,2)B -,(5,4)C -.(1)作出ABC 关于y 轴对称的111A B C △.并写出点1A 的坐标___.(2)在第(1)题的变换下,若点(,)M m n 是线段AC 上的任意一点,那么点M 的对应点1M 的坐标为____(3)在y 轴上找一点P ,使PA PB =,则P 点坐标为____20.先化简:2221211a a a a a a -+⎛⎫÷- ⎪-+⎝⎭,再从-1,0,1,2中选择一个适合的数代入求值.21.(1)已知a +b =5,ab =14-,求下列各式的值:①a 2+b 2;②(a ﹣b )2.(2)若x +32y ﹣2z +1=0,求9x •27y ÷81z 的值.22.2022年我国已成为全球最大的电动汽车市场,电动汽车在保障能源安全,改善空气质量等方面较传统汽车都有明显优势.经过对某款电动汽车和某款燃油车的对比调查发现,电动汽车平均每公里的充电费比燃油车平均每公里的加油费少0.6元.若充电费和加油费均为300元/时,电动汽车可行驶的总路程是燃油车的4倍,求这款电动汽车平均每公里的充电费.23.【阅读学习】阅读下面的解题过程:已知:2113x x =+,求241x x +的值.解:由2113x x =+知0x ≠,所以213x x+=,即13x x +=,所以2422221112327x x x x x x +⎛⎫=+=+-=-= ⎪⎝⎭.故241x x +的值为17.(1)【类比探究】上题的解法叫做“倒数法”,请你利用“倒数法”解决下面的题目:已知2131x x x =--+,求24271x x x -+的值.(2)【拓展延伸】已知1113a b +=,1114b c +=,1116a c +=,求abc ab bc ac ++的值.24.如图1,C 是线段BE 上一点,以BC 、CE 为边分别在BE 的同侧作等边△ABC 和等边△DCE ,连结AE 、BD .(1)求证:BD=AE ;(2)如图2,若M 、N 分别是线段AE 、BD 上的点,且AM=BN ,请判断△CMN 的形状,并说明理由.25.已知:如图(1),在平面直角坐标系中,点A 、点B 分别在x 轴、y 轴的正半轴上,点C 在第一象限,AC BC =,点A 坐标为(),0n ,点C 坐标为(),4m ,且2228170m n n m +--+=.(1)求出m ,n 的值;(2)求点B 的坐标,并证明ABC 为等腰直角三角形;(3)在坐标平面内有点G (点G 不与点A 重合),使得BCG 是以BC 为直角边的等腰直角三角形,请求出满足条件的点G 的坐标.参考答案:1.B【分析】根据三角形的稳定性解答即可.【详解】解:选项B 中活动衣架上没有三角形,其余A 、C 、D 选项中都含有三角形,由三角形的稳定性可知,选项B 中没有利用三角形的稳定性,故B 正确.故选:B .【点睛】本题主要考查了三角形的稳定性,正确的理解题意是解题的关键.2.D【分析】根据因式分解的定义逐个判断即可.【详解】解:A 、不是因式分解,故本选项不符合题意;B 、不是因式分解,故本选项不符合题意;C 、不是因式分解,故本选项不符合题意;D 、是因式分解,故本选项符合题意;故选:D .【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键.3.C【分析】由AD BC ⊥于点D ,可以得到BDF V 和ADC △是直角三角形,根据直角三角形的判定“HL ”,可以证明Rt BDF Rt ADC ≌,得到AD BD =,进而得到1245∠+∠=︒.【详解】解:∵AD BC ⊥于点D∴90BDF ADC ∠=∠=︒在Rt BDF 和Rt ADC 中BF AC DF DC=⎧⎨=⎩∴Rt BDF Rt ADC HL ≌()∴2DBF BD AD∠∠==,∴45DBA DAB ∠=∠=︒∴12145DBF DBA ∠+∠=∠+∠=∠=︒∴1245∠∠+=︒故选:C .【点睛】本题考查了全等三角形的判定性质、等角对等边、直角三角形的两个锐角互余等知识点,证明Rt BDF Rt ADC ≌是解题的关键.4.C【分析】直接利用合并同类项法则、同底数幂的乘法法则、积的乘方以及幂的乘方运算法则依次判断即可.【详解】解:A 、22242355a a a a +=≠,该选项不符合题意;B 、33632b b b b ⋅=≠,该选项不符合题意;C 、()5210a a =,该选项符合题意;D 、()23626a b a b a b =≠,该选项不符合题意;故选:C .【点睛】本题考查了整式的运算,解决本题的关键是牢记相关运算法则.5.B【分析】对各项的尺规作图进行分析,再根据等腰三角形的判定逐个分析即可.【详解】A 选项,由作法可知,AD =AC ,即ADC △是等腰三角形,不满足题意;B 选项,在ADC △中,∵90C ∠=︒,30B ∠=︒∴12AC AB =又由作法可知,12CD BD BC ==在Rt ABC 中,AB BC>∴AC CD >,即ADC △不是等腰三角形∴AD CD >,即AD BD >,即ADB 不是等腰三角形,满足题意;C 选项,由作法可知,AD =BD ,即ADB 是等腰三角形,不满足题意;D 选项,由作法可知,()11903022BAD DAC BAC B ∠=∠=∠=⋅︒-∠=︒,∴30BAD B ∠=∠=︒,即ADB 是等腰三角形,不满足题意;故选:B .【点睛】本题考查尺规作图和等腰三角形的判定.熟知尺规作图是本题解题的关键.6.C【分析】直接利用分式的值为零的条件以及分式的基本性质、最简分式的定义分别分析得出答案.【详解】解:A 、分式242x x --的值为零,则x 的值为−2,故此选项错误;B 、根据分式的基本性质,等式22m mx n nx=(x ≠0),故此选项错误;C 、分式50.6320.75a b a b --的分子与分母的各项系数都化为整数的结果为18502112a b a b --,故此选项正确;D 、分式()()34228555x y x y x y x y--=++,原式不是最简分式,故此选项错误;故选:C .【点睛】此题主要考查了分式的值为零的条件以及分式的基本性质、最简分式的定义,正确掌握相关定义是解题关键.7.C【分析】求出正六边形和正方形的每个内角度数,求得FAN ∠,在等腰ANF 中求底角度数.【详解】解: 正六边形ABCDEF 的每一个内角是41806120⨯︒÷=︒,正方形ABMN 的每个内角是90︒,1209030FAN ∴∠=︒-︒=︒,AN AF = ,AFN ANF ∴∠=∠,1(18030)752ANF ∴∠=︒-︒=︒;故选:C .【点睛】本题考查正多边形的内角和等腰三角形的性质,多边形的内角和公式是解题的关键.8.A【分析】设BC =a ,CG =b ,建立关于a 、b 的关系,最后求面积.【详解】解:设BC =a ,CG =b ,则21S a =,22S b =,BG =a +b =8,∴221220S S a b +=+=,∵2222()2636a b a ab b +=++==,∴2362016ab =-=,∴ab =8,∴阴影部分的面积111=84222S BC CE ab ⋅==⨯=阴影.故选:A .【点睛】本题主要考查了完全平方公式的几何背景,通过面积关系构造使用完全平方公式的条件是求解本题的关键.9.B 【详解】试题解析:由题意:415x x x +=+,可知甲做了4天,乙做了x 天.由此可以推出,开始他们合做了4天,故条件③是甲乙合做了4天.故选B .点睛:用到的等量关系为:工效×工作时间=工作总量.10.C【分析】点Q 从点M 出发,沿直线l 向点N 移动,移动到点N 停止的整个过程,逐次考虑确定三角形的形状即可判断.【详解】当点Q 移动到2MQ =,此时点Q 在点A 的左侧,且1AQ AP ==,APQ △是等腰三角形;当点Q 移动到在点A 的右侧,且1122AQ AP ==,APQ △是直角三角形;当点Q 移动到在点A 的右侧,且1AQ AP ==,APQ △是等边三角形;当点Q 移动到在点A 的右侧,且22AQ AP ==,APQ △是直角三角形;∴在形状的变化过程中,依次出现的特殊三角形是:等腰三角形—直角三角形—等边三角形—直角三角形.故选:C .【点睛】本题考查了等边三角形的判定与性质、等腰三角形的判定与性质、直角三角形的判定与性质,熟练掌握这些性质和判定是解题的关键.11.81.410-⨯【分析】由科学记数法表示绝对值小于1的数的方法可直接得到答案.【详解】解:80.0000000141.4=10-⨯故答案为:81.410-⨯.【点睛】本题考查用科学记数法表示绝对值小于1的数,熟练掌握相关知识是解题的关键.12.1【分析】根据关于x 轴对称的两个点,横坐标相等,纵坐标互为相反数,求得,a b 的值,进而代入代数式即可求解.【详解】解:∵()115P a -,和()221P b -,关于x 轴对称,∴12,510a b -=+-=,解得3,4a b ==-,∴()2022a b +()2022341=-=,故答案为:1.【点睛】本题考查了关于x 轴对称的两个点的坐标特征,掌握关于x 轴对称的两个点,横坐标相等,纵坐标互为相反数是解题的关键.13.8±【分析】根据完全平方公式222()2a b a ab b ±=±+即可得.【详解】解:由题意得:222264(8)x kxy y x y -+=±,即22222641664x kxy y x xy y -+=±+,所以216k =±,解得8k =±,故答案为:8±.【点睛】本题考查了完全平方公式,熟记公式是解题关键.14.2或43-【分析】先去分母,得到()210m x -=-,再分两种情况讨论即可.【详解】解:4233mx x x-=--,去分母得:264mx x -+=-,∴()210m x -=-,当20m -=时,方程无解,∴2m =,当2m ≠时,方程的增根为:3x =,∴()3210m -=-,解得:43m =-,综上:2m =或43m =-.故答案为:2或43-.【点睛】本题考查的是分式方程的无解问题,理解分式方程无解的含义是解本题的关键.15.【分析】作M 关于OC 的对称点P ,过点P 作PN OA ⊥于N ,交OC 于Q ,则此时QM QN +的值最小,可求OP OM ==,PQ MQ =,90PNO ∠=︒,再根据含30︒角的直角三角形的性质求解即可.【详解】作M 关于OC 的对称点P ,过点P 作PN OA ⊥于N ,交OC 于Q ,则此时QM QN +的值最小,∵30AOB ∠=︒,OC 平分AOB ∠,在OA 上有一点M ,∴,OA OB 关于OC 对称,∴点P 在OB 上,∴OP OM ==,PQ MQ =,90PNO ∠=︒,∵1122PN OP ==⨯=,∴QM QN PQ QN PN +=+==,故答案为:.【点睛】本题考查了含30︒角的直角三角形的性质,轴对称—最短路线问题,垂线段最短的应用,能够确定,Q N 的位置是解题的关键.16.①②③【分析】先由题意得到9045ABE ACB BCG BAC ∠=∠=∠=︒∠=︒,,再由角平分线的定义得到225BAE DAC ∠=∠=︒.,从而推出BEA ADC BDE BED ∠=∠∠=∠,则,再由三线合一定理即可证明BM DE GBE DBG ⊥∠=∠,,即可判断②;得到90MAG MGA ∠+∠=︒,再由90CBG CGB ∠+∠=︒,可得225DAC GBC ∠=∠=︒.,则225245GBE GBE ∠=︒∠=︒.,,从而可证明ACD BCG ≌,即可判断①;则CD CG =,再由AC BC BD CD ==+,可得到AC BE CG =+,即可判断③;由180675G BCG CBG ∠=︒-∠-∠=︒.,即可判断④.【详解】解:∵90ACB BE AB AC BC ∠=︒⊥=,,,∴9045ABE ACB BCG BAC ∠=∠=∠=︒∠=︒,,∴9090BAE BEA DAC ADC ∠+∠=︒∠+∠=︒,,∵AF 平分BAC ∠,∴22.5BAE DAC ∠=∠=︒,∴BEA ADC ∠=∠,又∵ADC BDE ∠=∠,∴BDE BED ∠=∠,又∵M 是DE 的中点,∴BM DE GBE DBG ⊥∠=∠,,∴BG 垂直平分DE ,90AMG ∠=︒,故②正确,∴90MAG MGA ∠+∠=︒,∵90CBG CGB ∠+∠=︒,∴22.5DAC GBC ∠=∠=︒,∴22.5GBE ∠=︒,∴245GBE ∠=︒,又∵AC BC =,∴()ASA ACD BCG ≌,故①正确;∴CD CG =,∵AC BC BD CD ==+,∴AC BE CG =+,故③正确;∵18067.5G BCG CBG ∠=︒-∠-∠=︒,∴2G GBE ∠≠∠,故④错误;故答案为:①②③.【点睛】本题主要考查了全等三角形的性质与判定,等腰三角形的性质与判定,三角形内角和定理,熟知等腰三角形的性质与判定条件是解题的关键.17.(1)32a ;(2)()23x y -【分析】(1)根据整式混合运算法则进行计算即可;(2)先提公因式,然后再用完全平方公式,分解因式即可.【详解】解:(1)原式()663633322a a a a a a =-÷=÷=;(2)原式()()222323x xy y x y =-+=-.【点睛】本题主要考查了整式混合运算和分解因式,解题的关键是熟练掌握整式混合运算法则,完全平方公式,准确计算.18.见解析.【分析】利用SAS 证明△ACF ≌△BDE ,根据全等三角形的性质即可得.【详解】∵AE =BF ,∴AF =BE ,∵AC ∥BD ,∴∠CAF =∠DBE ,又AC =BD ,∴△ACF ≌△BDE(SAS),∴CF =DE.【点睛】本题考查了全等三角形的判定与性质,熟练掌握是解题的关键.19.(1)图见解析,1(3,6)A (2),m n -()(3)(0,5)【分析】(1)利用关于y 轴对称的点的坐标特征得到点111A B C 、、的坐标,然后描点即可;(2)利用关于y 轴对称的点的坐标特征求解;(3)作AB 的垂直平分线交y 轴于P 点,从而得到P 点坐标.【详解】(1)解:如图,111A B C △为所作,点1A 的坐标为(3,6);(2)点(,)M m n 关于y 轴的对称点1M 的坐标为,m n -();故答案为:,m n -();(3)P 点坐标为(0,5);故答案为:(0,5).【点睛】本题考查了作图−轴对称变换:作轴对称后的图形的依据是轴对称的性质,掌握其基本作法是解决问题的关键(先确定图形的关键点;利用轴对称性质作出关键点的对称点;按原图形中的方式顺次连接对称点).也考查了线段垂直平分线的性质.20.1a ,12【分析】先根据分式的混合运算法则化简,再取使得分式有意义的a 的值代入计算即可.【详解】解:2221211a a a a a a -+⎛⎫÷- ⎪-+⎝⎭=()()()()21112111a a a a a a a a -+⎡⎤÷-+-⎢+⎣+⎥⎦=()()()()211111a a a a a a +-+⨯--=1a 由原式可知,a 不能取1,0,-1,∴a =2时,原式=12.【点睛】此题考查了分式的化简求值,解题的关键是记住分式的混合运算,先乘方,再乘除,然后加减,有括号的先算括号里面的.21.(1)①512;②26;(2)19.【分析】(1)利用完全平方公式进行变形,再利用整体代入进行计算即可;(2)利用幂的乘方、积的乘方和同底数幂的乘法进行变形,再利用整体代入求值即可.【详解】解:(1)①a2+b2=(a+b)2﹣2ab=25+12=51 2;②(a﹣b)2=(a+b)2﹣4ab=25+1=26;(2)∵x+32y﹣2z+1=0,∴2x+3y﹣4z=﹣2,∴9x•27y÷81z=(32)x•(33)y÷(34)z=32x•33y÷34z=32x+3y﹣4z=3﹣2=1 9.【点睛】本题考查幂的乘方、积的乘方和同底数幂乘法的运算性质,掌握运算性质是正确计算的前提,适当变形和整体代入是关键.22.0.2元【分析】设这款电动汽车平均每公里的充电费用为x元,由题意:若充电费和加油费均为300元时,电动汽车可行驶的总路程是燃油车的4倍,列出分式方程,解方程即可.【详解】解:设这款电动汽车平均每公里的充电费用为x元,则燃油车平均每公里的加油费为0.6x+()元,根据题意,得:30030040.6x x=⨯+,解得:0.2x=,经检验,0.2x=是原方程的解,且符合题意,答:这款电动汽车平均每公里的充电费用为0.2元.【点睛】本题主要考查分式方程的应用,理解题意并找到等量关系是解题的关键.23.(1)1 5-(2)8 3【分析】(1)利用“倒数法”取已知等式的倒数,整理得到12xx+=;将所求分式取倒数,利用完全平方公式配方和整体代入的方法求得式子的值,最后取倒数即可得出结论;(2)将已知三个等式的左右两边分别相加得到111a b c++的值,将所求的分式取倒数计算出结果,利用(1)中的方法即可得出结论.【详解】(1)解:∵2131x x x =--+,∴0x ≠,∴2311x x x-+=-,∴131x x-+=-,即12x x +=,∴42271x x x -+2217x x=+-2127x x ⎛⎫=+-- ⎪⎝⎭2227=--=5-,∴2421715x x x =--+.(2)∵1113a b +=,1114b c +=,1116a c +=,∴0abc ≠,∴111111323464a b c ⎛⎫++=++= ⎪⎝⎭,∴11138a b c ++=,∴11138ab bc ac ab bc ac abc abc abc abc c a b ++=++=++=,∴83abc ab bc ac =++.【点睛】本题考查分式的化简求值,分式的加减法,倒数的意义,分式的乘除法,完全平方公式的应用,运用了恒等变换和整体代入的思想方法.本题是阅读型题目,理解并熟练运用题干中的解题思想与方法是解题的关键.24.(1)证明见解析;(2)等边三角形,理由见解析.【详解】试题分析:(1)由等边三角形的性质,可证明△DCB ≌△ACE ,可得到BD=AE ;(2)结合(1)中△DCB ≌△ACE ,可证明△ACM ≌△BCN ,进一步可得到∠MCN=60°且CM=CN ,可判断△CMN 为等边三角形.试题解析:(1)∵△ABC 、△DCE 均是等边三角形,∴AC=BC ,DC=DE ,∠ACB=∠DCE=60°,∴∠ACB+∠ACD=∠DCE+∠ACD ,即∠BCD=∠ACE ,在△DCB 和△ACE 中,∵AC=BC ,∠BCD =∠ACE ,DC=DE ,∴△DCB ≌△ACE (SAS ),∴BD=AE ;(2)△CMN 为等边三角形,理由如下:由(1)可知:△ACE ≌△DCB ,∴∠CAE=∠CDB ,即∠CAM=∠CBN ,∵AC=BC ,AM=BN ,在△ACM 和△BCN 中,∵AC=BC ,∠CAM=∠CBN ,AM=BN ,∴△ACM ≌△BCN (SAS ),∴CM=CN ,∠ACM=∠BCN ,∵∠ACB=60°即∠BCN+∠ACN=60°,∴∠ACM+∠ACN=60°即∠MCN=60°,∴△CMN 为等边三角形.考点:1.全等三角形的判定与性质;2.等边三角形的判定与性质.25.(1)4m =,1n =(2)点()0,7B ,证明见解析(3)满足条件的点G 的坐标为()3,3-或()3,11或()7,8【分析】(1)利用完全平方公式将2228170m n n m +--+=进行变形,可得()()22410m n -+-=,再根据平方的非负性即可求解;(2)过点C 作CM OB ⊥,CN OA ⊥,通过证明()HL BCM ACN ≅ ,利用全等三角形的性质得出3BM AN ==,MCB ACN ∠=∠,即可求解和证明;(3)分三种情况:若90GBC ∠=︒,BG BC =时,且点G 在BC 下方,若90GBC ∠=︒,BG BC =时,且点G 在BC 上方,若90GCB ∠=︒,CG BC =时,点G 在BC 上方,利用等腰直角三角形的性质和全等三角形的判定和性质求解即可.【详解】(1)解:∵2228170m n n m +--+=.∴()()22410m n -+-=,∴4m =,1n =;(2)如图(1),过点C 作CM OB ⊥,CN OA ⊥,∴90BMC ANC ∠=∠=︒,∵点()1,0A ,点()4,4C ;∴4CM CN OM ===,3AN =,又∵AC BC =,∴()HL BCM ACN ≅ ,∴3BM AN ==,MCB ACN ∠=∠,∴点()0,7B ,又∵90ACM ACN ∠+∠=︒,∴90BCM ACM ∠+∠=︒,∴ACB △为等腰直角三角形;(3)如图,若90GBC ∠=︒,BG BC =时,且点G 在BC 下方,过点G 作GF OB ⊥,过点C 作CE OB ⊥,∵90GBF EBC ∠+∠=︒,90GBF BGF ∠+∠=︒,∴EBC BGF ∠=∠,且90BEC BFG ∠=∠=︒,BG BC =,∴()AAS BGF CBE ≅△△∴4BF CE ==,GF BE =,∴3OF =,∴点()3,3G -,若90GBC ∠=︒,BG BC =时,且点G 在BC 上方,同理可求点()3,11G ,若90GCB ∠=︒,CG BC =时,点G 在BC 上方,同理可求点()7,8G ,综上满足条件的点G 的坐标为()3,3-,()3,11,或()7,8.【点睛】本题考查了全等三角形的判定和性质,非负性的应用,配方法的应用,等腰直角三角形的判定和性质,能够利用分类讨论的思想是解题的关键.。
八年级上册期末考试数学试卷含答案(共5套,深圳市)

广东省深圳市宝安区八年级上学期期末数学试卷一、选择题(12*3=36分)1.下列各数中,无理数的是()A.B.C.D.3.14152.在军事演习中,利用雷达跟踪某一“敌方”目标,需要确定该目标的()A.方向 B.距离 C.大小 D.方向与距离3.一次函数的图象不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.在直角坐标系中,点A(a,3)与点B(﹣4,b)关于y轴对称,则a+b的值是()A.﹣7 B.﹣1 C.1 D.75.已知x=1,y=2是方程ax+y=5的一组解,则a的值是()A.﹣3 B.﹣2 C.3 D.76.如图所示:某商场有一段楼梯,高BC=6m,斜边AC是10米,如果在楼梯上铺上地毯,那么需要地毯的长度是()A.8m B.10m C.14m D.24m7.某特警队为了选拔“神枪手”,甲、乙、丙、丁四人进人射击比赛,每人10次射击成绩的平均数都是9.8环,方差分别为S甲2=0.63,S乙2=0.51,S丙2=0.42,S丁2=0.45,则四人中成绩最稳定的是()A.甲B.乙C.丙D.丁8.如图,AB∥CD,EF与AB、CD分别相交于点E、F,EP⊥EF,与∠EFD的平分线FP相交于点P,且∠BEP=40°,则∠EPF的度数是()A.25°B.65°C.75°D.85°9.下列命题中,假命题的是()A.同旁内角相等,两直线平行B.等腰三角形的两个底角相等C.同角(等角)的补角相等D.三角形的一个外角大于任何一个与它不相邻的内角10.2015年亚洲杯足球冠军联赛恒大队广州主场,小李在网上预订了小组赛和淘汰赛两个阶段的球票共10张,总价为5600元.其中小组赛球票每张500元,淘汰赛每张800元,问小李预定了小组赛和淘汰赛的球票各多少张?设小李预定了小组赛球票x张,淘汰赛球票y张,可列方程组()A.B.C.D.11.如图,长方形ABCD的边AB=1,BC=2,AP=AC,则点P所表示的数是()A.5 B.﹣2.5 C.D.12.一辆汽车在行驶过程中,路程y(千米)与时间x(小时)之间的函数关系如图4所示,已知开始1小时的行驶速度是60千米/时,那么1小时以后的速度是()A.70千米/时B.75千米/时C.105千米/时D.210千米/时二、填空题(3*4=12分)13.9的算术平方根是.14.如图,已知函数y=ax+b和y=kx的图象交于点P,根据图象可得,二元一次方程组的根是.15.去年“双11”购物节的快递量暴增,某快递公司要在街道旁设立一个派送还点,向A、B两居民区投送快递,派送点应该设在什么地方,才能使它到A、B的距离之和最短?快递员根据实际情况,以街道为x 轴,建立了如图所示的平面直角坐标系,测得坐标A(﹣2,2)、B(6,4),则派送点的坐标是.16.如图,△ABC中,AB=6,BC=8,AC=10,把△ABC沿AP折叠,使边AB与AC重合,点B落在AC 边上的B′处,则折痕AP的长等于.三、解答题17.计算(1)(2).18.(1)(2).19.迎接学校“元旦”文艺汇演,2015~2016学年度八年级某班的全体同学捐款购买了表演道具,经过充分的排练准备,最终获得了一等奖.班长对全体同学的捐款情况绘制成下表:捐款金额5元10元15元20元捐款人数10人15人5人由于填表时不小心把墨水滴在了统计表上,致使表中数据不完整,但知道捐款金额为10元的人数为全班人数的30%,结合上表回答下列问题:(1)该班共有名同学;(2)该班同学捐款金额的众数是元,中位数是元.(3)如果把该班同学的捐款情况绘制成扇形统计图,则捐款金额为20元的人数所对的扇形圆心角为度.20.如图,四边形ABCD中,点F是BC中点,连接AF并延长,交于DC的延长线于点E,且∠1=∠2.(1)求证:△ABF≌△ECF;(2)若AD∥BC,∠B=125°,求∠D的度数.21.列方程解应用题:小张第一次在商场购买A、B两种商品各一件,花费60元;第二次购买时,发现两种商品的价格有了调整:A商品涨价20%,B商品降价10%,购买A、B两种商品各一件,同样花费60元.求A、B两种商品原来的价格.22.某专营商场销售一种品牌电脑,每台电脑的进货价是0.4万元.图中的直线l1表示该品牌电脑一天的销售收入y1(万元)与销售量x(台)的关系,已知商场每天的房租、水电、工资等固定支出为3万元.(1)直线l1对应的函数表达式是,每台电脑的销售价是万元;(2)写出商场一天的总成本y2(万元)与销售量x(台)之间的函数表达式:;(3)在图的直角坐标系中画出第(2)小题的图象(标上l2);(4)通过计算说明:每天销售量达到多少台时,商场可以盈利.23.如图,长方形AOBC在直角坐标系中,点A在y轴上,点B在x轴上,已知点C的坐标是(8,4).(1)求对角线AB所在直线的函数关系式;(2)对角线AB的垂直平分线MN交x轴于点M,连接AM,求线段AM的长;(3)若点P是直线AB上的一个动点,当△PAM的面积与长方形OABC的面积相等时,求点P的坐标.广东省深圳市宝安区八年级上学期期末数学试卷参考答案一、选择题(12*3=36分)1.下列各数中,无理数的是()A.B.C.D.3.1415【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、是无理数,选项正确;B、=5是整数,是有理数,选项错误;C、是分数,是有理数,选项错误;D、3.1415是有限小数,是有理数,选项错误.故选A.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.在军事演习中,利用雷达跟踪某一“敌方”目标,需要确定该目标的()A.方向 B.距离 C.大小 D.方向与距离【考点】坐标确定位置.【分析】直接利用点的坐标确定位置需要知道其方向与距离进而得出答案.【解答】解:利用雷达跟踪某一“敌方”目标,需要确定该目标的方向与距离.故选:D.【点评】此题主要考查了点的坐标确定位置,正确利用点的位置确定方法是解题关键.3.一次函数的图象不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】一次函数图象与系数的关系.【分析】由k=>0,可知图象经过第一、三象限,又b=﹣1<0,直线与y轴负半轴相交,图象经过第四象限,由此得解即可.【解答】解:∵y=x﹣1,∴k=>0,图象经过第一、三象限,b=﹣1<0,直线与y轴负半轴相交,图象经过第四象限,即一次函数y=x﹣1的图象经过第一、三、四象限,不经过第二象限.故选B.【点评】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b 所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.4.在直角坐标系中,点A(a,3)与点B(﹣4,b)关于y轴对称,则a+b的值是()A.﹣7 B.﹣1 C.1 D.7【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数解答即可.【解答】解:由题意得,a=4,b=3,则a+b=7,故选:D.【点评】本题考查的是关于x、y轴对称点的坐标特点,关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.5.已知x=1,y=2是方程ax+y=5的一组解,则a的值是()A.﹣3 B.﹣2 C.3 D.7【考点】二元一次方程的解.【分析】根据解方程解的定义,将x=1,y=2代入方程ax+y=5,即可求得a的值.【解答】解:根据题意,将x=1,y=2代入方程ax+y=5,得:a+2=5,解得:a=3,故选:C.【点评】本题考查了二元一次方程的解,要求理解什么是二元一次方程的解,并会把x,y的值代入原方程验证二元一次方程的解.6.如图所示:某商场有一段楼梯,高BC=6m,斜边AC是10米,如果在楼梯上铺上地毯,那么需要地毯的长度是()A.8m B.10m C.14m D.24m【考点】勾股定理的应用.【分析】先根据直角三角形的性质求出AB的长,再根据楼梯高为BC的高=6m,楼梯的宽的和即为AB的长,再把AB、BC的长相加即可.【解答】解:∵△ABC是直角三角形,BC=6m,AC=10m∴AB===8(m),∴如果在楼梯上铺地毯,那么至少需要地毯为AB+BC=8+6=14(米).故选:C.【点评】本题考查的是勾股定理的应用,解答此题的关键是找出楼梯的高和宽与直角三角形两直角边的等量关系7.某特警队为了选拔“神枪手”,甲、乙、丙、丁四人进人射击比赛,每人10次射击成绩的平均数都是9.8环,方差分别为S甲2=0.63,S乙2=0.51,S丙2=0.42,S丁2=0.45,则四人中成绩最稳定的是()A.甲B.乙C.丙D.丁【考点】方差.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定【解答】解:∵S甲2=0.63,S乙2=0.51,S丙2=0.42,S丁2=0.45,∴S甲2>S乙2>S2丁>S2丙,∴成绩最稳定的是丙.故选:C.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.8.如图,AB∥CD,EF与AB、CD分别相交于点E、F,EP⊥EF,与∠EFD的平分线FP相交于点P,且∠BEP=40°,则∠EPF的度数是()A.25°B.65°C.75°D.85°【考点】平行线的性质.【分析】由题可直接求得∠BEF,然后根据两直线平行,同旁内角互补可知∠DFE,根据角平分线的性质可求得∠EFP,最后根据三角形内角和求出∠EPF.【解答】解:∵EP⊥EF,∴∠PEF=90°,∵∠BEP=40°,∴∠BEF=∠PEF+∠BEP=130°,∵AB∥CD,∴∠EFD=180°﹣∠BEF=50°,∵FP平分∠EFD,∴∠EFP=0.5×∠EFD=25°,∴∠P=180°﹣∠PEF﹣∠EFP=65°;故选:B.【点评】本题考查了平行线的性质、三角形内角和定理、角平分线的定义;熟记:两直线平行,同旁内角互补;求出∠EFD的度数是解决问题的突破口.9.下列命题中,假命题的是()A.同旁内角相等,两直线平行B.等腰三角形的两个底角相等C.同角(等角)的补角相等D.三角形的一个外角大于任何一个与它不相邻的内角【考点】命题与定理.【分析】利用平行线的判定、等腰三角形的性质、补角的定义及三角形的外角的性质分别判断后即可确定正确的选项.【解答】解:A、同旁内角互补,两直线平行,故错误,是假命题;B、等腰三角形的两个底角相等,正确,是真命题;C、同角(等角)的补角相等,正确,为真命题;D、三角形的一个外角大于任何一个与它不相邻的内角,正确,为真命题.故选A.【点评】本题考查了命题与定理的知识,解题的关键是能够了解平行线的判定、等腰三角形的性质、补角的定义及三角形的外角的性质,难度不大.10.2015年亚洲杯足球冠军联赛恒大队广州主场,小李在网上预订了小组赛和淘汰赛两个阶段的球票共10张,总价为5600元.其中小组赛球票每张500元,淘汰赛每张800元,问小李预定了小组赛和淘汰赛的球票各多少张?设小李预定了小组赛球票x张,淘汰赛球票y张,可列方程组()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】设小李预定了小组赛和淘汰赛的球票各x张,y张,根据10张球票共5600元,列方程组求解.【解答】解:设小李预定了小组赛和淘汰赛的球票各x张,y张,由题意得,,故选C【点评】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.11.如图,长方形ABCD的边AB=1,BC=2,AP=AC,则点P所表示的数是()A.5 B.﹣2.5 C.D.【考点】实数与数轴.【分析】根据勾股定理求出长方形ABCD的对角线AC的长,即为AP的长,进而求出点P所表示的数.【解答】解:∵长方形ABCD的边AB=1,BC=2,∴AC==,∴AP=AC=,∴点P所表示的数为﹣.故选D.【点评】本题考查了实数与数轴,利用勾股定理求出长方形ABCD的对角线AC的长是解题的关键.12.一辆汽车在行驶过程中,路程y(千米)与时间x(小时)之间的函数关系如图4所示,已知开始1小时的行驶速度是60千米/时,那么1小时以后的速度是()A.70千米/时B.75千米/时C.105千米/时D.210千米/时【考点】一次函数的应用.【分析】直接利用函数图象得出汽车行驶3小时一共行驶210km,再利用开始1小时的行驶速度是60千米/时,进而得出1小时后的平均速度.【解答】解:由题意可得:汽车行驶3小时一共行驶210km,则一小时后的平均速度为:(210﹣60)÷2=75(km/h),故选:B.【点评】此题主要考查了一次函数的应用,根据图象得出正确信息是解题关键.二、填空题(3*4=12分)13.9的算术平方根是3.【考点】算术平方根.【分析】9的平方根为±3,算术平方根为非负,从而得出结论.【解答】解:∵(±3)2=9,∴9的算术平方根是|±3|=3.故答案为:3.【点评】本题考查了数的算式平方根,解题的关键是牢记算术平方根为非负.14.如图,已知函数y=ax+b和y=kx的图象交于点P,根据图象可得,二元一次方程组的根是.【考点】一次函数与二元一次方程(组).【分析】由图可知:两个一次函数的交点坐标为(﹣2,﹣1);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【解答】解:函数y=ax+b和y=kx的图象交于点P(﹣2,﹣1),即x=﹣2,y=﹣1同时满足两个一次函数的解析式.所以关于x,y的方程组的解是.故答案为:.【点评】此题考查一次函数与方程组问题,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.15.去年“双11”购物节的快递量暴增,某快递公司要在街道旁设立一个派送还点,向A、B两居民区投送快递,派送点应该设在什么地方,才能使它到A、B的距离之和最短?快递员根据实际情况,以街道为x轴,建立了如图所示的平面直角坐标系,测得坐标A(﹣2,2)、B(6,4),则派送点的坐标是(,0).【考点】轴对称-最短路线问题;坐标确定位置.【分析】可先找点A关于x轴的对称点C,求得直线BC的解析式,直线BC与x轴的交点就是所求的点.【解答】解:作A关于x轴的对称点C,则C的坐标是(﹣2,﹣2).设BC的解析式是y=kx+b,则,解得:,则BC的解析式是y=x﹣.令y=0,解得:x=.则派送点的坐标是(,0).故答案是(,0).【点评】本题考查了对称的性质以及待定系数法求函数的解析式,正确确定派送点的位置是关键.16.如图,△ABC中,AB=6,BC=8,AC=10,把△ABC沿AP折叠,使边AB与AC重合,点B落在AC 边上的B′处,则折痕AP的长等于3.【考点】翻折变换(折叠问题).【分析】首先证明∠B=90°,设PB=PB′=x,在RT△PB′C中利用勾股定理求出x,再在RT△APB中利用勾股定理求出AP即可.【解答】解:∵AB=6,BC=8,AC=10,∴AB2+BC2=AC2,∴∠B=90°∵△APB′是由APB翻折,∴AB=AB′=6,PB=PB′,∠B=∠AB′P=∠PB′C=90°设PB=PB′=x,在RT△PB′C中,∵B′C=AC﹣AB=4,PC=8﹣x,∴x2+42=(8﹣x)2,∴x=3,∴AP===3,故答案为3.【点评】本题考查勾股定理的逆定理、勾股定理、翻折不变性等知识,证明∠B=90°是解题的关键,属于2016届中考常考题型.三、解答题17.计算(1)(2).【考点】实数的运算;零指数幂.【分析】(1)直接利用二次根式乘法运算法则结合零指数幂的性质化简求出答案;(2)首先化简二次根式,进而合并求出答案.【解答】解:(1)=+2+1=+3;(2)=3﹣2﹣1=﹣1.【点评】此题主要考查了实数运算以及二次根式的化简,正确化简二次根式是解题关键.18.(1)(2).【考点】解二元一次方程组.【专题】计算题;一次方程(组)及应用.【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1),把①代入②得:x+4x﹣6=14,解得:x=5,把x=5代入①得:y=7,则方程组的解为;(2),①×3+②得:11x=﹣11,即x=﹣1,把x=﹣1代入①得:y=2,则方程组的解为.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.19.迎接学校“元旦”文艺汇演,2015~2016学年度八年级某班的全体同学捐款购买了表演道具,经过充分的排练准备,最终获得了一等奖.班长对全体同学的捐款情况绘制成下表:捐款金额5元10元15元20元捐款人数10人15人5人由于填表时不小心把墨水滴在了统计表上,致使表中数据不完整,但知道捐款金额为10元的人数为全班人数的30%,结合上表回答下列问题:(1)该班共有50名同学;(2)该班同学捐款金额的众数是10元,中位数是12.5元.(3)如果把该班同学的捐款情况绘制成扇形统计图,则捐款金额为20元的人数所对的扇形圆心角为86.4度.【考点】众数;扇形统计图;中位数.【分析】(1)由于知道捐款金额为10元的人数为全班人数的36%,由此即可求出该班共有多少人;(2)首先利用(1)的结果计算出捐15元的同学人数,然后利用中位数、众数的定义即可求出捐款金额的众数和中位数;(3)由于捐款金额为20元的人数为12人,由此求出捐款金额为20元的人数是总人数的百分比,然后乘以360°就知道扇形的圆心角.【解答】解:(1)∵18÷36%=50,∴该班共有50人;(2)∵捐15元的同学人数为50﹣(7+18+12+3)=10,∴学生捐款的众数为10元,又∵第25个数为10,第26个数为15,∴中位数为(10+15)÷2=12.5元;(3)依题意捐款金额为20元的人数所对应的扇形圆心角的度数为360°×=86.4°.故答案为:50,10,12.5,86.4.【点评】此题考查了一组数据的众数、中位数和扇形统计图等知识,解题的关键是从统计表中整理出有关解题信息,难度不大.20.如图,四边形ABCD中,点F是BC中点,连接AF并延长,交于DC的延长线于点E,且∠1=∠2.(1)求证:△ABF≌△ECF;(2)若AD∥BC,∠B=125°,求∠D的度数.【考点】全等三角形的判定与性质.【分析】(1)根据AAS即可判定△ABF≌△ECF.(2)利用平行四边形对角相等即可证明.【解答】(1)证明:在△ABF和△ECF中,,∴△ABF≌△ECF(AAS).(2)解:∵∠1=∠2(已知),∴AB∥ED(内错角相等,两直线平行),∵AD∥BC(已知),∴四边形ABCD是平行四边形(两组对边平行的四边形是平行四边形),∴∠D=∠B=125°(平行四边形的对角相等).【点评】本题考查全等三角形的判定和性质、平行四边形的判定和性质,利用平行四边形的性质证明角相等是解题的关键.属于2016届中考常考题型.21.列方程解应用题:小张第一次在商场购买A、B两种商品各一件,花费60元;第二次购买时,发现两种商品的价格有了调整:A商品涨价20%,B商品降价10%,购买A、B两种商品各一件,同样花费60元.求A、B两种商品原来的价格.【考点】二元一次方程组的应用.【分析】设A种商品原来的价格为x元,B种商品原来的价格为y元,根据题意列出两个二元一次方程,解方程组求出x和y的值即可.【解答】解:设A种商品原来的价格为x元,B种商品原来的价格为y元,根据题意可得:,整理得:,由①×1.2﹣②得.答:A商品原来的价格为20元,B商品价格为40元.【点评】本题考查了二元一次方程组的应用,解题的关键是读懂题意,找出之间的数量关系列出二元一次方程组,此题难度不大.22.某专营商场销售一种品牌电脑,每台电脑的进货价是0.4万元.图中的直线l1表示该品牌电脑一天的销售收入y1(万元)与销售量x(台)的关系,已知商场每天的房租、水电、工资等固定支出为3万元.(1)直线l1对应的函数表达式是y=0.8x,每台电脑的销售价是0.8万元;(2)写出商场一天的总成本y2(万元)与销售量x(台)之间的函数表达式:y2=0.4x+3;(3)在图的直角坐标系中画出第(2)小题的图象(标上l2);(4)通过计算说明:每天销售量达到多少台时,商场可以盈利.【考点】一次函数的应用.【分析】(1)由函数图象知,y与x成正比例函数关系且过(5,4),待定系数法可求得直线l1对应的函数表达式,再根据每台电脑售价=每天销售收入÷销售量可得;(2)根据:每天总成本=电脑的总成本+每天的固定支出,可列函数关系式;(3)根据(2)中函数关系式,确定两点(0,3),(5,5),作射线即可;(4)根据:商场每天利润=电脑的销售收入﹣每天的总成本,列出函数关系式,根据题意得到不等式、解不等式即可.【解答】解:(1)设y=kx,将(5,4)代入,得k=0.8,故y=0.8x,每台电脑的售价为:=0.8(万元);(2)根据题意,商场每天的总成本y2=0.4x+3;(3)如图所示,(3)商场每天的利润W=y﹣y2=0.8x﹣(0.4x+3)=0.4x﹣3,当W>0,即0.4x﹣3>0时商场开始盈利,解得:x>7.5.答:每天销售量达到8台时,商场可以盈利.【点评】本题主要考查一次函数的实际应用,熟悉一次函数解析式的求法、图象的画法及根据实际问题列函数关系式是一次函数的基础.23.如图,长方形AOBC在直角坐标系中,点A在y轴上,点B在x轴上,已知点C的坐标是(8,4).(1)求对角线AB所在直线的函数关系式;(2)对角线AB的垂直平分线MN交x轴于点M,连接AM,求线段AM的长;(3)若点P是直线AB上的一个动点,当△PAM的面积与长方形OABC的面积相等时,求点P的坐标.【考点】一次函数综合题.【分析】(1)由坐标系中点的意义结合图形可得出A、B点的坐标,设出对角线AB所在直线的函数关系式,由待定系数法即可求得结论;(2)由相似三角形的性质找到BM的长度,再结合OM=OB﹣BM得出OM的长,根据勾股定理即可得出线段AM的长;(3)先求出直线AM的解析式,设出P点坐标,由点到直线的距离求出AM边上的高h,再结合三角形面积公式与长方形面积公式即可求出P点坐标.【解答】解:(1)∵四边形AOBC为长方形,且点C的坐标是(8,4),∴AO=CB=4,OB=AC=8,∴A点坐标为(0,4),B点坐标为(8,0).设对角线AB所在直线的函数关系式为y=kx+b,则有,解得:,∴对角线AB所在直线的函数关系式为y=﹣x+4.(2)∵四边形AOBC为长方形,且MN⊥AB,∴∠AOB=∠MNB=90°,又∵∠ABO=∠MBN,∴△AOB∽△MNB,∴.∵AO=CB=4,OB=AC=8,∴由勾股定理得:AB==4,∵MN垂直平分AB,∴BN=AN=AB=2.===,即MB=5.OM=OB﹣MB=8﹣5=3,由勾股定理可得:AM==5.(3)∵OM=3,∴点M坐标为(3,0).又∵点A坐标为(0,4),∴直线AM的解析式为y=﹣x+4.∵点P在直线AB:y=﹣x+4上,∴设P点坐标为(m,﹣m+4),点P到直线AM:x+y﹣4=0的距离h==.△PAM的面积S△PAM=AM•h=|m|=S OABC=AO•OB=32,解得m=±,故点P的坐标为(,﹣)或(﹣,).【点评】本题考查了坐标系中点的意义、相似三角形的判定及性质、勾股定义、点到直线的距离、三角形和长方形的面积公式,解题的关键:(1)根据坐标系中点的意义,找到A、B点的坐标;(2)由相似三角形的相似比找出BM的长度;(3)结合点到直线的距离、三角形和长方形的面积公式找到关于m的一元一次方程.本题属于中等题,难度不大,(1)小问容易得出结论;(2)没有直接找OM长度,而是利用相似三角形找出BM的长度,此处部分学生可能会失分;(3)难度不大,运算量不小,这里尤其要注意点P有两个.广东省深圳市龙岗区八年级(上册)期末数学试卷一、选择题(每小题3分,共36分)1.数学,,π,,0.中无理数的个数是( )A.1 B.2 C.3 D.42.下列长度的线段不能构成直角三角形的是( )A.8,15,17 B.1.5,2,3 C.6,8,10 D.5,12,133.如图,笑脸盖住的点的坐标可能为( )A.(5,2)B.(3,﹣4)C.(﹣4,﹣6)D.(﹣1,3)4.点M(2,1)关于x轴对称的点的坐标是( )A.(1,﹣2)B.(﹣2,1)C.(2,﹣1)D.(﹣1,2)5.下列各式中,正确的是( )A.=±4 B.±=4 C.=﹣3 D.=﹣46.若函数y=(k﹣1)x|k|+b+1是正比例函数,则k和b的值为( )A.k=±1,b=﹣1 B.k=±1,b=0 C.k=1,b=﹣1 D.k=﹣1,b=﹣17.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是( )A.B.C.D.8.下列命题中,不成立的是( )A.两直线平行,同旁内角互补B.同位角相等,两直线平行C.一个三角形中至少有一个角不大于60度D.三角形的一个外角大于任何一个内角9.为筹备班级的初中毕业联欢会,班长对全班学生爱吃哪几种水果作了民意调查.那么最终买什么水果,下面的调查数据中最值得关注的是( )A.中位数B.平均数C.众数 D.加权平均数10.2016年“龙岗年货博览会”在大运中心体育馆展销,小丽从家出发前去购物,途中发现忘了带钱,于是打电话让妈妈马上从家里送来,同时小丽也往回走,遇到妈妈后聊了一会儿,接着继续前往大运中心体育馆.设小丽从家出发后所用时间为t,小丽与体育馆的距离为S,下面能反映S与t的函数关系的大致图象是( )A. B.C.D.11.如图,∠x的两条边被一直线所截,用含α和β的式子表示∠x为( )A.α﹣β B.β﹣α C.180°﹣α+βD.180°﹣α﹣β12.如图,把一个等腰直角三角形放在间距是1的横格纸上,三个顶点都在横格上,则此三角形的斜边长是( )A.3 B. C.2D.2二、填空题(每小题3分,共12分)13.16的平方根是__________.14.数据3,4,6,8,x,7的众数是7,则数据4,3,6,8,2,x的中位数是__________.15.观察下列各式:=﹣1,=,=2﹣…请利用你发现的规律计算:(+++…+)×(+)=__________.16.如图,在矩形ABCD中,AB=3,BC=4,现将点A、C重合,使纸片折叠压平,折痕为EF,那么重叠部分△AEF的面积=__________.三、解答题(第17题5分,第18题6分,第19题7分,第20题8分,第21题8分,第22题9分,第23题9分,共52分)17.计算:﹣||﹣4+.18.解方程组:.19.每年9月举行“全国中学生数学联赛”,成绩优异的选手可参加“全国中学生数学冬令营”,冬令营再选拔出50名优秀选手进入“国家集训队”.第31界冬令营已于2015年12月在江西省鹰谭一中成功举行.现将脱颖而出的50名选手分成两组进行竞赛,每组25人,成绩整理并绘制成如下的统计图:请你根据以上提供的信息解答下列问题:(1)请你将表格补充完整:平均数中位数众数方差一组74 __________ __________ 104二组__________ __________ __________ 72(2)从本次统计数据来看,__________组比较稳定.。
(完整版)人教版初二上学期数学期末考试试卷及答案,推荐文档

八年级(上)数学期末综合测试(1)资料由小程序:家教资料库 整理班级 姓名 得分一、选择题(每小题 3 分,共 36 分) 1.下列各式成立的是 ( )A .a-b+c=a-(b+c )B .a+b-c=a-(b-c )C .a-b-c=a-(b+c )D .a-b+c-d=(a+c )-(b-d ) 2.直线 y=kx+2 过点(-1,0),则 k 的值是 ( )A .2B .-2C .-1D .1 3. 和三角形三个顶点的距离相等的点是 ( )A .三条角平分线的交点B .三边中线的交点C .三边上高所在直线的交点D .三边的垂直平分线的交点 4. 一个三角形任意一边上的高都是这边上的中线, 则对这个三角形最准确的判断是( ) A .等腰三角形 B .直角三角形 C .正三角形 D .等腰直角三角形 5.下图所示的扇形图是对某班学生知道父母生日情况的调查,A 表示只知道父亲生日,B 表示只知道母亲生日,C 表示知道父母两人的生日,D 表示都不知道. 若该班有 40 名学生,则知道母亲生日的人数有 ( ) A .25% B .10% C .22% D .12% 6. 下列式子一定成立的是 ( )A .x 2+x 3=x 5;B .(-a )2·(-a 3) 7. 黄瑶拿一张正方形的纸按右图所示沿虚线连续对折后剪去带直角的部分,然后打开后的形状是 ( )8. 已知 x 2+kxy+64y 2 是一个完全式,则 k 的值是( )A .8B .±8C .16D .±169.下面是一组按规律排列的数:1,2,4,8,16,……,则第 2005 个数是( )A .22005B .22004C .22006D .2200310. 已知(x+a )(x+b )=x 2-13x+36,则 a+b 的值分别是( ) A .13 B .-13 C .36 D .-3611. 如图,△ABC 中,AD⊥BC 于 D ,BE⊥AC 于 E ,AD 交 EF 于 F ,若BF=AC ,则∠ABC 等于( ) A .45° B .48° C .50°D .60°(11 题) (12 题)=-a 5C .a 0=1D .(-m 3)2=m 5(19 题)12. 如图,△ABC 中边 AB 的垂直平分线分别交 BC 、AB 于点 D 、E ,AE=3cm ,△ADC 的周长为 9cm ,则△ABC 的周长是( ) A .10cm B .12cm C .15cm D .17cm 二、你能填得又对又快吗?(每小题 3 分,共 24 分) 13.计算:1232-124×122= . 14.在实数范围内分解因式:3a 3-4ab 2= .15.已知△ABC≌△DEF,若∠A=60°,∠F=90°,DE=6cm ,则AC= . 16.点 P 关于 x 轴对称的点是(3,-4),则点 P 关于 y 轴对称的点的坐标是 .17.已知 a 2+b 2=13,ab=6,则 a+b 的值是 .18. 直线 y=ax+2 和直线 y=bx-3 交于 x 轴同一点,则 a 与b 的比值是 .19. 如图为杨辉三角表,它可以帮助我们按规律写出(a+b )n (其中 n 为正整数) 展开式的系数,请仔细观察表中规律,填出(a+b )4 的展开式中所缺的系数. (a+b )1=a+b ;(a+b )2=a 2+2ab+b 2;(a+b ) 3=a 3+3a 2b+3ab 2+b 3;(a+b )4=a 4+ a 3b+ a 2b 2+ ab 3+b 420. 如图所示,一个窗户被装饰布挡住了一部分,其中窗户的长 a 与宽 b 的比是 3:2,装饰布由一个半圆和两个四分之一圆组成,圆的直径都是 0.5b ,那么当 b=4 时, 这个窗户未被遮挡的部分的面积是 .三、认真解答,一定要细心哟!(共 60 分) 21.(5 分)先化简再求值:[(x+2y )(x-2y )-(x+4y )2]÷(4y ),其中 x=5,y=2.22.(7 分)求证:等腰三角形两腰上的高的交点到底边两端的距离相等.23.(8 分)已知图 7 中A 、B 分别表示正方形网格上的两个轴对称图形 (阴影部分),其面积分别记为 S 1、S 2(网格中最小的正方形的面积为一个单位面积),请你观察并回答问题. (1) 填空:S 1:S 2 的值是 . (2) 请你在图 C 中的网格上画一个面积为 8 个平方单位的轴对称图形.24.(9 分)每年 6 月 5 日是“世界环境日”,保护地球生态环境是世界各国政府和人民应尽的义务.下表是我国近几年来废气污染排放量统计表,请认真阅读该表后, 解答题后的问题.(1)请你在图 8 中用虚线、实线、粗线分别画出二氧化硫排放总量、烟尘排放总量和工业粉尘排放量的折线走势图;(2)2003 年相对于 1999 年,全国二氧化硫排放总量、烟尘排放总量和工业粉尘排放量的增长率分别为、、(精确到1 个百分点).(3)简要评价这三种废气污染物排放量的走势(要求简要说明:总趋势,增减的相对快慢).25.(9 分)某批发商欲将一批海产品由 A 地运往 B 地,汽车货运公司和铁路货运公司均开办了海产品运输业务.已知运输路程为 120 千米,汽车和火车的速度分别为 60 千米/时和 100 千米/时.两货物公司的运输工具运输费单价(元/吨·千米)冷藏费单价(元/吨·小时)过路费(元)装卸及管理费(元)汽车 2 5 200 0火车 1.8 5 0 1600 注:“元/吨·千米”表示每吨货物每千米的运费;“元/ 吨小时”表示每吨货物每小时的冷藏费.(1)设该批发商待运的海产品有 x(吨),汽车货运公司和铁路货运公司所要收取的费用分别为 y1(元)和y2(元),试求出 y1和y2和与 x 的函数关系式;(2)若该批发商待运的海产品不少于 30 吨,为节省运费,他应该选择哪个货运公司承担运输业务?26.(10 分)如图,在△ABC中,∠ACB=90°,CE⊥AB于点 E,AD=AC,AF 平分∠CAB交 CE 于点F,DF 的延长线交 AC 于点G,求证:(1)DF∥BC;(2)FG=FE.27.(12 分)如图,直线 OC、BC 的函数关系式分别是y1=x 和y2=- 2x+6,动点 P(x,0)在OB 上运动(0<x<3),过点 P 作直线 m 与x 轴垂直.(1)求点 C 的坐标,并回答当 x 取何值时y1>y2?(2)设△COB中位于直线 m 左侧部分的面积为 s,求出 s 与x 之间函数关系式.(3)当x 为何值时,直线 m 平分△COB的面积?3 3 3⎩ ⎩ ②∵DF∥BC,BC⊥AC, ∴FG⊥AC, ∵FE⊥AB,又 AF 平分∠CAB, ∴FG=FE⎧ y = x27.(1)解方程组 ⎨ y = -2x + 6∴C 点坐标为(2,2);⎧x = 2 得⎨ y = 2八年级(上)数学期末综合测试(1)答案:1.C 2.A 3.D 4.C 5.C 6.B 7.C 8.D 9.B 10.B 11.A 12.C13. 1 14.a ( a+2b )( a-2b ) 15.3m 16.(-3,4) 17.±5 2 18.-3(2) 作 CD⊥x 轴于点 D ,则 D (2,0).①s= 1x 2(0<x≤2);2②s=-x 2+6x-6(2<x<3); (3) 直线 m 平分△AOB 的面积, 则点 P 只能在线段 OD ,即0<x<2. 又△COB 的面积等于 3, 故 1 x 2=3× 1,解之得 x=.19.4;6;4 20.24-21.-20 22.略 23.①9:11;②略2 224.①略;②-8%,-30%,-29%;③评价: 总体均成下降趋势;二氧化硫排放量下降趋势最小;烟尘排放量下降趋势最大.25.①y 1=2×120x+5×(120÷60)x+200=250x+200y 2=1.8×120x+5×(120 ÷100)x+1600=222x+1600; ②若 y 1=y 2,则 x=50.∴当海产品不少于 30 吨但不足 50 吨时,选择汽车货运公司合算; 当海产品恰好是 50 吨时选择两家公司都一样,没有区别; 当海产品超过 50 吨时选择铁路货运公司费用节省一些.26.①证△ACF≌△ADF 得∠ACF=∠ADF,∵∠ACF=∠B, ∴∠ADF=∠B, ∴DF∥BC;八年级(上)数学期末综合测试(2)⎩班级 姓名 得分一、选择题(每小题 3 分,共 24 分)C .AB ∥CD ,AD ∥BCD .AB =CD ,AD =BC6. 将△ABC 的三个点坐标的横坐标乘以-1,纵坐标不变,则所得图形与原图的关系是()A .关于 x 轴对称B .关于 y 轴对称1. 在实数-)22 、0、 - 7. .、506、π、0.101中,无理数的个数是(C .关于原点对称D .将原图的 x 轴的负方向平移了了 1 个单位A .2 个B .3 个C .4 个D .5 个2. 将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是()A .1、2、3B .2、3、4C .3、4、5D .4、5、63. 某品牌皮鞋店销售同种品牌不同尺码的男鞋,采购员再次进货时,对于男鞋的尺码,他最关注下列统计资料中的( )A .众数B .中位数C .加权平均数D .平均数4. 下面哪个点不在函数 y = -2x+3 的图象上()A .(-5,13)B .(0.5,2)C .(3,0)D .(1,1)5. 下列条件中不能确定四边形 ABCD 是平行四边形的是( )7. 点 M (-3,4)离原点的距离是( )A . 3B . 4C . 5D .78. 下列图形中,是中心对称图形而不是轴对称图形的是()A .平行四边形B .矩形C . 菱 形D .正方形二、填一填.(本大题共 7 个小题,每小题 3 分,共 21 分)9. 佳佳做作业时不小心洒落了一些墨水,把一道二元一次方程涂黑了一部分:■ x - 3y = 12 ,但她知道这个方程有一个解为 x = 3 、 y = -2 .请你帮她把这个涂黑方程补充完整:.⎧x = y + 510.如果方程组⎨2x - y = 5 的解是方程2x - 3y + a = 5 的解, 那么 a 的值是A .AB =CD ,AD ∥BC B .AB =CD ,AB ∥CD332 1 223 3⎩ ⎩⎩ ⎩ 11. 若一个数的算术平方根是 8,则这个数的立方根是。
福建省福州市教育学院附属中学2022-2023学年八年级上学期期末考试数学试卷(含答案解析)

福建省福州市教育学院附属中学2022-2023学年八年级上学期期末考试数学试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列图形中,不.是轴对称图形的是()A.B.C.D.2.下列四个二次根式中,最简二次根式是()C DA B3.如图,在平分角的仪器中,AB=AD,BC=DC,将点A放在一个角的顶点,AB和AD分别与这个角的两边重合,能说明AC就是这个角的平分线的数学依据是()A.SSS B.ASA C.SAS D.AAS4.如图所示的是由两个直角三角形和三个正方形组成的图形,其中阴影部分的面积是()5.分式213a b 与218ab 的最简公分母是()A .2224a bB .3324a b C .3224a b D .2324a b 6.在平面直角坐标系中,点(2,3)P -关于y 轴的对称点的坐标是()A .(2,3)-B .(2,3)C .(3,2)-D .(2,3)--7.若()aM a b b=≠,则M 可以是()A .22a b --B .22a b ++C .ab--D .22a b8.施工队要铺设一段全长2000米的管道,因在高考期间需停工两天,实际每天施工需比原来计划多50米,才能按时完成任务,求原计划每天施工多少米.设原计划每天施工x 米,则根据题意所列方程正确的是()A .20002000250x x -=+B .20002000250x x -=+C .20002000250x x -=-D .20002000250x x-=-9.把式子中根号外的m 移到根号内得()AB C D10.某小区有一块边长为a 的正方形场地,规划修建两条宽为b 的绿化带.方案一如图甲所示,绿化带面积为S 甲:方案二如图乙所示,绿化带面积为S 乙.设()0S k a b S =>>甲乙,下列选项中正确的是()A .102k <<B .322k <<C .312k <<D .112k <<二、填空题11.计算:011(3)(2π--+=_____.12.数据0.00000146用科学记数法表示应是______________.13.“内错角相等,两直线平行”的逆命题是_____.14有意义,则x的取值范围是______________.15.如图,点A 坐标为(2,2),则线段AO 长度为_____.16.如图,已知30AOB ∠=︒,点M ,N 在边OA 上,OM x =,2ON x =+,点P 是边OB 上的点,若使点P ,M ,N 构成等腰三角形的点P 恰好只有一个,则x 的取值范围是______.三、解答题17.因式分解:(1)32244y xy x y +-;(2)()()2294ax y b y x -+-.1819.先化简,再求值:2()()()2x y x y x y x ⎡⎤-+-+÷⎣⎦,其中3x =,15y =.20.计算22121124a a a a ++⎛⎫-÷⎪+-⎝⎭21.解分式方程:111242x x x++=--.22.已知:如图,∠B =∠C =90°,AF =DE ,BE =CF .求证:AB =DC .23.小刚家到学校的距离是1800米.某天早上,小刚到学校后发现作业本忘在家中,此时离上课还有20分钟,于是他立即按原路跑步回家,拿到作业本后骑自行车按原路返回学校.已知小刚骑自行车时间比跑步时间少用了4.5分钟,且骑自行车的平均速度是跑步的平均速度的1.6倍.(1)求小刚跑步的平均速度;(2)如果小刚在家取作业本和取自行车共用了3分钟,他能否在上课前赶回学校?请说明理由.24.如图,在△ABC中,∠C=90°,AB=10,AC=6.(1)用尺规作图:在AC边上确定一点D,使得点D到BC,AB的距离相等;(保留作图痕迹,不写作法)(2)在(1)的前提下,求点D到AB的距离.25.阅读下面内容:我们已经学习了《二次根式》和《乘法公式》,聪明的你可以发现:当a>0,b>0时:)2=a﹣b≥0∴a+b a=b时取等号.请利用上述结论解决以下问题:(1)请直接写出答案:当x>0时,x+1x的最小值为.当x<0时,x+1x的最大值为;(2)若y=27101x xx+++,(x>﹣1),求y的最小值;(3)如图,四边形ABCD的对角线AC、BD相交于点O,△AOB、△COD的面积分别为4和9,求四边形ABCD面积的最小值.参考答案:1.A【分析】根据轴对称图形的定义:轴对称图形,是指在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形,逐一判定即可.【详解】A选项,不是轴对称图形,符合题意;B选项,是轴对称图形;C选项,是轴对称图形;D选项,是轴对称图形;故答案为A.【点睛】此题主要考查轴对称图形的判定,熟知概念,即可解题.2.B【分析】根据最简二次根式的意义逐个进行判断即可.=2不符合题意;不是最简二次根式;不是最简二次根式;故选:B.【点睛】本题考查最简二次根式,掌握被开方数为整数,且不含有能开得尽方的因数或因式的二次根式是最简二次根式是正确判断的前提.3.A【分析】根据全等三角形的判定得出∠DAC=∠BAC,然后利用角平分线的定义即可证明.【详解】解:在∆ABC与∆ADC中,AB ADBC DCAC AC=⎧⎪=⎨⎪=⎩,∴∆ABC≌∆ADC,∴∠DAC=∠BAC,∴AC为∠BAD的角平分线,故选:A.【点睛】题目主要考查全等三角形的判定和性质,角平分线的定义,熟练掌握运用全等三角形的判定和性质是解题关键.4.A【分析】根据勾股定理计算出大正方形边长的平方,即大正方形的面积,再根据勾股定理可得两个小正方形的边长的平方和等于斜边的平方,即两个小正方形的面积和等于大正方形的面积,从而得出答案.【详解】由勾股定理得,大正方形边长的平方=221312-=25,即大正方形面积为25,∵两个小正方形的边长的平方和等于斜边的平方,∴两个小正方形的面积和为25,∴阴影部分的面积为:25+25=50.故选:A .【点睛】本题考查了勾股定理,熟练掌握勾股定理是解题关键.5.A【分析】确定最简公分母的方法是:取各分母系数的最小公倍数;凡单独出现的字母连同它的指数作为最简公分母的一个因式;同底数幂取次数最高的,得到的因式的积就是最简公分母.【详解】解:分式213a b 与218ab分母分别是23a b 、28ab ,故最简公分母是2224a b .故选:A .【点睛】本题考查了最简公分母,解题的关键是准确求出各个分式中分母的最简公分母,确定最简公分母的方法一定要掌握.6.B【分析】根据关于y 轴的对称的两点的横坐标互为相反数,纵坐标不变,即可求解.【详解】解:点(2,3)P -关于y 轴的对称点的坐标是(2,3).故选:B .【点睛】本题主要考查了关于坐标轴对称的点的坐标的特征,熟练掌握关于y 轴的对称的两点的横坐标互为相反数,纵坐标不变,关于x 轴的对称点的纵坐标互为相反数,横坐标不变是解题的关键.7.C【分析】根据分式的基本性质进行判断即可.【详解】解:根据分式的基本性质:分子、分母同时乘或除以同一个不为0的整式,分式的值不变,A、B选项是分子分母同时减或加2,不符合题意;D选项是分子分母同时平方,不符合题意;C选项是分子分母同时乘-1,符合题意;故选:C.【点睛】本题考查了分式的基本性质,解题关键是熟记分式的基本性质,准确进行判断.8.A【分析】设原计划每天铺设x米,则实际施工时每天铺设(x+50)米,根据:原计划所用时间﹣实际所用时间=2,列出方程即可.【详解】解:设原计划每天施工x米,则实际每天施工(x+50)米,根据题意,可列方程:2000200050x x-=+2,故选:A.【点睛】本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出合适的等量关系,列出方程.9.C【分析】根据二次根式有意义的条件易得m<0,再根据二次根式的性质有原式=﹣【详解】∵﹣1m>0,∴m<0,则原式=故选C.【点睛】本题考查了二次根式的性质与化简,二次根式的乘法,熟练掌握二次根式的性质是解题的关键.10.D【分析】由题意可求S甲=2ab-b 2,S乙=2ab,代入可求k的取值范围.【详解】∵S甲=2ab-b 2,S乙=2ab.∴22122 S ab b b kS ab a-===-乙甲∵a >b >0∴12<k <1故选D .【点睛】本题考查了正方形的性质,能用代数式正确表示阴影部分面积是本题的关键.11.3【分析】根据零指数幂和负指数幂的意义计算.【详解】解:011(3)()1232π--+=+=,故答案为:3.【点睛】本题考查了整数指数幂的运算,熟练掌握零指数幂和负指数幂的意义是解题关键.12.61.4610-⨯【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:60.00000146 1.4610-=⨯.故答案为:61.4610-⨯.【点睛】本题考查用科学记数法表示较小的数,一般形式为10n a -⨯,其中110a ≤<,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.13.两直线平行,内错角相等【分析】把一个命题的条件和结论互换就得到它的逆命题.【详解】“内错角相等,两直线平行”的逆命题是“两直线平行,内错角相等”.故答案为:两直线平行,内错角相等14.3x ≥##3x≤【分析】根据二次根式有意义的条件是被开方数大于等于0进行求解即可.有意义,∴30x -≥,∴3x ≥,故答案为:3x ≥.【点睛】本题主要考查了二次根式有意义的条件,熟知二次根式有意义的条件是解题的关键.15.【分析】根据勾股定理计算即可.【详解】解:∵点A 坐标为(2,2),∴AO =故答案为:【点睛】本题考查了勾股定理的运用和点到坐标轴的距离:①到x 轴的距离与纵坐标有关,到y 轴的距离与横坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.16.2x =或>4x 【分析】根据等腰三角形的性质分类讨论,分别求解范围即可.【详解】①如图1,当2x =时,即2OM MN ==,以M 为圆心,以2为半径的圆交OB 于P 点,此时2MP PN MN ===,则点P ,M ,N 构成的等腰三角形的点P 恰好只有一个.②如图2.当4x =时,即4OM =,过M 点作MP OB ⊥于P 点,∴122MP OM ==.∴2MP MN ==,作MN 的垂直平分线交OB 于P '点,则P M P N ''=.此时,以P ,M ,N 构成的等腰三角形的点P 恰好有2个.则当>4x 时,以P ,M ,N 构成的等腰三角形恰好只有一个.综上,当2x =或>4x 时,以P ,M ,N 构成的等腰三角形恰好只有一个.【点睛】本题考查等腰三角形的判定,主要通过数形结合的思想解决问题,解题关键在于熟练掌握已知一边,作等腰三角形的画法.17.(1)()22y x y -(2)()()()3232x y a b a b -+-【分析】(1)先提取公因式,再用完全平方公式因式分解;(2)先提取公因式,再用平方差公式因式分解.【详解】(1)原式=()2244y x xy y -+=()22y x y -;(2)原式=()()2294ax y b x y ---=()()2294x y a b --=()()()3232x y a b a b -+-.【点睛】本题考查了整式的因式分解,掌握因式分解的提公因式法、公式法是解决本题的关键.18.5【分析】根据二次根式的乘除法运算法则计算即可.【详解】原式2-5-=555【点睛】此题考查二次根式的混合运算,解题关键在于掌握运算法则.19.x y -;-12【分析】根据整式混合运算法则进行化简,然后再代入数据进行计算即可.【详解】解:2()()()2x y x y x y x⎡⎤-+-+÷⎣⎦()222222x xy y x y x⎡⎤=-++-÷⎣⎦222222x xy y x y x⎡⎤=-++-÷⎣⎦()2222x xy x=-÷x y=-把3x =,15y =代入得:31512x y -=-=-.【点睛】本题主要考查了整式的化简计算,熟练掌握整式混合运算法则,完全平方公式,平方差公式,是解题的关键.20.21aa -+【分析】根据分式的混合计算法则求解即可.【详解】解:22121124a a a a ++⎛⎫-÷ ⎪+-⎝⎭()()()2112=222a a a a a +--÷++-()()()()2122=21a a a a a -++-⋅++2=1a a -+.【点睛】本题主要考查了分式的混合计算,熟知分式的相关计算法则是解题的关键.21.34x =【分析】方程两边都乘2(2)x -得出12(1)2(2)x x -+=-,求出方程的解,再进行检验即可.【详解】解:111242x x x++=--,1112(2)2x x x +-=--,方程两边都乘2(2)x -,得12(1)2(2)x x -+=-,解得:34x =,检验:当34x =时,2(2)0x -≠,∴34x =是原方程的解,即原方程的解是34x =.【点睛】本题主要考查的是分式方程的解法,需要注意的是,分式方程一定要检验.22.详见解析【分析】运用HL 定理证明直角三角形全等即可.【详解】∵BE =CF ,∴BF =CE在Rt ABF 与Rt DCE 中:AF DE BF CE=⎧⎨=⎩∴()Rt ABF Rt DCE HL △△≌∴AB =DC【点睛】本题考查了直角三角形全等的判定与性质,熟练掌握HL 定理是解题关键.23.(1)小刚跑步的平均速度为150米/分;(2)小刚不能在上课前赶回学校,见解析【分析】(1)根据题意,列出分式方程即可求得小刚的跑步平均速度;(2)先求出小刚跑步和骑自行车的时间,加上取作业本和取自行车的时间,与上课时间20分钟作比较即可.【详解】解:(1)设小刚跑步的平均速度为x米/分,则小刚骑自行车的平均速度为1.6x米/分,根据题意,得180018004.51.6x x+=,解这个方程,得150x=,经检验,150x=是所列方程的根,所以小刚跑步的平均速度为150米/分.(2)由(1)得小刚跑步的平均速度为150米/分,则小刚跑步所用时间为180012150=(分),骑自行车所用时间为12 4.57.5-=(分),在家取作业本和取自行车共用了3分,所以小刚从开始跑步回家到赶回学校需要127.5322.5++=(分).因为22.520>,所以小刚不能在上课前赶回学校.【点睛】本题考查路程问题的分式方程,解题关键是明确题意,列出分式方程求解.24.(1)见解析(2)8 3【分析】(1)作∠ABC的角平分线,交AC于点D,即可得答案;(2)过点D作DF⊥AB于点F,根据角平分线的性质可得DF=CD,利用勾股定理可求出BC的长,利用S△ABC=S△ABD+S△BCD列方程求出DF的长即可得答案.【详解】(1)如图,作∠ABC的角平分线,交AC于点D,点D就是所要求作的点.(2)过点D 作DF ⊥AB 于点F .在Rt △ABC 中,由勾股定理,得8BC =由(1)可得:BD 平分∠ABC .∵DC ⊥BC ,DF ⊥AB ,∴DC =DF ,∵S △ABC =S △ABD +S △BCD ∴111222AC BC AB DF BC CD ⋅=⋅+⋅,即12DF (10+8)=12×6×8,解得:DF =83,即点D 到AB 的距离为83.【点睛】本题考查尺规作图——角平分线,熟练掌握角平分线上的点到角两边的距离相等是解题关键.25.(1)2;﹣2.(2)y 的最小值为9;(3)四边形ABCD 面积的最小值为25.【分析】(1)当x >0时,按照公式a +b a =b 时取等号)来计算即可;当x <0时,﹣x >0,1x->0,则也可以按公式a +b a =b 时取等号)来计算;(2)将y 27101x x x ++=+的分子变形,分别除以分母,展开,将含x 的项用题中所给公式求得最小值,再加上常数即可;(3)设S △BOC =x ,已知S △AOB =4,S △COD =9,由三角形面积公式可知:S △BOC :S △COD =S △AOB :S △AOD ,用含x 的式子表示出S △AOD ,再表示出四边形的面积,根据题中所给公式求得最小值,加上常数即可.【详解】(1)当x >0时,x 1x +≥=2;当x <0时,﹣x >0,1x-0.∵﹣x 1x -≥=2,∴则x 1x +=-(﹣x 1x -)≤﹣2,∴当x >0时,x 1x +的最小值为2.当x <0时,x 1x+的最大值为﹣2.故答案为2,﹣2.(2)∵x >﹣1,∴x +1>0,∴y 27101x x x ++=+()2(1)5141x x x ++++=+=(x +1)41x +++5=4+5=9,∴y 的最小值为9.(3)设S △BOC =x ,已知S △AOB =4,S △COD =9则由等高三角形可知:S △BOC :S △COD =S △AOD ,∴x :9=4:S △AOD ,∴S △AOD 36x =,∴四边形ABCD 面积=4+9+x 36x +≥=25.当且仅当x =6时,取等号,∴四边形ABCD 面积的最小值为25.【点睛】本题考查了配方法在最值问题中的应用.对不能直接应用公式的,需要正确变形才可以应用.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年八年级[上]数学期末考试试卷一.选择题(共10小题)1.(2013?铁岭)如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DC C.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D 2.(2011?恩施州)如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为()A.11 B.C.7 D.3.(2013?贺州)如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()A.4cm B.6cm C.8cm D.9cm4.(2010?海南)如图,a、b、c分别表示△ABC的三边长,则下面与△ABC一定全等的三角形是()A.B.C.D.5.(2013?珠海)点(3,2)关于x轴的对称点为()A.(3,﹣2)B.(﹣3,2)C.(﹣3,﹣2)D.(2,﹣3)6.(2013?十堰)如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm,则BC的长为()A.7cm B.10cm C.12cm D.22cm7.(2013?新疆)等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为()A.12 B.15 C.12或15 D.188.(2013?烟台)下列各运算中,正确的是()A.3a+2a=5a2B.(﹣3a3)2=9a6C.a4÷a2=a3D.(a+2)2=a2+4 9.(2012?西宁)下列分解因式正确的是()A.3x2﹣6x=x(3x﹣6)B.﹣a2+b2=(b+a)(b﹣a)C.4x2﹣y2=(4x+y)(4x﹣y)D.4x2﹣2xy+y2=(2x﹣y)210.(2013?恩施州)把x2y﹣2y2x+y3分解因式正确的是()A.y(x2﹣2xy+y2)B.x2y﹣y2(2x﹣y)C.y(x﹣y)2D.y(x+y)2二.填空题(共10小题)11.(2013?资阳)如图,在Rt△ABC中,∠C=90°,∠B=60°,点D是BC边上的点,CD=1,将△ABC沿直线AD翻折,使点C落在AB边上的点E处,若点P是直线AD上的动点,则△PEB的周长的最小值是_________ .12.(2013?黔西南州)如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E= _________ 度.13.(2013?枣庄)若,,则a+b的值为_________ .14.(2013?内江)若m2﹣n2=6,且m﹣n=2,则m+n= _________ .15.(2013?菏泽)分解因式:3a2﹣12ab+12b2= _________ .16.(2013?盐城)使分式的值为零的条件是x= _________ .17.(2013?南京)使式子1+有意义的x的取值范围是_________ .18.(2012?茂名)若分式的值为0,则a的值是_________ .19.在下列几个均不为零的式子,x2﹣4,x2﹣2x,x2﹣4x+4,x2+2x,x2+4x+4中任选两个都可以组成分式,请你选择一个不是最简分式的分式进行化简:_________ .20.不改变分式的值,把分式分子分母中的各项系数化为整数且为最简分式是_________ .三.解答题(共8小题)21.(2013?遵义)已知实数a满足a2+2a﹣15=0,求﹣÷的值.22.(2013?重庆)先化简,再求值:÷(﹣a﹣2b)﹣,其中a,b满足.23.(2007?资阳)设a1=32﹣12,a2=52﹣32,…,a n=(2n+1)2﹣(2n﹣1)2(n为大于0的自然数).(1)探究a n是否为8的倍数,并用文字语言表述你所获得的结论;(2)若一个数的算术平方根是一个自然数,则称这个数是“完全平方数”.试找出a1,a2,…,a n,…这一列数中从小到大排列的前4个完全平方数,并指出当n满足什么条件时,a n为完全平方数(不必说明理由).24.在△ABC中,若AD是∠BAC的角平分线,点E和点F分别在AB和AC上,且DE⊥AB,垂足为E,DF⊥AC,垂足为F(如图(1)),则可以得到以下两个结论:①∠AED+∠AFD=180°;②DE=DF.那么在△ABC中,仍然有条件“AD是∠BAC的角平分线,点E和点F,分别在AB和AC上”,请探究以下两个问题:(1)若∠AED+∠AFD=180°(如图(2)),则DE与DF是否仍相等?若仍相等,请证明;否则请举出反例.(2)若DE=DF,则∠AED+∠AFD=180°是否成立?(只写出结论,不证明)25.(2012?遵义)如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.26.(2005?江西)将一张矩形纸片沿对角线剪开,得到两张三角形纸片,再将这两张三角形纸片摆放成如下图的形式,使点B、F、C、D在同一条直线上.(1)求证:AB⊥ED;(2)若PB=BC,请找出图中与此条件有关的一对全等三角形,并给予证明.27.(2013?沙河口区一模)如图,Rt△ABC中,∠C=90°,AC=3,BC=4.点M在AB边上以1单位长度/秒的速度从点A向点B运动,运动到点B时停止.连接CM,将△ACM沿着CM对折,点A的对称点为点A′.(1)当CM与AB垂直时,求点M运动的时间;(2)当点A′落在△ABC的一边上时,求点M运动的时间.28.已知点C为线段AB上一点,分别以AC、BC为边在线段AB同侧作△ACD和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直线AE与BD交于点F,(1)如图1,若∠ACD=60°,则∠AFB=_________ ;如图2,若∠ACD=90°,则∠AFB=_________ ;如图3,若∠ACD=120°,则∠AFB=_________ ;(2)如图4,若∠ACD=α,则∠AFB=_________ (用含α的式子表示);(3)将图4中的△ACD绕点C顺时针旋转任意角度(交点F至少在BD、AE中的一条线段上),变成如图5所示的情形,若∠ACD=α,则∠AFB与α的有何数量关系?并给予证明.2013-2014学年八年级[上]数学期末考试试卷参考答案与试题解析一.选择题(共10小题)1.(2013?铁岭)如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DC C.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D考点:全等三角形的判定.分析:根据全等三角形的判定方法分别进行判定即可.解答:解:A、已知AB=DE,再加上条件BC=EC,∠B=∠E可利用SAS证明△ABC≌△DEC,故此选项不合题意;B、已知AB=DE,再加上条件BC=EC,AC=DC可利用SSS证明△ABC≌△DEC,故此选项不合题意;C、已知AB=DE,再加上条件BC=DC,∠A=∠D不能证明△ABC≌△DEC,故此选项符合题意;D、已知AB=DE,再加上条件∠B=∠E,∠A=∠D可利用ASA证明△ABC≌△DEC,故此选项不合题意;故选:C.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.2.(2011?恩施州)如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为()A.11 B.C.7 D.考点:角平分线的性质;全等三角形的判定与性质.专题:计算题;压轴题.分析:作DM=DE交AC于M,作DN⊥AC,利用角平分线的性质得到DN=DF,将三角形EDF的面积转化为三角形DNM 的面积来求.解答:解:作DM=DE交AC于M,作DN⊥AC,∵DE=DG,DM=DE,∴DM=DG,∵AD是△ABC的角平分线,DF⊥AB,∴DF=DN,在Rt△DEF和Rt△DMN中,,∴Rt△DEF≌Rt△DMN(HL),∵△ADG和△AED的面积分别为50和39,∴S△MDG=S△ADG﹣S△ADM=50﹣39=11,S△DNM=S△DE F=S△MDG==故选B.点评:本题考查了角平分线的性质及全等三角形的判定及性质,解题的关键是正确地作出辅助线,将所求的三角形的面积转化为另外的三角形的面积来求.3.(2013?贺州)如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()A.4cm B.6cm C.8cm D.9cm考点:全等三角形的判定与性质.分析:求出∠FBD=∠CAD,AD=BD,证△DBF≌△DAC,推出BF=AC,代入求出即可.解答:解:∵F是高AD和BE的交点,∴∠ADC=∠ADB=∠AEF=90°,∴∠CAD+∠AFE=90°,∠DBF+∠BFD=90°,∵∠AFE=∠BFD,∴∠CAD=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABD,∴AD=BD,在△DBF和△DAC中∴△DBF≌△DAC(ASA),∴BF=AC=8cm,故选C.点评:本题考查了等腰三角形的性质,全等三角形的性质和判定,三角形的内角和定理的应用,关键是推出△DBF≌△DAC.4.(2010?海南)如图,a、b、c分别表示△ABC的三边长,则下面与△ABC一定全等的三角形是()A.B.C.D.考点:全等三角形的判定.分析:根据全等三角形的判定方法进行逐个验证,做题时要找准对应边,对应角.解答:解:A、与三角形ABC有两边相等,而夹角不一定相等,二者不一定全等;B、选项B与三角形ABC有两边及其夹边相等,二者全等;C、与三角形ABC有两边相等,但角不是夹角,二者不全等;D、与三角形ABC有两角相等,但边不对应相等,二者不全等.故选B.点评:本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,本题是一道较为简单的题目.5.(2013?珠海)点(3,2)关于x轴的对称点为()A.(3,﹣2)B.(﹣3,2)C.(﹣3,﹣2)D.(2,﹣3)考点:关于x轴、y轴对称的点的坐标.分析:根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可直接写出答案.解答:解:点(3,2)关于x轴的对称点为(3,﹣2),故选:A.点评:此题主要考查了关于x轴对称点的坐标特点,关键是掌握点的坐标的变化规律.6.(2013?十堰)如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm,则BC的长为()A.7cm B.10cm C.12cm D.22cm考点:翻折变换(折叠问题).分析:首先根据折叠可得AD=BD,再由△ADC的周长为17cm可以得到AD+DC的长,利用等量代换可得BC的长.解答:解:根据折叠可得:AD=BD,∵△ADC的周长为17cm,AC=5cm,∴AD+DC=17﹣5=12(cm),∵AD=BD,∴BD+CD=12cm.故选:C.点评:此题主要考查了翻折变换,关键是掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.7.(2013?新疆)等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为()A.12 B.15 C.12或15 D.18考点:等腰三角形的性质;三角形三边关系.分析:因为已知长度为3和6两边,没有明确是底边还是腰,所以有两种情况,需要分类讨论.解答:解:①当3为底时,其它两边都为6,3、6、6可以构成三角形,周长为15;②当3为腰时,其它两边为3和6,∵3+3=6=6,∴不能构成三角形,故舍去,∴答案只有15.故选B.点评:本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.8.(2013?烟台)下列各运算中,正确的是()A.3a+2a=5a2B.(﹣3a3)2=9a6C.a4÷a2=a3D.(a+2)2=a2+4考点:同底数幂的除法;合并同类项;幂的乘方与积的乘方;完全平方公式.分析:根据合并同类项的法则、幂的乘方及积的乘方法则、同底数幂的除法法则,分别进行各选项的判断即可.解答:解:A、3a+2a=5a,原式计算错误,故本选项错误;B、(﹣3a3)2=9a6,原式计算正确,故本选项正确;C、a4÷a2=a2,原式计算错误,故本选项错误;D、(a+2)2=a2+4a+4,原式计算错误,故本选项错误;故选B.点评:本题考查了同底数幂的除法、幂的乘方与积的乘方,解答本题的关键是熟练掌握各部分的运算法则.9.(2012?西宁)下列分解因式正确的是()A.3x2﹣6x=x(3x﹣6)B.﹣a2+b2=(b+a)(b﹣a)C.4x2﹣y2=(4x+y)(4x﹣y)D.4x2﹣2xy+y2=(2x﹣y)2考点:因式分解-运用公式法;因式分解-提公因式法.专题:计算题.分析:根据因式分解的定义,把一个多项式写成几个整式积的形式叫做因式分解,并根据提取公因式法,利用平方差公式分解因式法对各选项分析判断后利用排除法求解.解答:解:A、3x2﹣6x=3x(x﹣2),故本选项错误;B、﹣a2+b2=(b+a)(b﹣a),故本选项正确;C、4x2﹣y2=(2x+y)(2x﹣y),故本选项错误;D、4x2﹣2xy+y2不能分解因式,故本选项错误.故选B.点评:本题主要考查了因式分解的定义,熟记常用的提公因式法,运用公式法分解因式的方法是解题的关键.10.(2013?恩施州)把x2y﹣2y2x+y3分解因式正确的是()A.y(x2﹣2xy+y2)B.x2y﹣y2(2x﹣y)C.y(x﹣y)2D.y(x+y)2考点:提公因式法与公式法的综合运用.分析:首先提取公因式y,再利用完全平方公式进行二次分解即可.解答:解:x2y﹣2y2x+y3=y(x2﹣2yx+y2)=y(x﹣y)2.故选:C.点评:本题主要考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.二.填空题(共10小题)11.(2013?资阳)如图,在Rt△ABC中,∠C=90°,∠B=60°,点D是BC边上的点,CD=1,将△ABC沿直线AD翻折,使点C落在AB边上的点E处,若点P是直线AD上的动点,则△PEB的周长的最小值是1+.考点:轴对称-最短路线问题;含30度角的直角三角形;翻折变换(折叠问题).专题:压轴题.分析:连接CE,交AD于M,根据折叠和等腰三角形性质得出当P和D重合时,PE+BP的值最小,即可此时△BPE 的周长最小,最小值是BE+PE+PB=BE+CD+DE=BC+BE,先求出BC和BE长,代入求出即可.解答:解:连接CE,交AD于M,∵沿AD折叠C和E重合,∴∠ACD=∠AED=90°,AC=AE,∠CAD=∠EAD,∴AD垂直平分CE,即C和E关于AD对称,CD=DE=1,∴当P和D重合时,PE+BP的值最小,即此时△BPE的周长最小,最小值是BE+PE+PB=BE+CD+DE=BC+BE,∵∠DEA=90°,∴∠DEB=90°,∵∠B=60°,DE=1,∴BE=,BD=,即BC=1+,∴△PEB的周长的最小值是BC+BE=1++=1+,故答案为:1+.点评:本题考查了折叠性质,等腰三角形性质,轴对称﹣最短路线问题,勾股定理,含30度角的直角三角形性质的应用,关键是求出P点的位置,题目比较好,难度适中.12.(2013?黔西南州)如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E= 15 度.考点:等边三角形的性质;三角形的外角性质;等腰三角形的性质.专题:压轴题.分析:根据等边三角形三个角相等,可知∠ACB=60°,根据等腰三角形底角相等即可得出∠E的度数.解答:解:∵△ABC是等边三角形,∴∠ACB=60°,∠ACD=120°,∵CG=CD,∴∠CDG=30°,∠FDE=150°,∵DF=DE,∴∠E=15°.故答案为:15.点评:本题考查了等边三角形的性质,互补两角和为180°以及等腰三角形的性质,难度适中.13.(2013?枣庄)若,,则a+b的值为.考点:平方差公式.专题:计算题.分析:已知第一个等式左边利用平方差公式化简,将a﹣b的值代入即可求出a+b的值.解答:解:∵a2﹣b2=(a+b)(a﹣b)=,a﹣b=,∴a+b=.故答案为:.点评:此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.14.(2013?内江)若m2﹣n2=6,且m﹣n=2,则m+n= 3 .考点:因式分解-运用公式法.分析:将m2﹣n2按平方差公式展开,再将m﹣n的值整体代入,即可求出m+n的值.解答:解:m2﹣n2=(m+n)(m﹣n)=(m+n)×2=6,故m+n=3.故答案为:3.点评:本题考查了平方差公式,比较简单,关键是要熟悉平方差公式(a+b)(a﹣b)=a2﹣b2.15.(2013?菏泽)分解因式:3a2﹣12ab+12b2= 3(a﹣2b)2.考点:提公因式法与公式法的综合运用.分析:先提取公因式3,再对余下的多项式利用完全平方公式继续分解即可求得答案.解答:解:3a2﹣12ab+12b2=3(a2﹣4ab+4b2)=3(a﹣2b)2.故答案为:3(a﹣2b)2.点评:本题考查了用提公因式法和公式法进行因式分解的知识.一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,注意因式分解要彻底.16.(2013?盐城)使分式的值为零的条件是x= ﹣1 .考点:分式的值为零的条件.分析:分式的值为零时,分子等于零,且分母不等于零.解答:解:由题意,得x+1=0,解得,x=﹣1.经检验,x=﹣1时,=0.故答案是:﹣1.点评:本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.17.(2013?南京)使式子1+有意义的x的取值范围是x≠1.考点:分式有意义的条件.分析:分式有意义,分母不等于零.解答:解:由题意知,分母x﹣1≠0,即x≠1时,式子1+有意义.故填:x≠1.点评:本题考查了分式有意义的条件.从以下三个方面透彻理解分式的概念:(1)分式无意义?分母为零;(2)分式有意义?分母不为零;(3)分式值为零?分子为零且分母不为零.18.(2012?茂名)若分式的值为0,则a的值是 3 .考点:分式的值为零的条件.专题:探究型.分析:根据分式的值为0的条件列出关于a的不等式组,求出a的值即可.解答:解:∵分式的值为0,∴,解得a=3.故答案为:3.点评:本题考查的是分式的值为0的条件,即分式值为零的条件是分子等于零且分母不等于零.19.在下列几个均不为零的式子,x2﹣4,x2﹣2x,x2﹣4x+4,x2+2x,x2+4x+4中任选两个都可以组成分式,请你选择一个不是最简分式的分式进行化简:.考点:最简分式.专题:开放型.分析:在这几个式子中任意选一个作分母,任意另选一个作分子,就可以组成分式.因而可以写出的分式有很多个,把分式的分子分母分别分解因式,然后进行约分即可.解答:解:==,故填:.点评:本题主要考查分式的定义,分母中含有字母的有理式就是分式.并且考查了分式的化简,首先要把分子、分母分解因式,然后进行约分.20.不改变分式的值,把分式分子分母中的各项系数化为整数且为最简分式是.考点:最简分式.分析:首先将分子、分母均乘以100,若不是最简分式,则一定要约分成最简分式.本题特别注意分子、分母的每一项都要乘以100.解答:解:分子、分母都乘以100得,,约分得,.点评:解题的关键是正确运用分式的基本性质.三.解答题(共8小题)21.(2013?遵义)已知实数a满足a2+2a﹣15=0,求﹣÷的值.考点:分式的化简求值.分析:先把要求的式子进行计算,先进行因式分解,再把除法转化成乘法,然后进行约分,得到一个最简分式,最后把a2+2a﹣15=0进行配方,得到一个a+1的值,再把它整体代入即可求出答案.解答:解:﹣÷=﹣?=﹣=,∵a2+2a﹣15=0,∴(a+1)2=16,∴原式==.点评:此题考查了分式的化简求值,关键是掌握分式化简的步骤,先进行通分,再因式分解,然后把除法转化成乘法,最后约分;化简求值题要将原式化为最简后再代值.22.(2013?重庆)先化简,再求值:÷(﹣a﹣2b)﹣,其中a,b满足.考点:分式的化简求值;解二元一次方程组.专题:探究型.分析:先根据分式混合运算的法则把原式进行化简,再求出a、b的值代入进行计算即可.解答:解:原式=÷﹣=×﹣=﹣=﹣,∵,∴,∴原式=﹣=﹣.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.23.(2007?资阳)设a1=32﹣12,a2=52﹣32,…,a n=(2n+1)2﹣(2n﹣1)2(n为大于0的自然数).(1)探究a n是否为8的倍数,并用文字语言表述你所获得的结论;(2)若一个数的算术平方根是一个自然数,则称这个数是“完全平方数”.试找出a1,a2,…,a n,…这一列数中从小到大排列的前4个完全平方数,并指出当n满足什么条件时,a n为完全平方数(不必说明理由).考点:因式分解-运用公式法.专题:规律型.分析:(1)利用平方差公式,将(2n+1)2﹣(2n﹣1)2化简,可得结论;(2)理解完全平方数的概念,通过计算找出规律.解答:解:(1)∵a=(2n+1)2﹣(2n﹣1)2=4n2+4n+1﹣4n2+4n﹣1=8n,(3分)n又n为非零的自然数,∴a n是8的倍数.(4分)这个结论用文字语言表述为:两个连续奇数的平方差是8的倍数(5分)说明:第一步用完全平方公式展开各(1),正确化简(1分).(2)这一列数中从小到大排列的前4个完全平方数为16,64,144,256.(7分)n为一个完全平方数的2倍时,a n为完全平方数(8分)说明:找完全平方数时,错一个扣(1),错2个及以上扣(2分).点评:本题考查了公式法分解因式,属于结论开放性题目,通过一系列的式子,找出一般规律,考查了同学们的探究发现的能力.24.在△ABC中,若AD是∠BAC的角平分线,点E和点F分别在AB和AC上,且DE⊥AB,垂足为E,DF⊥AC,垂足为F(如图(1)),则可以得到以下两个结论:①∠AED+∠AFD=180°;②DE=DF.那么在△ABC中,仍然有条件“AD是∠BAC的角平分线,点E和点F,分别在AB和AC上”,请探究以下两个问题:(1)若∠AED+∠AFD=180°(如图(2)),则DE与DF是否仍相等?若仍相等,请证明;否则请举出反例.(2)若DE=DF,则∠AED+∠AFD=180°是否成立?(只写出结论,不证明)考点:全等三角形的判定与性质;角平分线的性质.专题:证明题.分析:(1)过点D作DM⊥AB于M,DN⊥AC于N,根据角平分线上的点到角的两边的距离相等可得DM=DN,再根据∠AED+∠AFD=180°,平角的定义得∠AFD+∠DFN=180°,可以推出∠DFN=∠AED,然后利用角角边定理证明△DME与△DNF全等,根据全等三角形对应边相等即可证明;(2)不一定成立,若DE、DF在点D到角的两边的垂线段上或垂线段与点A的两侧,则成立,若是同侧则不成立.解答:解:(1)DE=DF.理由如下:过点D作DM⊥AB于M,DN⊥AC于N,∵AD平分∠BAC,DM⊥AB,DN⊥AC,∴DM=DN,∵∠AED+∠AFD=180°,∠AFD+∠DFN=180°,∴∠DFN=∠AED,∴△DME≌△DNF(AAS),∴DE=DF;(2)不一定成立.如图,若DE、DF在点D到角的两边的垂线段与顶点A的同侧则一定不成立,经过(1)的证明,若在垂线段上或两侧则成立,所以不一定成立.点评:本题考查了角平分线的性质,全等三角形的判定与性质,从题目提供信息找出求证的思路是解题的关键,读懂题目信息比较重要.25.(2012?遵义)如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.考点:等边三角形的性质;全等三角形的判定与性质;含30度角的直角三角形.专题:压轴题;动点型.分析:(1))由△ABC是边长为6的等边三角形,可知∠ACB=60°,再由∠BQD=30°可知∠QPC=90°,设AP=x,则PC=6﹣x,QB=x,在Rt△QCP中,∠BQD=30°,PC=QC,即6﹣x=(6+x),求出x的值即可;(2)作QF⊥AB,交直线AB的延长线于点F,连接QE,PF,由点P、Q做匀速运动且速度相同,可知AP=BQ,再根据全等三角形的判定定理得出△APE≌△BQF,再由AE=BF,PE=QF且PE∥QF,可知四边形PEQF是平行四边形,进而可得出EB+AE=BE+BF=AB,DE=AB,由等边△ABC的边长为6可得出DE=3,故当点P、Q运动时,线段DE的长度不会改变.解答:解:(1)∵△ABC是边长为6的等边三角形,∴∠ACB=60°,∵∠BQD=30°,∴∠QPC=90°,设AP=x,则PC=6﹣x,QB=x,∴QC=QB+BC=6+x,∵在Rt△QCP中,∠BQD=30°,∴PC=QC,即6﹣x=(6+x),解得x=2,∴AP=2;(2)当点P、Q运动时,线段DE的长度不会改变.理由如下:作QF⊥AB,交直线AB的延长线于点F,连接QE,PF,又∵PE⊥AB于E,∴∠DFQ=∠AEP=90°,∵点P、Q速度相同,∴AP=BQ,∵△ABC是等边三角形,∴∠A=∠ABC=∠FBQ=60°,在△APE和△BQF中,∵∠AEP=∠BFQ=90°,∴∠APE=∠BQF,∴在△APE和△BQF中,∴△APE≌△BQF(AAS),∴AE=BF,PE=QF且PE∥QF,∴四边形PEQF是平行四边形,∴DE=EF,∵EB+AE=BE+BF=AB,∴DE=AB,又∵等边△ABC的边长为6,∴DE=3,∴当点P、Q运动时,线段DE的长度不会改变.点评:本题考查的是等边三角形的性质及全等三角形的判定定理、平行四边形的判定与性质,根据题意作出辅助线构造出全等三角形是解答此题的关键.26.(2005?江西)将一张矩形纸片沿对角线剪开,得到两张三角形纸片,再将这两张三角形纸片摆放成如下图的形式,使点B、F、C、D在同一条直线上.(1)求证:AB⊥ED;(2)若PB=BC,请找出图中与此条件有关的一对全等三角形,并给予证明.考点:翻折变换(折叠问题);直角三角形全等的判定.专题:几何综合题;压轴题.分析:做此题要理解翻折变换后相等的条件,同时利用常用的全等三角形的判定方法来判定其全等.解答:证明:(1)由题意得,∠A+∠B=90°,∠A=∠D,∴∠D+∠B=90°,∴AB⊥DE.(3分)(2)∵AB⊥DE,AC⊥BD∴∠BPD=∠ACB=90°,∴在△ABC和△DBP,,∴△ABC≌△DBP(AAS).(8分)说明:图中与此条件有关的全等三角形还有如下几对:△APN≌△DCN、△DEF≌△DBP、△EPM≌△BFM.点评:此题考查了翻折变换及全等三角形的判定方法等知识点,常用的判定方法有SSS、SAS、AAS、HL等.27.(2013?沙河口区一模)如图,Rt△ABC中,∠C=90°,AC=3,BC=4.点M在AB边上以1单位长度/秒的速度从点A向点B运动,运动到点B时停止.连接CM,将△ACM沿着CM对折,点A的对称点为点A′.(1)当CM与AB垂直时,求点M运动的时间;(2)当点A′落在△ABC的一边上时,求点M运动的时间.考点:翻折变换(折叠问题).分析:(1)由Rt△ABC中,∠C=90°,CM与AB垂直,易证得△ACM∽△ABC,然后由相似三角形的对应边成比例,即可求得AM的长,即可得点M运动的时间;(2)分别从当点A′落在AB上时与当点A′落在BC上时去分析求解即可求得答案.解答:解:(1)∵Rt△ABC中,∠C=90°,CM⊥AB,∴∠A=∠A,∠AMC=∠ACB=90°,∴△ACM∽△ABC,∴,∵AC=3,BC=4,∴AB==5,∴AM==,∴点M运动的时间为:;(2)①如图1,当点A′落在AB上时,此时CM⊥AB,则点M运动的时间为:;②如图2,当点A′落到BC上时,CM是∠ACB平分线,过点M作ME⊥BC于点E,作MF⊥AC于点F,∴ME=MF,∵S△ABC=S△ACM+S△BCM,∴AC?BC=AC?MF+BC?ME,∴×3×4=×3×MF+×4×MF,解得:MF=,∵∠C=90°,∴MF∥BC,∴△AMF∽△ABC,∴,即,解得:AM=,综上可得:当点A′落在△ABC的一边上时,点M运动的时间为:或.点评:此题考查了相似三角形的判定与性质、折叠的性质以及勾股定理等知识.此题难度较大,注意掌握数形结合思想与分类讨论思想的应用.28.已知点C为线段AB上一点,分别以AC、BC为边在线段AB同侧作△ACD和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直线AE与BD交于点F,(1)如图1,若∠ACD=60°,则∠AFB=120°;如图2,若∠ACD=90°,则∠AFB=90°;如图3,若∠ACD=120°,则∠AFB=60°;(2)如图4,若∠ACD=α,则∠AFB=180°﹣α(用含α的式子表示);(3)将图4中的△ACD绕点C顺时针旋转任意角度(交点F至少在BD、AE中的一条线段上),变成如图5所示的情形,若∠ACD=α,则∠AFB与α的有何数量关系?并给予证明.考点:等边三角形的判定与性质.专题:证明题;探究型.分析:(1)如图1,首先证明△BCD≌△ECA,得出∠EAC=∠BDC,再根据∠AFB是△ADF的外角求出其度数.如图2,首先证明△ACE≌△DCB,得出∠AEC=∠DBC,又有∠FDE=∠CDB,进而得出∠AFB=90°.如图3,首先证明△ACE≌△DCB,得出∠EAC=∠BDC,又有∠BDC+∠FBA=180°﹣∠DCB得到∠FAB+∠FBA=120°,进而求出∠AFB=60°.(2)由∠ACD=∠BCE得到∠ACE=∠DCB,再由三角形的内角和定理得∠CAE=∠CDB,从而得出∠DFA=∠ACD,得到结论∠AFB=180°﹣α.(3)由∠ACD=∠BCE得到∠ACE=∠DCB,通过证明△ACE≌△DCB得∠CBD=∠CEA,由三角形内角和定理得到结论∠AFB=180°﹣α.解答:解:(1)如图1,CA=CD,∠ACD=60°,所以△ACD是等边三角形.∵CB=CE,∠ACD=∠BCE=60°,所以△ECB是等边三角形.∵AC=DC,∠ACE=∠ACD+∠DCE,∠BCD=∠BCE+∠DCE,又∵∠ACD=∠BCE,∴∠ACE=∠BCD.∵AC=DC,CE=BC,∴△ACE≌△DCB.∴∠EAC=∠BDC.∠AFB是△ADF的外角.∴∠AFB=∠ADF+∠FAD=∠ADC+∠CDB+∠FAD=∠ADC+∠EAC+∠FAD=∠ADC+∠DAC=120°.如图2,∵AC=CD,∠ACE=∠DCB=90°,EC=CB,∴△ACE≌△DCB.∴∠AEC=∠DBC,又∵∠FDE=∠CDB,∠DCB=90°,∴∠EFD=90°.∴∠AFB=90°.如图3,∵∠ACD=∠BCE,∴∠ACD﹣∠DCE=∠BCE﹣∠DCE.∴∠ACE=∠DCB.又∵CA=C D,CE=CB,∴△ACE≌△DCB.∴∠EAC=∠BDC.∵∠BDC+∠FBA=180°﹣∠DCB=180°﹣(180﹣∠ACD)=120°,∴∠FAB+∠FBA=120°.∴∠AFB=60°.故填120°,90°,60°.(2)∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE.∴∠ACE=∠DCB.∴∠CAE=∠CDB.∴∠DFA=∠ACD.∴∠AFB=180°﹣∠DFA=180°﹣∠ACD=180°﹣α.(3)∠AFB=180°﹣α;证明:∵∠ACD=∠BCE=α,则∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠DCB.在△ACE和△DCB中,则△ACE≌△DCB(SAS).则∠CBD=∠CEA,由三角形内角和知∠EFB=∠ECB=α.∠AFB=180°﹣∠EFB=180°﹣α.点评:本题考查了全等三角形的判定及其性质、三角形内角和定理等知识.。