信号与系统练习题汇总

合集下载

信号与系统练习题(带答案)

信号与系统练习题(带答案)

信号与系统练习题(带答案)1. 信号f(t)的波形如图所示。

分别画出信号(24),(24),(24)f t f t f t '''-+-+-+的波形,并且写出其表达式。

答案:2. 信号f ( t )的图形如下所示,对(a)写出f ' ( t )的表达式,对(b)写出f " ( t )的表达式,并分别画出它们的波形。

解 (a)20,21≤≤tf ' (t)= δ(t -2), t = 2-2δ(t -4), t = 4(b) f " (t ) = 2δ(t ) - 2δ(t -1)-2δ(t -3)+2δ(t -4)3. 已知f(5-2t)的波形如图所示,试画出f(t)的波形。

52:()(2)(2)(52)5252252:(52)(2)(2)()f t f t f t f t t tf t f t f t f t −−−→−−−→-−−−→---=-∴-→-→→ 压缩反转平移左移反转拉伸分析()右移求解过程55[52()]2,22t t t t -+=-∴+ 以代替而求得-2t ,即f(5-2t)左移(52)(2)f t f t -−−−→-时移由(2)反转:f(-2t)中以-t 代替t ,可求得f(2t),表明f(-2t)的波形 以t =0的纵轴为中心线对褶,注意()t δ是偶数,故112()2()22t t δδ--=+(2)(2)f t f t -−−−→反褶由(3)尺度变换:以12t 代替f(2t)中的t ,所得的f(t)波形将是f(2t)波形在时间轴上扩展两倍。

4. 求序列{}12[]1,2,1,0,1,2[][1cos()][]2f n n f n n u n π===+和的卷积和。

解:{}112222[]1,2,1[]2[1][2][]*[][]2[1][2]f n n n n f n f n f n f n f n δδδ==+-+-=+-+-5. 试求下列卷积。

(完整版)信号与系统练习及答案

(完整版)信号与系统练习及答案

信号与系统练习及答案一、单项选择题1.已知信号f (t )的波形如题1图所示,则f (t )的表达式为( )A .tu(t)B .(t-1)u(t-1)C .tu(t-1)D .2(t-1)u(t-1)2.积分式⎰-δ+δ++4422)]dt -(t 2(t))[23(t t 的积分结果是( ) A .14 B .24 C .26 D .283.已知f(t)的波形如题3(a )图所示,则f (5-2t)的波形为( )4.周期矩形脉冲的谱线间隔与( )A .脉冲幅度有关B .脉冲宽度有关C .脉冲周期有关D .周期和脉冲宽度有关 5.若矩形脉冲信号的宽度加宽,则它的频谱带宽( ) A .不变 B .变窄 C .变宽D .与脉冲宽度无关 6.如果两个信号分别通过系统函数为H (j ω)的系统后,得到相同的响应,那么这两个信号()A .一定相同 B .一定不同 C .只能为零 D .可以不同7.f(t)=)(t u e t 的拉氏变换为F (s )=11-s ,且收敛域为( ) A .Re[s]>0B .Re[s]<0C .Re[s]>1D .Re[s]<1 8.函数⎰-∞-δ=2t dx )x ()t (f 的单边拉氏变换F (s )等于( ) A .1 B .s 1 C .e -2s D .s1e -2s 9.单边拉氏变换F (s )=22++-s e )s (的原函数f(t)等于( ) A .e -2t u(t-1) B .e -2(t-1)u(t-1) C .e -2t u(t-2)D .e -2(t-2)u(t-2)答案: BCCCBDCDA二.填空题1.如果一线性时不变系统的单位冲激响应为h(t),则该系统的阶跃响应g(t)为_________。

2.已知x(t)的傅里叶变换为X (j ω),那么x (t-t 0)的傅里叶变换为_________________。

3.如果一线性时不变系统的输入为f(t),零状态响应为y f (t )=2f (t-t 0),则该系统的单位冲激响应h(t)为_________________。

信号与系统试题及答案

信号与系统试题及答案

信号与系统试题及答案一、选择题1. 信号f(t)=cos(2πt+π/4)是()。

- A. 偶函数- B. 奇函数- C. 周期函数- D. 非周期函数答案:C2. 系统分析中,如果输入信号为x(t),输出信号为y(t),那么系统的冲激响应h(t)与输出信号y(t)的关系是()。

- A. y(t) = x(t) * h(t)- B. y(t) = ∫x(t)h(t)dt- C. y(t) = x(t) + h(t)- D. y(t) = x(t) - h(t)答案:B3. 一个线性时不变(LTI)系统,其频率响应H(ω)是输入信号X(ω)的傅里叶变换与系统冲激响应的乘积,那么该系统的逆傅里叶变换是()。

- A. X(ω) * H(ω)- B. X(ω) / H(ω)- C. 1 / (X(ω) * H(ω))- D. H(ω) / X(ω)答案:A二、简答题1. 解释什么是单位冲激函数,并说明它在信号与系统分析中的作用。

答案:单位冲激函数是一种理想化的信号,其在t=0时的值为1,其他时间的值为0。

数学上通常表示为δ(t)。

在信号与系统分析中,单位冲激函数是系统冲激响应分析的基础,它允许我们通过将输入信号分解为单位冲激函数的叠加来分析系统的响应。

单位冲激函数的傅里叶变换是常数1,这使得它在频域分析中也非常重要。

2. 描述连续时间信号的傅里叶变换及其物理意义。

答案:连续时间信号的傅里叶变换是一种数学变换,它将时域信号转换为频域信号。

对于一个连续时间信号x(t),其傅里叶变换X(ω)可以表示为:\[ X(ω) = \int_{-\infty}^{\infty} x(t) e^{-jωt} dt \] 其中,e^(-jωt)是指数形式的复指数函数。

物理意义上,傅里叶变换揭示了信号的频率成分,即信号由哪些频率的正弦波和余弦波组成。

通过分析X(ω),我们可以了解信号的频率特性,这对于信号处理和系统分析至关重要。

信号和系统试题及答案

信号和系统试题及答案

信号和系统试题及答案一、选择题(每题4分,共20分)1. 信号的频谱分析中,傅里叶变换的物理意义是什么?A. 信号的时域表示B. 信号的频域表示C. 信号的相位信息D. 信号的幅度信息答案:B2. 在线性时不变系统中,系统的输出与输入的关系是什么?A. 线性关系B. 非线性关系C. 时变关系D. 随机关系答案:A3. 下列哪个函数不是周期函数?A. sin(t)B. cos(2t)C. e^(-t)D. cos(2πt)答案:C4. 系统稳定性的判定可以通过什么方法?A. 奈奎斯特准则B. 伯德图C. 相位裕度D. 所有以上答案:D5. 系统函数H(s)的零点和极点分别代表什么?A. 系统输入和输出B. 系统稳定性和不稳定性C. 系统增益和衰减D. 系统频率响应答案:B二、填空题(每题4分,共20分)1. 连续时间信号的傅里叶变换定义为:X(jω) = ____________。

答案:∫x(t)e^(-jωt)dt2. 如果一个系统的冲激响应h(t)是因果的,则系统的零状态响应y(t)与输入x(t)的关系为:y(t) = ____________。

答案:∫h(t-τ)x(τ)dτ3. 一个线性时不变系统的特性可以用其系统函数H(s)来描述,其中s 是复频域变量,代表的是 ____________。

答案:拉普拉斯变换4. 如果一个系统的频率响应H(jω)在ω=ω0处有极点,则在时域中对应的响应h(t)将具有 ____________。

答案:振荡特性5. 系统的因果性意味着系统的输出不会在输入之前出现,这可以用系统的冲激响应h(t)满足的条件来表示:h(t) = ____________。

答案:0,t < 0三、简答题(每题10分,共30分)1. 请简述傅里叶级数与傅里叶变换的区别。

答案:傅里叶级数适用于周期信号,是将周期信号分解为正弦和余弦函数的和,而傅里叶变换适用于非周期信号,是将信号分解为复指数函数的积分。

信号与系统试题及答案

信号与系统试题及答案

信号与系统试题及答案一、选择题1.在信号的描述中,连续变量而将定义域是有限的信号称为()。

A.连续信号B.离散信号C.周期信号D.非周期信号答案:B2.信号的傅里叶变换(Fourier Transform,FT)是信号处理中常用的分析方法,其定义为()。

A.连续时间歧波函数B.非周期连续时间信号C.连续时间冲激函数D.连续时间信号答案:D3.对于离散时间信号,其傅里叶变换可以采用()来表示。

A.傅里叶级数展开B.离散时间傅里叶变换C.拉普拉斯变换D.傅里叶变换答案:B4.信号的卷积运算在信号处理中起着重要的作用,下面关于卷积的叙述中,哪一项是错误的?A.卷积运算是线性运算B.卷积运算是可交换的C.卷积运算是可结合的D.卷积运算是时不变的答案:B二、填空题1.连续时间信号x(t)的自相关函数定义为()。

答案:R_xx(tau) = E[x(t)x(t-tau)]2.离散时间信号x[n]的傅里叶变换定义为()。

答案:X(e^jw) = ∑(n=-∞)^(∞) x[n]e^(-jwn)3.周期信号x(t)的复指数傅里叶级数展开公式为()。

答案:x(t) = ∑(k=-∞)^(∞) c_ke^(jwt)4.信号x(t)和h(t)的卷积定义为()。

答案:(x*h)(t) = ∫[(-∞)-(∞)] x(tau)h(t-tau)dtau三、解答题1.连续时间信号与离散时间信号的区别是什么?答:连续时间信号是在连续的时间域上定义的信号,可以取连续的值;而离散时间信号是在离散的时间点上定义的信号,只能取离散的值。

2.请简要解释信号的功率谱密度是什么。

答:功率谱密度是描述信号功率在频域上的分布情况,可以看作是傅里叶变换后信号幅度的平方。

它表示了信号在不同频率上的功率强度,可以用于分析信号的频谱特性。

3.请简述卷积运算在信号处理中的应用。

答:卷积运算在信号处理中十分常见,主要应用于线性时不变系统的描述。

通过卷积运算,可以计算输入信号与系统的响应之间的关系,从而对信号进行滤波、去噪等处理操作。

信号与系统练习题及答案

信号与系统练习题及答案

第一章 习 题1-1 试分别指出以下波形是属于哪种信号?题图1-11-2 试写出题1-1图中信号的函数表达式。

1-3 已知信号)(1t x 与)(2t x 波形如题图1-3中所示,试作出下列各信号的波形图,并加以标注。

题图1-3⑴ )2(1-t x ⑵ )1(1t x - ⑶ )22(1+t x ⑷ )3(2+t x ⑸ )22(2-t x ⑹ )21(2t x -t)(a t)(bt)(c nt)(bt)(a⑺ )(1t x )(2t x - ⑻ )1(1t x -)1(2-t x ⑼ )22(1t x -)4(2+t x1-4 已知信号)(1n x 与)(2n x 波形如题图1-4中所示,试作出下列各信号的波形图,并加以标注。

题图1-4⑴ )12(1+n x ⑵ )4(1n x - ⑶ )2(1nx⑷ )2(2n x - ⑸ )2(2+n x ⑹ )1()2(22--++n x n x ⑺)2(1+n x )21(2n x - ⑻ )1(1n x -)4(2+n x ⑼ )1(1-n x )3(2-n x 1-5 已知信号)25(t x -的波形如题图1-5所示,试作出信号)(t x 的波形图,并加以标注。

题图1-51-6 试画出下列信号的波形图:⑴ )8sin()sin()(t t t x ΩΩ= ⑵ )8sin()]sin(211[)(t t t x ΩΩ+=⑶ )8sin()]sin(1[)(t t t x ΩΩ+= ⑷ )2sin(1)(t tt x =nn)(a t1-7 试画出下列信号的波形图:⑴ )(1)(t u e t x t -+= ⑵ )]2()1([10cos )(---=-t u t u t e t x t π ⑶ )()2()(t u e t x t --= ⑷ )()()1(t u e t x t --= ⑸ )9()(2-=t u t x ⑹ )4()(2-=t t x δ1-8试求出以下复变函数的模与幅角,并画出模与幅角的波形图。

(完整版)信号与系统专题练习题及答案

(完整版)信号与系统专题练习题及答案信号与系统专题练习题一、选择题1.设当t<3时,x(t)=0,则使)2()1(t x t x -+-=0的t 值为 C 。

A t>-2或t>-1B t=1和t=2C t>-1D t>-22.设当t<3时,x(t)=0,则使)2()1(t x t x -?-=0的t 值为 D 。

A t>2或t>-1B t=1和t=2C t>-1D t>-23.设当t<3时,x(t)=0,则使x(t/3)=0的t 值为 C 。

A t>3 B t=0 C t<9 D t=34.信号)3/4cos(3)(π+=t t x 的周期是 C 。

A π2 B π C 2/π D π/25.下列各表达式中正确的是B A. )()2(t t δδ= B.)(21)2(t t δδ= C. )(2)2(t t δδ= D. )2(21)(2t t δδ=6. 已知系统的激励e(t)与响应r(t)的关系为:)1()(t e t r -= 则该系统为 B 。

A 线性时不变系统 B 线性时变系统 C 非线性时不变系统 D 非线性时变系统7. 已知系统的激励e(t)与响应r(t)的关系为:)()(2t e t r = 则该系统为 C 。

A 线性时不变系统B 线性时变系统C 非线性时不变系统D 非线性时变系统 8. ?∞-=td ττττδ2sin )( A 。

A 2u(t) B )(4t δ C 4 D 4u(t)10.dt t t )2(2cos 33+??-δπ等于 B 。

A 0 B -1 C 2 D -211.线性时不变系统输出中的自由响应的形式由 A 决定A 系统函数极点的位置;B 激励信号的形式;C 系统起始状态;D 以上均不对。

12.若系统的起始状态为0,在x (t)的激励下,所得的响应为 D 。

A 强迫响应;B 稳态响应;C 暂态响应;D 零状态响应。

信号与系统练习题附答案

《信号与系统》练习题1、线性性质包含两个内容: 和 。

(可加性、齐次性)2、线性时不变(LTI )连续系统的数学模型是线性常系数 方程。

(微分) 线性时不变(LTI )离散系统的数学模型是线性常系数 方程。

(差分)3、线性时不变系统具有 、 和 。

(微分特性、积分特性、频率保持性。

)4、连续系统的基本分析方法有: 分析法, 分析法和 分析法。

(时域、频域、复频域或s 域)系统依处理的信号形式,可以分为三大类:连续系统、离散系统和混合系统。

5、周期信号频谱的特点是 、 、 。

(离散性、谐波性、收敛性)6、(1)LTI 连续系统稳定的充要条件是 。

(∞<⎰∞∞-dt t h )()(2)LTI 离散系统稳定的充要条件是 。

(()∞<∑∞=0n n h ) 7、(1)已知信号()t e t f 2-=,则其频谱函数()=ωF 。

(()244ωω+=F ) (2)已知信号()()()t t e t f at εω0sin -=,则其频谱函数()=ωF 。

(()()2020ωωωω++=j a F ) 8、信号t t t f 3cos 3cos 21)(++=的傅立叶变换是 。

(()()()()[]()()[]333112++-+++-+=ωδωδπωδωδωδπωF )9、为了保证对输入信号无失真传输,系统函数必须满足的条件是 。

(()0t j Ke j H ωω-=)10、冲激信号通过理想低通滤波器后,冲激响应是 。

(()()[]0t t Sa t h c c -=ωπω) 11、为使采样信号不丢失信息,信号必须频带有限且采样间隔s T 。

(m f 21≤) 12、(1)已知()t t f --=e 2,则其单边拉式变换()=s F 。

(()()12++=s s s s F ) (2)已知()()t t t f 3e-+=δ,则其单边拉式变换()=s F 。

(()311++=s s F ) 13、(1)象函数())2)(1(4+++=s s s s s F 的逆变换 ()t f 为 。

信号与系统复习题含答案

信号与系统复习题含答案一、选择题1. 信号与系统研究的主要内容是什么?A. 信号的分析与处理B. 系统的分析与设计C. 信号与系统的分析与处理D. 信号与系统的分析与设计答案:C2. 离散时间信号的周期性条件是什么?A. \( x[n] = x[n+N] \) 对所有 \( n \) 成立B. \( x[n] = x[n+M] \) 对所有 \( n \) 成立C. \( x[n] = x[n+LCM(N,M)] \) 对所有 \( n \) 成立D. \( x[n] = x[n+GCD(N,M)] \) 对所有 \( n \) 成立答案:A3. 线性时不变(LTI)系统的性质不包括以下哪一项?A. 线性B. 时不变性C. 因果性D. 可逆性答案:D二、填空题4. 如果一个信号 \( x(t) \) 是周期的,其周期为 \( T \),则\( x(t) \) 的傅里叶级数表示中,频率成分的间隔为\( \frac{2\pi}{T} \)。

5. 连续时间信号 \( x(t) \) 的拉普拉斯变换定义为 \( X(s) =\int_{0}^{\infty} x(t) e^{-st} dt \),其中 \( s \) 是复频率变量。

三、简答题6. 简述卷积定理的内容。

答:卷积定理指出,两个信号的卷积的傅里叶变换等于它们各自傅里叶变换的乘积。

数学表达式为 \( \mathcal{F}\{x(t) * h(t)\} =X(f)H(f) \),其中 \( * \) 表示卷积操作,\( \mathcal{F} \) 表示傅里叶变换。

7. 什么是采样定理,它在信号处理中有何应用?答:采样定理,也称为奈奎斯特定理,指出如果一个连续时间信号的频谱只包含频率低于 \( f_s/2 \) 的成分,则该信号可以通过对其以至少 \( 2f_s \) 的速率进行采样来完全重建。

在信号处理中,采样定理用于确定模拟信号数字化所需的最小采样率,以避免混叠现象。

信号与系统试题库史上最全(内含答案)

信号与系统考试方式:闭卷 考试题型:1、简答题(5个小题),占30分;计算题(7个大题),占70分。

一、简答题:1.dtt df t f x e t y t )()()0()(+=-其中x(0)是初始状态,为全响应,为激励,)()(t y t f 试回答该系统是否是线性的?[答案:非线性]2.)()(sin )('t f t ty t y =+试判断该微分方程表示的系统是线性的还是非线性的,是时变的还是非时变的?[答案:线性时变的]3.已知有限频带信号)(t f 的最高频率为100Hz ,若对)3(*)2(t f t f 进行时域取样,求最小取样频率s f =?[答案:400s f Hz =]4.简述无失真传输的理想条件。

[答案:系统的幅频特性为一常数,而相频特性为通过原点的直线]5.求[]⎰∞∞--+dt t t e t )()('2δδ的值。

[答案:3]6.已知)()(ωj F t f ↔,求信号)52(-t f 的傅立叶变换。

[答案:521(25)()22j f t e F j ωω--↔]7.已知)(t f 的波形图如图所示,画出)2()2(t t f --ε的波形。

[答案: ]8.已知线性时不变系统,当输入)()()(3t e e t x t t ε--+=时,其零状态响应为)()22()(4t e e t y t t ε--+=,求系统的频率响应。

[答案:())4)(2(52)3(++++ωωωωj j j j ]9.求象函数2)1(32)(++=s s s F ,的初值)0(+f 和终值)(∞f 。

[答案:)0(+f =2,0)(=∞f ]10.若LTI 离散系统的阶跃响应为)(k g ,求其单位序列响应。

其中:)()21()(k k g k ε=。

[答案:1111()()(1)()()()(1)()()(1)222k k k h k g k g k k k k k εεδε-=--=--=--]11.已知()1 1 , 0,1,20 , k f k else ==⎧⎨⎩ ,()2 1 , 0,1,2,30 , k k f k else -==⎧⎨⎩设()()()12f k f k f k =*,求()3?f =。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章绪论1、选择题1.1、f (5-2t )是如下运算的结果 CA 、 f (-2t )右移5B 、 f (-2t )左移5C 、 f (-2t )右移25 D 、 f (-2t )左移251.2、f (t 0-a t )是如下运算的结果 C 。

A 、f (-a t )右移t 0;B 、f (-a t )左移t 0 ;C 、f (-a t )右移a t 0;D 、f (-a t )左移at0 1.3、已知 系统的激励e(t)与响应r(t)的关系为:)()()(t u t e t r = 则该系统为 B 。

A 、线性时不变系统;B 、线性时变系统;C 、非线性时不变系统;D 、非线性时变系统 1.4、已知 系统的激励e(t)与响应r(t)的关系为:)()(2t e t r = 则该系统为 C 。

A 、线性时不变系统 B 、线性时变系统 C 、非线性时不变系统 D 、非线性时变系统 1.5、已知 系统的激励e(t)与响应r(t)的关系为:)1()(t e t r -= 则该系统为 B 。

A 、线性时不变系统B 、线性时变系统C 、非线性时不变系统D 、非线性时变系统1.6、已知 系统的激励e(t)与响应r(t)的关系为:)2()(t e t r = 则该系统为 B A 、线性时不变系统 B 、线性时变系统 C 、非线性时不变系统 D 、非线性时变系统 1.7.信号)34cos(3)(π+=t t x 的周期为 C 。

A 、π2 B 、π C 、2π D 、π21.8、信号)30cos()10cos(2)(t t t f -=的周期为: B 。

A 、15π B 、5π C 、π D 、10π1.9、dt t t )2(2cos 33+⎰-δπ等于 B 。

A.0 B.-1 C.2 D.-21.10、 若)(t x 是己录制声音的磁带,则下列表述错误的是: BA. )(t x -表示将此磁带倒转播放产生的信号B. )2(t x 表示将此磁带放音速度降低一半播放C. )(0t t x -表示将此磁带延迟0t 时间播放D. )(2t x 表示将磁带的音量放大一倍播放 1.11.=⋅)]([cos t u t dtdA A .)()(sin t t u t δ+⋅- B. t sin - C. )(t δ D.t cos1.12.信号t t t x o 2cos 4)304cos(3)(++=的周期为 B 。

A π2 B π C π5.0 D π/2 1.13.如果a>0,b>0,则f (b-a t )是如下运算的结果 C 。

A f (-a t )右移bB f (-a t )左移bC f (-a t )右移b/aD f (-a t )左移b/a 1.14.线性时不变系统的响应,下列说法错误的是 C 。

A 零状态响应是线性时不变的 B 零输入响应是线性时不变的 C 全响应是线性时不变的 D 强迫响应是线性时不变的 2、填空题与判断题2.1、=+t t 0cos )1(ωδ0cos )1(ωδ+t =⋅t t cos )(δ()t δ =--)2()cos 1(πδt t ()2t πδ- =⋅-at e t )(δ()t δ=-⋅)(cos )(0τωδt t 0cos()()t ωτδ⎰∞∞--=dt e t at )(δ 1=--⎰∞∞-dt t t )2()cos 1(πδ 1⎰+∞∞-=⋅tdt t cos )(δ 1⎰+∞∞-=tdt t 0cos )(ωδ 1 ⎰∞-=td ττωτδ0cos )(()u t⎰+∞∞-=+tdt t 0cos )1(ωδ0cos ω⎰∞-=+td ττωτδ0cos )1(0cos (1)u t ω+⎰∞--=td e ττδτ)(()u t⎰∞∞--=--dt t et t)1(][22δ21e --⎰∞∞--=dt e t at )(δ 1 ,2.2、任一信号f(t)与单位冲激信号)(t δ的关系为 ⎰∞∞--=dx t x x f t f )()()(δ, 单位阶跃信号u(t)与单位冲激信号)(t δ的关系为u(t)=⎰∞-td ττδ)(。

2.3、 任何信号都可以分解为偶分量与奇分量之和。

(√) 2.4、偶函数加上直流后仍为偶函数。

(√) 2.5、两个周期信号之和一定是周期信号 (×) 2.6.)cos()3sin()(t t t y π+=是周期信号。

(×) 2.7.冲激响应为)2()(+=t t h δ的系统是线性时不变因果系统。

(×)3、作图题3.1、绘出函数)]3()2([)(---=t u t u t t f 的波形。

2313.2、绘出函数)1()1()(--=t u t t f 的波形。

1-13.3、绘出函数)1()(-=t tu t f 的波形。

123.4、画出微分方程)()()()()(10012t e dtdb t e b t r a t r dt d a t r dt d +=++的仿真框图。

b3.5、画出系统)()()()(2122t e t r a t r dt da t r dtd =++仿真框图。

3.6.画出微分方程)(6)(5)(4)(3)(2)(2233t e t e dtdt r t r dt d t r dt d t r dt d +=+++的仿真框图。

解:引入辅助函数)(t q ,得:)()(4)(3)(2)(2233t e t q t q dtdt q dt d t q dt d =+++)(6)(5)(t q t q dtdt r += ⎰⎰∑∑⎰e(t)r(t)''q 'q '''q -3-465-23.7.画出信号f (t )= 0.5(t+1)[u(t+1)-u(t-1)]的波形以及偶分量f e (t )与奇分量f o (t)波形。

f (t )-111 t3.8.画出信号f (t )= 0.25(t+2)[u(t+2)-u(t-2)]的波形以及偶分量f e (t )与奇分量f o (t)波形。

t2-2 1f (t )第二章连续时间系统的时域分析1、选择题2.若系统的起始状态为0,在e(t)的激励下,所得的响应为 D 。

A 强迫响应 B 稳态响应 C 暂态响应 D 零状态响应 3.线性系统响应满足以下规律 a 。

A)、若起始状态为零,则零输入响应为零。

B)、若起始状态为零,则零状态响应为零。

C)、若系统的零状态响应为零,则强迫响应也为零。

D)、若系统的起始状态为零,则系统的自由响应为零; 4.线性时不变系统输出中的自由响应的形式由 A 决定。

A 系统函数极点的位置B 激励信号的形式C 系统起始状态D 以上均不对。

5.线性时不变系统输出中的自由响应的形式由 B 决定。

A 激励信号B 齐次微分方程的特征根C 系统起始状态D 以上均不对 6.线性时不变稳定系统的自由响应是 C 。

A 零状态响应B 零输入响应C 瞬态响应D 稳态响应 7.对线性时不变系统的响应,下列说法错误的是 B 。

A 零状态响应是线性的B 全响应是线性的C 零输入响应是线性的D 零输入响应是自由响应一部分8.线性时不变系统的响应,下列说法错误的是 C 。

A 零状态响应是线性时不变的B 零输入响应是线性时不变的C 全响应是线性时不变的D 强迫响应是线性时不变的 2、判断题2.1线性常系数微分方程表示的系统,方程的齐次解称之自由响应,特解称之强迫响应。

(√)2.2.不同的系统具有不同的数学模型。

(×) 2.3若系统起始状态为零,则系统的零状态响应就是系统的强迫响应 ( × ) 2.4 零输入响应就是由输入信号产生的响应。

( × ) 2.5零状态响应是自由响应的一部分。

(×) 2.6.零输入响应称之为自由响应,零状态响应称之为强迫响应。

(×) 2.7当激励为冲激信号时,系统的全响应就是冲激响应。

(×) 2.8.当激励为阶跃信号时,系统的全响应就是阶跃响应。

(×) 2.9.已知f 1(t)=u(t+1)-u(t-1),f 2(t)=u(t-1)-u(t-2),则f 1(t)*f 2(t)的非零值区间为(0,3)。

( √ ) 2.10.若f(t)=f 1(t)*f 2(t),则有f(t)=f 1(2t)*f 2(2t)。

(×) 2.11.若)(*)()(t h t e t r =,则有)(*)()(000t t h t t e t t r --=-。

(×) 2.12.线性时不变系统的全响应是线性的。

(× ) 2.14.线性常系数微分方程表示的系统,方程的齐次解称为自由响应。

(√)2.15.线性时不变系统的响应具有可分解性。

(√) 2.16.系统的零输入响应等于该系统的自由响应。

(×) 2.17.因果系统没有输入就没有输出,因而因果系统的零输入响应为零。

(×) 2.18.线性时不变系统的零状态响应是线性时不变的。

(√) 2.19.卷积的方法只适用于线性时不变系统的分析。

(√) 2.20 如果)(1t f 和)(2t f 均为奇函数,则)(*)(21t f t f 为偶函数。

(√)3、填空题3.1已知一连续LTI 系统的单位阶跃响应为)()(3t u e t g t -=,则该系统的单位冲激响应为:h(t)=)(3)(3t u e t t --δ。

3.2=)](*)([t u t u dt d ()u t =*)]()([t tu t u dt d ()tu t =⎥⎦⎤⎢⎣⎡⎰∞-t d u t u dt d λλ)(*)(()tu t=-)](*)([t u t u e dtd t()t e u t - =-)(cos *)(0τωδt t 0cos ()t ωτ- =-t e t *)(δt e - =+t t 0cos *)1(ωδ0cos (1)t ω+3.3 一起始储能为零的系统,当输入为 u (t)时,系统响应为3()t e u t -,则当输入为δ(t )时,系统的响应为3()3()t t e u t δ--。

已知系统的单位阶跃响应为)1(10)()1(-=--t u e t g t ,则激励)1(2)(-=t t f δ的零状态响应=)(t rz s )3(10)3(20)3(-----t u e t t δ_。

4计算题例2-8 已知系统微分方程为)(3)(3)(t e t r t r dt d =+,若起始状态为23)0(=-r ,激励信号)()(t u t e =,求系统的自由响应和强迫响应、零输入响应和零状态响应。

相关文档
最新文档