2020年江苏省南京外国语学校、金陵中学、海安高中高考数学四模试卷(含答案解析)

合集下载

2020南京四校联考数学试卷(含解析)

2020南京四校联考数学试卷(含解析)

B 位于第一象限, A 在线段 BP 上.
① 若 AOM 和 BON 的面积分别为 S1 ,S2 ,问是否存在这样的直线 l 使得 S1 S2 1 ?
请说明理由;
② 直线 OP 与直线 NA 交于点 C ,连结 MB , MC ,记直线 MB , MC 的斜率分别为 k1 ,
k2 .求证: k1k2 为定值.
2
10
2
2
3
9.①③④ 10.
11. [2 2, 4) 12.2
3
13.
14.7
2
17
二、解答题
15.证明:(1)在菱形 ABCD 中,连结 AC 与 BD 交于 O 点,连结 MO,
因为菱形的对角线互相平分,所以点 O 为 AC 的中点,又因为点 M 为 PC 的中点
所以 OM 为三角形 ACP 的中位线,所以 AP//OM,
20.(本小题满分 16 分)
已知函数 f (x) ln x ( a R ,且 a 为常数). ax 1
(1)若函数 y f (x) 的图象在 x e 处的切线的斜率为 1 ( e 为自然对数的底数), e(1 e)2
求 a 的值;
(2)若函数 y f (x) 在区间 (1, 2) 上单调递增,求 a 的取值范围;
…………3 分
又因为 AP 平面 BDM,OM⊂平面 BDM,则 AP∥平面 BDM. …………6 分
(2)在菱形 ABCD 中,对角线互相垂直,所以 AC⊥BD
…………8 分
又因为 PA=PC,由(1)可知点 O 为 AC 的中点,所以 PO⊥AC …………10 分
又 BD⊂平面 PBD,PO⊂平面 PBD,BD∩PO=O,则 AC⊥平面 PBD …12 分

江苏省南通市2020届高三数学下学期第四次调研测试试题含解析

江苏省南通市2020届高三数学下学期第四次调研测试试题含解析

某某省某某市2020届高三数学下学期第四次调研测试试题(含解析)第Ⅰ卷(必做题,共160分)一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上.)1.已知集合{}3,1,1,3A =--,{}2230B x x x =--=∣,则A B =________.【答案】{1,3}-【解析】【分析】解一元二次方程求得集合B ,由此求得A B . 【详解】由()()223310x x x x --=-+=解得1x =-或3x =,所以{}1,3B =-,所以A B ={1,3}-故答案为:{1,3}-【点睛】本小题主要考查集合交集的概念和运算,属于基础题.2.已知复数z 满足()24z i -=,其中i 是虚数单位,则z 的实部为________.【答案】2【解析】【分析】由已知求出24z i =-,即得z 的实部. 【详解】由题得24424i z i i i-===-, 所以24z i =-,所以z 的实部为2.故答案为:2【点睛】本题主要考查复数的运算和复数实部的概念,意在考查学生对这些知识的理解掌握水平.3.某中学为了了解高三年级女生的体重(单位:千克)情况,从中随机抽测了100名女生的体重,所得数据均在区间[]48,58中,其频率分布直方图如图所示,则在抽测的100名女生中,体重在区间[]50,56的女生数为________.【答案】75【解析】【分析】先根据频率分布直方图求出所求区间的频率,然后乘以总人数即为所求.【详解】由频率分布直方图可知,体重在区间[]50,56的频率为()20.1000.1500.1250.75++=,所以体重在区间[]50,56的女生数为0.7510075.⨯= 故答案为:75【点睛】本题主要考查频率分布直方图,属于基础题.4.一个算法的伪代码如图所示,执行此算法,若输出的值为7-,则输入的x 的值为________.【答案】1【解析】【分析】模拟程序的运行过程可知该程序的功能是求分段函数的函数值,利用分类讨论即可求出答案.【详解】解:模拟程序的运行过程可知,该程序的功能是求分段函数6,228,23x x y x x-≥⎧⎪=⎨-<⎪-⎩的函数值,当2x ≥时,67x -=-,得1x =-,不符合题意;当2x <时,2873x-=--,得1x =,符合题意; ∴输入的x 的值为1, 故答案为:1.【点睛】本题主要考查程序与算法的应用,属于基础题.5.在平面直角坐标系xOy 中,已知双曲线2216416x y -=上一点M 到它的一个焦点的距离等于1,则点M 到另一个焦点的距离为________.【答案】17【解析】【分析】设双曲线的左右焦点分别为12,F F ,由题得12||||||16MF MF -=,令2||1MF =即得解.【详解】设双曲线的左右焦点分别为12,F F ,由题得12||||||2816MF MF -=⨯=,所以11|||1|2816||17MF MF -=⨯=∴=,或15-(舍). 所以点M 到另一个焦点的距离为17.故答案为:17.【点睛】本题主要考查双曲线的定义,意在考查学生对该知识的理解掌握水平.6.已知区域{(,)|||2A x y x =,||2}y 和{(,)|0B x y x =>,0y >,2}x y +,若在区域A 内随机取一点,则该点恰好落在区域B 内的概率为________. 【答案】18【解析】【分析】分别求出集合A ,B 所对应的区域的面积,然后根据几何概型的概率公式即可求解.【详解】因为{(,)|||2A x y x =,||2}y 表示的区域是以4为边长的正方形,面积为16, 由{(,)|0B x y x =>,0y >,2}x y +可知,其区域为如图所示的阴影部分,面积12222S =⨯⨯=, 故在区域A 内随机取一点,则该点恰好落在区域B 内的概率21168P ==. 故答案为:18.【点睛】本题主要考查几何概型的概率的计算,意在考查学生对这些知识的理解掌握水平和数形结合分析数学问题的能力.7.若实数x ,y 满足34x y +=,则28x y +的最小值为________.【答案】8【解析】【分析】利用基本不等式求得所求表达式的最小值. 【详解】依题意3334282222222228x y x y x y x y ++=+≥⋅===,当且仅当322x y =,即32x y ==时等号成立.所以28x y +的最小值为8.故答案为:8【点睛】本小题主要考查利用基本不等式求最值,属于基础题.8.已知数列{}n a 满足112n n n n a a a a +++=-,且119a =,则6a 的值为________. 【答案】27【解析】【分析】根据已知条件判断出数列{}n a 是等比数列,进而求得6a 的值.【详解】由于112n n n na a a a +++=-,1122n n n n a a a a +++=-,13n n a a +=, 所以13n n a a +=,所以数列{}n a 是首项为119a =,公比为3q =的等比数列, 所以55361133279a a q =⋅=⨯==. 故答案为:27 【点睛】本小题主要考查根据递推关系求某一项的值,考查等比数列的定义,属于基础题.9.已知()f x 是定义在R 上的周期为3的奇函数,且(2)2(8)1f f -=+,则(2020)f 的值为________. 【答案】13【解析】【分析】根据题意可知函数的周期为3,可得()()()(2)1,81-==-f f f f ,然后根据函数的奇偶性可得()1f ,最后利用函数的周期性可得(2020)f【详解】由题可知:函数()f x 是定义在R 上的周期为3的奇函数所以()()()()(2)1,811-==-=-f f f f f ,又(2)2(8)1f f -=+所以(1)2(1)1=-+f f ,则1(1)3f = 所以()()1(2020)6733113=⨯+==f f f 故答案为:13【点睛】本题考查函数的周期性和奇偶性的综合应用,关键在于观察,利用函数的周期性,把大数变小数,属基础题.10.已知柏拉图多面体是指每个面都是全等的正多边形构成的凸多面体.著名数学家欧拉研究并证明了多面体的顶点数(V)、棱数(E)、面数(F)之间存在如下关系:2V F E+-=.利用这个公式,可以证明柏拉图多面体只有5种,分别是正四面体、正六面体(正方体)、正八面体、正十二面体和正二十面体.若棱长相等的正六面体和正八面体(如图)的外接球的表面积分别为12,S S,则12SS的值为________.【答案】32【解析】【分析】设棱长为a,分别求出正六面体和正八面体的外接球半径即可.【详解】设棱长为a正六面体即正方体,它的外接球的半径等于体对角线的一半,所以13R a=对于正八面体,易得AC BD EF==,故其外接球的球心为AC中点,所以222R a=所以2211222234342424a S R S R a ππ=== 故答案为:32【点睛】本题考查的是几何体外接球,找出球心的位置是解题的关键,属于中档题.11.在平面直角坐标系xOy 中,已知圆M经过直线:0x l -+=与圆22:4C x y +=的两个交点,当圆M 的面积最小时,圆M 的标准方程为________.【答案】223122x y ⎛⎛⎫++-=⎪⎝⎭⎝⎭ 【解析】【分析】直线l 的方程与圆C 方程联立,求出两交点,A B ,当圆M 的面积最小时,圆M 以AB 为直径,可求得圆的标准方程.【详解】由:0x l +=与22:4C x y +=联立得224y -+=, 得1y =或2y =,则两交点坐标为((0,2)A B ,当圆M 的面积最小时,圆M 以AB 为直径,则圆心3()2,半径为12AB =, 圆M 的标准方程为22312x y ⎛⎛⎫++-= ⎪⎝⎭⎝⎭. 故答案为:22312x y ⎛⎛⎫++-= ⎪⎝⎭⎝⎭ 【点睛】本题考查了求直线与圆的交点坐标,求以两点的线段为直径的圆的标准方程,属于基础题. 12.如图,四边形ABCD 是以AB 为直径的圆的内接四边形.若2,1AB AD ==,则DC AB ⋅的取值X 围是________.【答案】(0,3)【解析】【分析】 连接,,BD BC AC ,则()2DC AB DA AB AB BC AC CB ⋅=⋅++⋅+,再由直径AB 可得1cos 2DAB ∠=,90ACB ∠=︒,从而可求DC AB ⋅的值. 【详解】连接,,BD BC AC因为AB 为直径,故90ADB ∠=︒,而2,1AB AD ==,所以1cos 2DAB ∠=. 同理90ACB ∠=︒. ()2DC AB DA AB BC AB DA AB AB BC AB ⋅=++⋅=⋅++⋅()2112432BC AC CB CB ⎛⎫=⨯⨯-++⋅+=- ⎪⎝⎭, 因为C 在BD 之间(异于,B D 两点),故(3BC ∈,所以()0,3DC AB ⋅∈,故答案为:(0,3).【点睛】本题考查向量的数量积,其计算方法有定义法、坐标法、基底法等,解题中注意向已知的向量转化.13.已知函数23,0()2,0x x f x x x x <⎧=⎨-≥⎩,则函数(()24)y f f x x =-+的不同零点的个数为________.【答案】5【解析】【分析】先求得()f x 的零点,然后由(()24)0y f f x x =-+=,求得函数(()24)y f f x x =-+的不同零点的个数.【详解】由于函数23,0()2,0x x f x x x x <⎧=⎨-≥⎩,当0x <时,30x <,没有零点.当0x ≥时,220x x -=,解得10x =或22x =.令(()24)0y f f x x =-+=,则()240f x x -+=或()242f x x -+=,即()24f x x =-或()22f x x =-.由3240x x x =-⎧⎨<⎩或22240x x x x ⎧-=-⎨≥⎩或3220x x x =-⎧⎨<⎩或22220x x x x ⎧-=-⎨≥⎩. 解得4x =-或2x =,或2x =-,或2x =±所以函数(()24)y f f x x =-+的不同零点的个数为5.故答案为:5 【点睛】本小题主要考查分段函数零点问题,属于中档题.14.已知点G 是ABC 的重心,且GA GC ⊥,若111tan tan A C+=,则tan B 的值为________. 【答案】12 【解析】【分析】由GA GC ⊥得到0GA GC ⋅=,结合G 是ABC 的重心,得到2225b a c =+,结合余弦定理和正弦定理,求得tan B 的值.【详解】依题意GA GC ⊥,所以0GA GC ⋅=,所以()()0BA BG BC BG -⋅-=①, 因为G 是三角形ABC 的中心,所以()13BG BA BC =+②, 把②代入①并化简得5AC AC BC BC AB AB ⋅=⋅+⋅,即2225b a c =+,由余弦定理得2222cos a c b ac B +=+,所以242cos b ac B =,由正弦定理得22sin sin sin cos B A C B =③,已知111tan tan A C+=, 所以cos cos sin cos cos sin sin sin sin sin A C A C A C A C A C ++=()sin sin 1sin sin sin sin A C B A C A C+===, 所以sin sin sin B A C =④,由③④得2sin cos B B =,所以1tan 2B =. 故答案为:12【点睛】本小题主要考查向量线性运算、数量积的运算,考查正弦定理、余弦定理解三角形,考查同角三角函数关系以及三角恒等变换,属于难题.二、解答题(本大题共6小题,共计90分,请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.)15.如图,在三棱锥P ABC -中,PC ⊥平面,10,6,8ABC AB BC AC PC ====,E ,F 分别是,PA PC 的中点,求证:(1)//AC 平面BEF ;(2)PA ⊥平面BCE .【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】(1)先证明//EF AC ,//AC 平面BEF 即得证;(2)先证明BC PA ⊥,PA EC ⊥,PA ⊥平面BCE 即得证.【详解】(1)在PAC 中,E ,F 分别是,PA PC 的中点,所以//EF AC .又因为EF ⊂平面BEF ,AC ⊄平面BEF ,所以//AC 平面BEF .(2)在ABC 中,10,6,8AB BC AC === ,所以222AB AC BC =+,所以BC AC ⊥.因为PC ⊥平面ABC ,BC ⊂平面ABC ,所以PC BC ⊥.又因为,,BC PC AC PC C AC ⊥⋂=⊂平面,PAC PC ⊂平面PAC .所以BC ⊥平面PAC .因为PA ⊂平面PAC ,所以BC PA ⊥在PAC 中,因为AC PC =,E 为PA 的中点,所以PA EC ⊥.又因为,,PA BC CE BC C CE ⊥⋂=⊂平面,BCE BC ⊂平面BCE .所以PA ⊥平面BCE .【点睛】本题主要考查空间直线平面的位置关系的证明,意在考查学生对这些知识的理解掌握水平和空间想象转化能力.16.已知函数2()2cos cos 2,46f x x x x R ππ⎛⎫⎛⎫=+++∈ ⎪ ⎪⎝⎭⎝⎭. (1)求()f x 的最小值;(2)在ABC 中,03A π<<,且1()2f A =-,若2,AC BC ==B 的大小.【答案】(1)1-(2)2B π=.【解析】【分析】 (1)用降次公式,两角和与差公式,辅助角公式化简()f x ,再求得最小值;(2)由1()2f A =-,求得角A ,再由正弦定理求得角B . 【详解】(1)2()2cos cos 246f x x x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭1cos 2cos2cos sin 2sin 266x x x πππ⎛⎫=+++- ⎪⎝⎭11sin 2sin 22x x x =-+-331cos2sin 22x x =+-13cos 23x π⎛⎫=++ ⎪⎝⎭. 因为当()3x k k Z ππ=+∈时,cos 23x π⎛⎫+ ⎪⎝⎭的最小值为1-, 所以()f x 的最小值为13-(2)由(1)知,1()13cos 232f A A π⎛⎫=++=- ⎪⎝⎭,即3cos 232A π⎛⎫+=- ⎪⎝⎭. 因为03A π<<,所以233A πππ<+<,所以5236A ππ+=,即4A π=. 在ABC 中,因为2AC =,2BC =,由正弦定理sin sin AC BC B A =,得22sin sin 4B π=,所以sin 1B =. 因为0B π<<,所以2B π=.【点睛】本题考查了降次公式,两角和与差公式,辅助角公式,已知三角函数值求角,正弦定理,属于中档题.17.如图,在市中心有一矩形空地,100m,75m ABCD AB AD ==.市政府欲将它改造成绿化景观带,具体方案如下:在边,AD AB 上分别取点M ,N ,在三角形AMN 内建造假山,在以MN 为直径的半圆内建造喷泉,其余区域栽种各种观赏类植物.(1)若假山区域面积为2400m ,求喷泉区域面积的最小值;(2)若100m MN =,求假山区域面积的最大值.【答案】(1)2200m π;(2)2.【解析】【分析】(1)设,0,2ANM πθθ⎛⎫∠=∈ ⎪⎝⎭,半圆的直径2MN r =,根据假山区域面积为2400m ,找到r 与θ的关系,再表示出喷泉区域面积,求最值,注意验证半圆是否在矩形空地ABCD 内,即验证是否能取到最小值;(2)由(1)根据以MN 为直径的半圆区域在矩形广场内,求得θ的X 围,再将假山区域面积用θ表示出来,再求最值.【详解】解:(1)设,0,2ANM πθθ⎛⎫∠=∈ ⎪⎝⎭,半圆的直径2MN r =,半圆的圆心为O . 在直角三角形AMN 中,2MAN π∠=,所以2sin ,2cos AM r AN r θθ==. 因为假山区域面积为2400m , 所以2112sin 2cos sin 240022AM AN r r r θθθ⋅=⨯⨯== 所以2400sin 2r θ=,所以喷泉区域面积22002002sin 2S r πππθ==喷泉, 当且仅当sin 21θ=,即4πθ=时取等号.此时20r =.因为点O 到CD 的距离112d AD AM =-,点O 到BC 的距离212d AB AN =-,所以175sin 7520d r r θ=-=->=,即1d r >,2100cos 10020d r r θ=-=->=,即2d r >.所以以MN 为直径的半圆区域一定在矩形广场内.所以当4πθ=时,S 喷泉取得最小值2200m π.喷泉区域面积的最小值为2200m π.(2)由(1)知,若100m MN =,则2100,100sin ,100cos r AM AN θθ===. 所以点O 到CD 的距离175sin 7550sin d r θθ=-=-,点O 到BC 的距离210050cos d θ=-,因为以MN 为直径的半圆区域在矩形广场内,所以12,,d r d r ⎧⎨⎩即7550sin 50,10050cos 50,θθ-⎧⎨-⎩所以1sin 2θ≤. 又因为0,2πθ⎛⎫∈ ⎪⎝⎭,所以0,6πθ⎛⎤∈ ⎥⎝⎦. 所以假山区域面积11100sin 100cos 2500sin 222S AM AN θθθ=⋅=⨯⨯=假山, 因为0,6πθ⎛⎤∈ ⎥⎝⎦,所以20,3πθ⎛⎤∈ ⎥⎝⎦, 所以当6πθ=时,假山区域面积的最大值为2.【点睛】本题是三角函数在几何中的应用题,结合考查了直线与圆的位置关系,二倍角公式,还考查了学生的分析理解能力,运算能力,属于中档题.18.在平面直角坐标系xOy 中,已知椭圆221:195x y C +=与()222206:136x y bC b =<<+的离心率相等.椭圆1C 的右焦点为F ,过点F 的直线与椭圆1C 交于A ,B 两点,射线OB 与椭圆2C 交于点C ,椭圆2C 的右顶点为D .(1)求椭圆2C 的标准方程; (2)若ABO 10,求直线AB 的方程;(3)若2AF BF =,求证:四边形AOCD 是平行四边形.【答案】(1)2213620x y +=;(2)515100x ±-=;(3)证明见解析. 【解析】 【分析】(1)由题得223636b -=,解方程即得b 的值,即得椭圆2C 的标准方程; (2)设直线AB 的方程为2x my =+,联立22195x y +=,得到韦达定理,再根据ABO AOF BOF S S S =+11||2OF y =21||2OF y +求出m 的值,即得直线AB 的方程; (3)设()()1122,,,,A x y B x y 先求出,,A B C 的坐标,得到53OA CD k k ==所以//OA CD ,又53AD OC k k ==,所以//OC AD .即得四边形AOCD 是平行四边形. 【详解】(1)由题意知,椭圆1C 的长轴长126a =,短轴长1225b =22111224c a b =-=,椭圆2C 的长轴长2212a =,短轴长2b ,焦距222236c b =-.因为椭圆1C 与2C 的离心相等,所以1212c c a a =,即223636b -=因为06b <<,所以220b =,所以椭圆2C 的标准方程为2213620x y +=. (2)因为椭圆1C 右焦点为()2,0F ,且A ,O ,B 三点不共线,设直线AB 的方程为2x my =+,联立22195x y +=, 消x 得()225920250m y my ++-=.设()11,A x y ,()22,B x y ,()22(20)100590m m ∆=++>, 所以1,2259259y m m ==++, 即1212222025,5959m y y y y m m -+=-=++. 因为121212111||||||222ABO AOFBOF S S S OFy OF y O y y y F y =+=+=-=-===, 化简得4259m =,所以m =, 所以直线AB 的方程为2x y =+,即5100x ±-=. (3)因为2AF BF =,所以2AF FB =.因为()()1122,,,,(2,0)A x y B x y F ,所以()()11222,22,x y x y --=-,所以121262,2.x x y y =-⎧⎨=-⎩ 因为()()1122,,,A x y B x y 在椭圆22195x y +=上,所以221122221,951,95x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,所以()222222226241,951,95x y x y ⎧-+=⎪⎪⎨⎪+=⎪⎩消2y ,得2218x =. 代入2222195x y +=,由对称性不妨设120,0y y ><,所以2y =,从而得,113,44x y ==,即321,,,4488A B ⎛⎫⎛- ⎪ ⎝⎭⎝⎭.所以OC k =,直线OC的方程为y x =, 联立2213620x y +=,得244116x =. 由题知0x >,所以21,4x y ==21,44C ⎛- ⎝⎭. 又(6,0)D,所以3OA CD k k ==. 又因为,OA CD 不共线,所以//OA CD ,又21AD OC k k ==-,且,OC AD 不共线,所以//OC AD . 所以四边形AOCD 是平行四边形.【点睛】本题主要考查椭圆标准方程的求法,考查直线和椭圆的位置关系和面积的计算,考查直线方程的求法和位置关系,意在考查学生对这些知识的理解掌握水平和计算能力.19.已知函数()(1ln )()m R f x x x m =++∈.(1)求曲线()y f x =在1x =处的切线方程;(2)设()()f x g x x x=+,求函数()y g x =的单调区间;(3)若()f x mx ≥对任意的(0,)x ∈+∞恒成立,求满足题意的所有整数m 的取值集合.【答案】(1)21y x m =+-;(2)答案见解析;(3){1,2,3}.【解析】【分析】(1)利用切点和斜率求得切线方程.(2)求得()g x 的表达式,利用()'g x ,对m 分成0m ≤,0m >两种情况进行分类讨论,由此求得()g x 的单调区间.(3)由()f x mx ≥对任意的(0,)x ∈+∞恒成立,得到(1ln )0x x mx m +-+≥对(0,)x ∀∈+∞成立,由此构造函数()(1ln )m x x x mx m =+-+,利用来导数研究()m x 的单调区间和最值,由此求得整数m 的取值集合.【详解】(1)()2ln '=+f x x ,所以(1)2f '=,()11f m =+,所以所求切线方程为()121y m x --=-,即21y x m =+-.(2)由已知,()()1ln f x m g x x x x x x=+=+++, 所以2221()1m x x m g x x x x +-'=-+=. 当0m ≤时,()()0,g x g x '>的单调递增区间为(0,)+∞;当0m >时,令()0g x '=,得x =或x =(舍去),10,2x ⎛-+∈ ⎝⎭时,()0g x '<,函数()g x 单调递减;12x ⎛⎫-∈+∞ ⎪ ⎪⎝⎭时,()0g x '>,函数()g x 单调递增. 综上,当0m ≤时,()g x 的单调递增区间为(0,)+∞;当0m >时,函数的单调递减区间为10,2⎛-+ ⎝⎭,函数的单调递增区间为12⎛⎫-++∞ ⎪ ⎪⎝⎭. (3)由已知(1ln )0x x mx m +-+≥对(0,)x ∀∈+∞成立, 设()(1ln )m x x x mx m =+-+,令()'ln 20m x x m =+-=,得2m x e -=.当()20,m x e -∈时,()'0,()m x m x <单调递减;当()2,m x e-∈+∞时,()'0,()m x m x >单调递增.所以()min 22[()]m m m x m e m e--==-,设2()m h m m e-=-,令2()10m h m e -'=-=,得2m =.当),(2m ∈-∞时,()()0,h m h m '>单调递增; 当(2,)m ∈+∞时,()()0,h m h m '<单调递减. 又(0)0h <,1(1)10h e-=->,0(2)20h e =->,(3)30h e =->,2(4)40h e =-<,所以满足题意的整数m 构成的集合为{1,2,3}.【点睛】本小题主要考查利用导数求切线方程,考查利用导数求单调区间,考查利用导数求解不等式恒成立问题,考查分类讨论的数学思想方法,属于难题. 20.已知数列{}n a 的前n 项和为n S ,nn nS b a =()N n *∈,若{}n b 是公差不为0的等差数列,且2711b b b =.(1)求数列{}n b 的通项公式; (2)证明:数列{}n a 是等差数列; (3)记2nn n a S c =,若存在1k ,2N k *∈(12k k ≠),使得12k k c c =成立,某某数1a 的取值X围.【答案】(1)1(1)2n b n =+;(2)证明见解析;(3)(]20,log 3.【解析】 【分析】(1)根据已知条件求得1b 和数列{}n b 的公差,由此求得数列{}n b 的通项公式. (2)由(1)得到*1(1),2n n S n n N a =+∈,进而得到数列n a n ⎧⎫⎨⎬⎩⎭是常数列,求得数列n a n ⎧⎫⎨⎬⎩⎭的通项公式,进而证得数列{}n a 是等差数列.(3)先求得n c 的表达式,然后求得1n n c c +-的表达式,对1a 进行分类讨论,结合数列{}n c 的单调性,求得1a 的取值X 围.【详解】(1)设等差数列{}n b 的公差为d ,因为1111S b a ==,所以1(1)n b n d =+-. 由2711b b b =得,(1)(16)110d d d ++=+,即220d d -=, 因为0d ≠,所以12d =,从而1(1)2n b n =+. (2)由(1)知,*1(1),2n n S n n N a =+∈, 即有2(1)n n S n a =+, ① 所以112(2)n n S n a ++=+, ②②-①得,112(2)(1)n n n a n a n a ++=+-+,整理得1(1)n n na n a +=+. 两边除以(1)n n +得,()*101n na a n N n n+-=∈+, 所以数列n a n ⎧⎫⎨⎬⎩⎭是常数列.所以111n a a a n ==,即1n a na =, 所以11n n a a a +-=, 所以数列{}n a 是等差数列.(3)因为n n n S b a =,所以11(1)22n n n n n S a a ++==, 所以111(1)22n n n na a S n n a c ++==. 因为111111111111(1)(2)(1)(1)(2)122222n n na a na na a n n a n n a n n a n c c n ++++++++++⎛⎫-=-=- ⎪+⎝⎭,当*n N ∈时,211,1223n n n ⎡⎫=-∈⎪⎢++⎣⎭. 显然10a ≠,①若10a <,则11111,0222a a nn >->+恒成立, 所以10n n c c +-<,即*1,n n c c n N +<∈,所以{}n c 单调递减,所以不存在12k k c c =; ②若12log 3a >,则111,02322k ka a n n <-<+恒成立, 所以10n n c c +-<,即*1,n n c c n N +<∈,所以{}n c 单调递减,所以不存在12k k c c =; ③若21log 3=a ,则1123k a =,所以当1n =,11022a n n -=+成立, 所以存在12c c =. ④若120log 3a <<,则111132a <<.当1221a n <-,且*n N ∈时,1n n c c +>,{}n c 单调递增; 当1221a n >-,且*n N ∈时,1n n c c +<,{}n c 单调递减, 不妨取()*0120002log ,2k a k N k k +=∈,则001k k c c +=. 综上,若存在*12,k k N ∈,使得12k k c c =成立,则1a 的取值X 围是(]20,log 3.【点睛】本小题主要考查等差数列通项公式的求法,考查由递推关系证明等差数列,考查数列的单调性,考查分类讨论的数学思想方法,属于难题.第II 卷(附加题,共40分)【选做题】本题包括A ,B ,C 三小题,请选定其中两题作答,每小题10分共计20分,解答时应写出文字说明,证明过程或演算步骤. A .选修4-2:矩阵与变换 21.已知矩阵 1 1 4a A ⎡⎤=⎢⎥-⎣⎦的一个特征值为2. (1)某某数a 的值;(2)求矩阵A 的另一个特征值及其对应的一个特征向量.【答案】(1)2a =;(2)矩阵A 的另一个特征值为3,其对应的一个特征向量为11⎡⎤⎢⎥⎣⎦. 【解析】 【分析】(1)根据矩阵A 的特征多项式列方程,结合矩阵A 的特征值求得a 的值. (2)由(1)求得另一个特征值,根据特征向量的求法,求得对应的特征向量. 【详解】(1)由已知,矩阵A 的特征多项式为1()(1)(4)14af a λλλλλ--==--+-,令()0f λ=得,2540a λλ-++=.因为矩阵A 的一个特征值为2,所以上述方程有一个实数解2λ=, 所以2a =.(2)由(1)得,2560λλ-+=,解得122,3λλ==, 所以另一个特征值为3λ=. 设其对应的一个特征向量为x y ⎡⎤⎢⎥⎣⎦,则12314x x y y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦,取1x =,则1y =. 所以矩阵A 的另一个特征值为3,其对应的一个特征向量为11⎡⎤⎢⎥⎣⎦.【点睛】本小题主要考查根据特征值求参数,考查特征值和特征向量的求法,属于中档题. B.选修4-4:坐标系与参数方程22.在平面直角坐标系xOy 中,直线l的参数方程为2x m y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),椭圆C 的参数方程为2cos sin x y ϕϕ=⎧⎨=⎩(ϕ为参数).若直线l 被椭圆C所截得的弦长为5,某某数m 的值.【答案】2m =±. 【解析】 【分析】将椭圆C 的参数方程化为普通方程,将直线l 的参数方程代入椭圆方程,结合直线的参数方程中参数的几何意义与韦达定理即可求出答案.【详解】解:将椭圆C 的参数方程2cos ,sin x y ϕϕ=⎧⎨=⎩(ϕ为参数)化为普通方程得2214xy +=,将直线l 的参数方程代入椭圆方程得2244022m t t ⎛⎫⎛⎫++⋅-= ⎪ ⎪⎝⎭⎝⎭,即225402t m ++-=,由()22524402m m ∆=-⋅->得,m < 设12,t t 为两交点对应的参数,∴()2121224,55m t t t t -+=-=, ∴()()()()222221212128482048425525m mm t t t t t t ---=+-=-=,∵直线l , ∴()28204322525m -=,2m =±,符合>0∆, ∴2m =±.【点睛】本题主要考查参数方程与普通方程的互化,考查直线的参数方程的应用,属于中档题.C .选修4-5:不等式选讲23.若实数a ,b ,c 满足7a b c ++=,求证:2224936a b c ++≥. 【答案】证明见解析. 【解析】 【分析】利用柯西不等式证得不等式成立【详解】因为()22222221111149232323a b c a b c⎡⎤⎛⎫⎛⎫⎛⎫+++++⋅+⋅⎢⎥⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,所以2222()4911149a b ca b c++++++.又7a b c++=,所以2224936a b c++【点睛】本小题主要考查利用柯西不等式证明不等式,属于中档题.【必做题】第22题、第23题,每题10分,共计20分,解答时应写出文字说明,证明过程或演算步骤.24.已知直四棱柱1111ABCD A B C D-的棱长均相等,且60BAD∠=︒,M是侧棱1DD的中点,N是棱11C D上的点.(1)求异面直线1BD与AM所成角的余弦值;(2)若二面角M AC N--的大小为4π,试确定点N的位置.【答案】(1)105;(2)点N与点1C重合.【解析】【分析】连结BD,取AB的中点E,连接DE,可以证明DE DC⊥,11,D D DC D D DE⊥⊥,从而建立如图所示的空间直角坐标系.(1)算出1,BD AM 的坐标后可求1,BD AM 的余弦值,从而得到异面直线所成角的余弦值. (2)算出平面AMC 的法向量和平面ACN 的法向量后再计算它们夹角的余弦值,从而可得二面角的余弦值.【详解】连结BD ,取AB 的中点E ,连接DE , 因为直四棱柱1111ABCD A B C D -的棱长均相等, 所以底面ABCD 是菱形.又60BAD ∠=︒,所以ABD △是正三角形, 所以DE AB ⊥,因为//AB DC ,所以DE DC ⊥. 因为直四棱柱1111ABCD A B C D -中,1D D ⊥平面ABCD ,DC ,DE ⊂平面ABCD ,所以11,D D DC D D DE ⊥⊥.分别以直线1,,DE DC DD 为x ,y ,z 轴建立如图所示的空间直角坐标系.(1)设直四棱柱1111ABCD A B C D -的棱长均为2,则1(0,0,0),(3,1,0),(3,1,0),(0,2,0),(0,0,2),(0,0,1)D A B C D M -.所以1(3,1,2),(3,1,1)BD AM =--=-, 设异面直线1BD 与AM 所成角的大小为θ,则1113cos |cos ,|5||||2BD AM BD AM BD AM θ⋅=〈〉===⋅,所以异面直线1BD 与AM 所成角的余弦值为5. (2)由(1)知,(3,3,0),(3,1,1)AC AM =-=-. 设平面AMC 的法向量为()1111,,n xy z =,则11n AC n AM ⎧⊥⎪⎨⊥⎪⎩即11n AC n AM ⎧⋅⎪⎨⋅⎪⎩,所以1111130,0.y y z ⎧+=⎪⎨++=⎪⎩ 取13x =,则111,2y z ==,即平面AMC 的一个法向量为1(3,1,2)n =. 设(0,,2),02N λλ,则(0,2,2)CN λ=-.设平面ACN 的法向量为()2222,,n x y z =,则22n AC n CN ⎧⊥⎪⎨⊥⎪⎩即2200n AC n CN ⎧⋅=⎪⎨⋅=⎪⎩,所以222230,(2)20.y y z λ⎧+=⎪⎨-+=⎪⎩取23x =,则2221,2y z λ-==, 即平面ACN 的一个法向量为223,1,2nλ-⎛⎫= ⎪⎭. 则121212coscos 422n n n n n n π⋅=<⋅>===⋅, 解得2λ=.所以当二面角M AC N --的大小为4π,点N 与点1C 重合. 【点睛】本题考查空间角的计算,此类问题我们可以借助于空间中直线的方向向量和平面的法向量来帮助计算,比如异面直线所成角的的余弦值就是它们所在直线的方向向量夹角的余弦值的绝对值,二面角的平面角的余弦值就是两个平面的法向量的夹角的余弦值或其相反数(结合二面角的大小来考虑).25.设230123(12)kk k x a a x a x a x a x +=+++++ (2k ≥,k *∈N ).(1)若展开式中第5项与第7项的系数之比为3∶8,求k 的值;(2)设222n n k +-=(n *∈N ),且各项系数0a ,1a ,2a ,…,k a 互不相同.现把这1k +个不同系数随机排成一个三角形数阵:第1列1个数,第2列2个数,…,第n 列n 个数.设i t 是第i 列中的最小数,其中1i n ≤≤,且i ,n *∈N .记123n t t t t >>>>的概率为n P .求证:12(1)!n P n >-.【答案】(1)9k =;(2)证明见解析. 【解析】 【分析】(1)利用题目所给展开式中第5项与第7项的系数之比列方程,解方程求得k 的值. (2)利用相互独立事件概率乘法公式,求得n P 的表达式,构造数列()*(1)22,2n n n n a n n N +=-∈,判断出数列{}n a 的单调性,由此证得不等式成立 【详解】(1)因为在展开式中第5项与第7项的系数之比为3∶8,即44662328k k C C ⋅=⋅,所以4632k k C C =,即303(4)(5)2k k =--,所以292020k k -+=,解得0k =或9k =.因为*2,k k N ≥∈,所以9k =.(2)由题意,最小数在第n 列的概率为2212n n n n =++,高考- 31 - / 31 去掉第n 列已经排好的n 个数, 则余下的(1)(1)22n n n n n +--=个数中最小值在第1n -列的概率为12(1)2n n n n -=-, …………以此类推,余下的数中最小数在第2列的概率为23, 所以12222213(1)3(1)!n n n P n n n n n -=⨯⨯⨯==++⨯⨯⨯+. 由于2222n n k +-=,所以2n ≥. 设()*(1)22,2n n n n a n n N +=-∈, 所以()*1212,n n n a a n n n N+-=--∈.记()*212,n n b n n n N =--∈,所以1210n n n b b +-=->,所以{}n b 是递增数列,所以210n b b =>;{}n a 是递增数列,所以21n a a =,所以(1)22nn n +>,所以2(1)1(1)!2(1)!2(1)!n n n n n n +>=++-,即12(1)!n P n >-. 【点睛】本小题主要考查二项式展开式的系数,考查相互独立事件概率计算,考查数列的单调性,属于难题.。

2020届江苏省普通高中高三下学期高考全真模拟卷(四)数学试题(解析版)

2020届江苏省普通高中高三下学期高考全真模拟卷(四)数学试题(解析版)

绝密★启用前
江苏省普通高中
2020届高三下学期高考全真模拟卷(四)
(南通密卷)
数学试题
(解析版)
一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.
1.已知集合,,则___________.
【答案】
【解析】
【分析】
根据交集运算即可求解.
【详解】因为,,
所以
【点睛】本题主要考查了集合交集的运算,属于容易题.
2.已知复数,其中i为虚数单位,则的模是___________.
【答案】
【解析】
【分析】
根据复数的运算求出,求复数模即可.
【详解】因为,
所以,
故,
故答案为:
【点睛】本题主要考查了复数的四则运算,复数的模,属于容易题.
3.某地区小学生、初中生、高中生的人数之比为4:3:2.现用分层抽样的方法抽取1个容量为n的样本,若样本中高中生有24人,则样本容量n的值是
___________.
【答案】108
【解析】
【分析】
根据小学生、初中生、高中生的人数之比为4:3:2,可知分层抽样时,高中生按的比例抽样即可求解.
【详解】因为小学生、初中生、高中生的人数之比为4:3:2,
所以样本中高中生人数为,
解得,
故答案为:108
【点睛】本题主要考查了分层抽样,样本容量,属于容易题.
4.执行如图所示的伪代码,如果输入的x的值为5,那么输出的y的值是
___________.
【答案】10
【解析】
【分析】
根据框图,模拟程序运算即可求解.。

2020年江苏省南通市海安高中高考数学模拟试卷(4月份)(有答案解析)

2020年江苏省南通市海安高中高考数学模拟试卷(4月份)(有答案解析)

2020年江苏省南通市海安高中高考数学模拟试卷(4月份)一、填空题(本大题共14小题,共70.0分)1.已知集合A={-1,0,2},B={x|x=2n-1,n∈Z},则A∩B=______.2.sin(-300°)=______.3.已知复数z=-i(1+2i),其中i是虚线单位,则|z|=______.4.对一批产品的长度(单位:毫米)进行抽样检测,样本容量为400,右图为检测结果的频率分布直方图,根据产品标准,单件产品长度在区间[25,30)的为一等品,在区间[20,25)和[30,35)的为二等品,其余均为三等品,则样本中三等品的件数为______.5.如图是一个算法的伪代码,其输出的结果为______.6.从集合{1,2,3}中随机取一个元素,记为a,从集合{2,3,4}中随机取一个元素,记为b,则a≤b的概率为______.7.在平面直角坐标系xoy中,若双曲线C:=1(a>0,b>0)的离心率为,则双曲线C的渐近线方程为______.8.一个正四面体的展开图是边长为的正三角形,则该四面体的外接球的表面积为______.9.已知0<y<x<π,且tan x tan y=2,,则x-y=______.10.已知等边△ABC的边长为2,若,,则△APQ的面积为______.11.在平面直角坐标系xOy中,点A(1,0),B(4,0).若直线x-y+m=0上存在点P使得PA=PB,则实数m的取值范围是______.12.以知f(x)是定义在区间[-1,1]上的奇函数,当x<0时,f(x)=x(x-1),则关于m的不等式f(1-m)+f(1-m2)<0的解集为______.13.已知实数a1,a2,a3,a4满足a1+a2+a3=0,a1a42+a2a4-a2=0,且a1>a2>a3,则a4的取值范围是______.14.已知数列{a n}的通项公式是,数列{b n}的通项公式是b n=3n-1,集合A={a1,a2,…,a n},B={b1,b2,…,b n},n∈N*.将集合A∪B中的元素按从小到大的顺序排列构成的数列记为{c n},则数列{c n}的前45项和S45=______.二、解答题(本大题共11小题,共142.0分)15.△ABC中,a,b,c分别为角A,B,C的所对边的长,若a cos B=1,b sin A=,且A-B=.(1)求a的值;(2)求tan A的值.16.如图,在四面体ABCD中,AD=BD,∠ABC=90°,点E,F分别为棱AB,AC上的点,点G为棱AD的中点,且平面EFG∥平面BCD.求证:(1)EF=BC;(2)平面EFD⊥平面ABC.17.某企业拟生产一种如图所示的圆柱形易拉罐(上下底面及侧面的厚度不计),易拉罐的体积为108πml.设圆柱的高度为hcm,底面半径半径为rcm,且h≥4r,假设该易拉罐的制造费用仅与其表面积有关,已知易拉罐侧面制造费用为m元/cm2,易拉罐上下底面的制造费用均为n元/cm2(m,n为常数)(1)写出易拉罐的制造费用y(元)关于r(cm)的函数表达式,并求其定义域;(2)求易拉罐制造费用最低时r(cm)的值.18.在平面直角坐标系xoy中,设椭圆C:=1(a>b>0)的左焦点为F,左准线为l.P为椭圆C上任意一点,直线OQ⊥FP,垂足为Q,直线OQ与l交于点A.(1)若b=1,且b<c,直线l的方程为x=-(i)求椭圆C的方程(ii)是否存在点P,使得?,若存在,求出点P的坐标;若不存在,说明理由.(2)设直线FP与圆O:x2+y2=a2交于M,N两点,求证:直线AM,AN均与圆O 相切.19.设函数f(x)=e x-ax+a(a∈R).(1)当a=1时,求函数f(x)在点(0,f(0))处的切线方程;(2)若函数f(x)的图象与x轴交于A(x1,0),B(x2,0)两点,且x1<x2,求a的取值范围;(3)证明:<0(f'(x)为函数f(x)的导函数).20.已知数列{a n}是首项为1,公差为d的等差数列,数列{b n}是首项为1,公比为q(q>1)的等比数列.(1)若a5=b5,q=3,求数列{a n•b n}的前n项和;(2)若存在正整数k(k≥2),使得a k=b k.试比较a n与b n的大小,并说明理由.21.在平面直角坐标系xOy中,先对曲线C作矩阵A=(0<θ<2π)所对应的变换,再将所得曲线作矩阵B=(0<k<1)所对应的变换,若连续实施两次变换所对应的矩阵为,求k,θ的值.22.在极坐标系中,已知A( 1,),B( 9,),线段AB的垂直平分线l与极轴交于点C,求l的极坐标方程及△ABC的面积.23.已知实数a,b满足|a+b|≤2,求证:|a2+2a-b2+2b |≤4(|a|+2).24.如图,在四棱锥P-ABCD中,已知棱AB,AD,AP两两垂直,长度分别为1,2,2.若=λ,且向量与夹角的余弦值为.(1)求实数λ的值;(2)求直线PB与平面PCD所成角的正弦值.25.已知数列{a n}的通项公式为,n∈N*,n∈N*.记S n=.(1)求S1,S2的值;(2)求证:对任意正整数n,为定值.-------- 答案与解析 --------1.答案:{-1}解析:解:由集合A={-1,0,2},根据集合A中的关系式x=2n-1,n∈Z,得到集合B为所有的奇数集,则集合A∩B={-1}.故答案为:{-1}.观察发现集合B为所有的奇数集,所以找出集合A解集中的奇数解即为两集合的交集.此题属于以不等式解集中的奇数解为平台,考查了交集的运算,是一道基础题.也是高考中常考的题型.2.答案:解析:解:sin(-300°)=sin(360°-300°)=sin60°=,故答案为.由sin(α+2π)=sinα及特殊角三角函数值解之.本题考查诱导公式及特殊角三角函数值.3.答案:解析:解:|z|=|-i(1+2i)|=|-i||1+2i|=|1+2i|=,故答案为:.复数乘积的模,就是模的乘积,容易得到结果.考查复数的模的运算法则,是基础题.4.答案:100解析:解:根据频率分布直方图可知,三等品的数量是[(0.0125+0.025+0.0125)×5]×400=100(件).故答案为:100由频率分布直方图可知,算出三等品所占的比例乘以样本容量得出三等品的件数.本题主要考查频率分布直方图的读图能力,属于简单题型,注意纵坐标意义.5.答案:解析:解:模拟执行伪代码,可得:S=0+++…+=(1-)+(-)+…+(-)=1-=.故答案为:.模拟执行伪代码,可得伪代码的功能是计算并输出S=0+++…+的值,从而得解.本题主要考查了循环结构的程序框图,属于基本知识的考查.6.答案:解析:【分析】本题考查了古典概型的概率和互斥事件的概率问题,属于基础题.先确定所有的基本事件,共有9种,再求出a>b的概率,根据互斥事件的概率公式计算即可.【解答】解:从集合{1,2,3}中随机取一个元素,记为a,从集合{2,3,4}中随机取一个元素,记为b,有(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,2),(3,3),(3,4),共9种,因为a>b的取法只有一种:a=3,b=2,所以a>b的概率是,所以a≤b的概率是1-=.故答案为:.7.答案:y=±3x解析:解:因为()2=1+()2=10,所以=3,所以渐近线方程为y=±3x.故答案为:y=±3x.利用()2=1+()2=10,可得=3,即可求出双曲线的渐近线方程.本题给出双曲线的离心率,求双曲线的渐近线方程,着重考查了双曲线的标准方程与基本概念,属于基础题.8.答案:3π解析:解:如图,∵一个正四面体的展开图是边长为的正三角形,∴原正四面体的棱长为,设底面三角形的中心为G,则,正四面体的高PG=.再设正四面体外接球的球心为O,连接OA,∴该四面体的外接球的表面积为.故答案为:3π.由题意画出图形,求出正四面体的棱长,进一步求得外接球的半径,代入球的表面积公式求解.本题考查多面体外接球表面积与体积的求法,考查数形结合的解题思想方法,是中档题.9.答案:解析:解:由题意可得tan x tan y==2,解得cos x cos y=,故cos(x-y)=cos x cos y+sin x sin y=故x-y=2kπ±,k∈Z,又0<y<x<π,所以0<x-y<π.所以x-y=故答案为:由题意可得cos x cos y=,进而可得cos(x-y)=cos x cos y+sin x sin y=,由余弦函数可知x-y的值.本题考查同角三角函数的基本关系,以及两角和与差的余弦函数,属基础题.10.答案:解析:解:如图,由,可知点P为△ABC的重心,由,得,由题意可得,AP=,PQ=1,且AP⊥PQ,故答案为:.由第一个条件可知P为重心,由第二个条件可得,确定Q的位置,可得△APQ为直角三角形,从而可求得△APQ的面积.此题考查了向量加减法的几何意义及应用,难度适中.11.答案:解析:解:设P(x,x+m),∵PA=PB,∴4|PA|2=|PB|2,∴4(x-1)2+4(x+m)2=(x-4)2+(x+m)2,化为(x+m)2=4-x2,∴4-x2≥0,解得x∈[-2,2],∴m=-x±,令x=2cosθ,θ∈[0,π],∴m=-2cosθ±2sinθ=∈,实数m的取值范围是,故答案为:.设P(x,x+m),由PA=PB,可得4|PA|2=|PB|2,利用两点之间的距离公式化为:(x+m)2=4-x2,可得:m=-x±,x∈[-2,2].通过三角函数代换即可得出.本题考查了两点之间的距离公式、和差化积、三角函数的求值,考查了推理能力与计算能力,属于中档题.12.答案:[0,1)解析:解:由题意,奇函数f(x)是定义在[-1,1]上的减函数,不等式f(1-m)+f(1-m2)<0,即f(1-m)<f(m2-1),则,即,解得0≤m<1,即m∈[0,1).故答案为:[0,1).根据函数奇偶性的性质将不等式进行转化即可.本题主要考查不等式的求解,根据函数奇偶性和单调性之间的关系是解决本题的关键.13.答案:解析:解:a1+a2+a3=0得a1≥0,a3≤0,a1≥|a2|-a3≥|a2|.a4==-•±•,设=x,由a1≥|a2|.当a4=-x+时,有当x=1,a4取最大,最大值a4=-+;当a4=-x-时,有当x=1,a4取最小,最小值a4=--;则a4的取值范围是.故答案为:.先根据题意a1+a2+a3=0得a1≥0a3≤0a1≥|a2|-a3≥|a2|.对于方程a1a42+a2a4-a2=0,将a4看成未知数,解二次方程得a4=-•±•,设=x,由a1≥|a2|知-1≤x≤1,利用a4=-x±的单调性结合x的取值范围,即可得出a4的取值范围.本小题主要考查函数单调性的应用、不等式的解法、进行简单的演绎推理等基础知识,考查运算求解能力,考查化归与转化思想.属于验证题.14.答案:245-3017解析:解:数列{a n}的通项公式是,数列{b n}的通项公式是b n=3n-1,所以:,故:=,由于两个数列中有公共元素,2,8,32.故:-2-8-32=245-3017.故答案为:245-3017首先利用分组法求数列的和,进一步减去公共的项对应的值.本题考查的知识要点:数列的通项公式的求法及应用,分组法求数列的和,主要考察学生的运算能力和转换能力,属于基础题型.15.答案:解:(1)由正弦定理知,b sin A=a sin B=,①,又a cos B=1,②①,②两式平方相加,得(a sin B)2+(a cos B)2=3,因为sin2B+cos2B=1,所以a=(负值已舍);(2)①,②两式相除,得=,即tan B=,因为A-B=,∴A=B+,∴tan A=tan(B+)===--3-2得答案.本题主要考查了正弦定理的应用.解题过程中边角问题是解决三角形问题的关键.16.答案:证明:(1)因为平面EFG∥平面BCD,平面ABD∩平面EFG=EG,平面ABD∩平面BCD=BD,所以EG∥BD,…(4分)又G为AD的中点,故E为AB的中点,同理可得,F为AC的中点,所以EF=BC.…(7分)(2)因为AD=BD,由(1)知,E为AB的中点,所以AB⊥DE,又∠ABC=90°,即AB⊥BC,由(1)知,EF∥BC,所以AB⊥EF,又DE∩EF=E,DE,EF⊂平面EFD,所以AB⊥平面EFD,…(12分)又AB⊂平面ABC,故平面EFD⊥平面ABC.…(14分)解析:(1)利用平面与平面平行的性质,可得EG∥BD,利用G为AD的中点,可得E 为AB的中点,同理可得,F为AC的中点,即可证明EF=BC;(2)证明AB⊥平面EFD,即可证明平面EFD⊥平面ABC.本题考查平面与平面平行的性质,考查平面与平面垂直的判定,考查学生分析解决问题的能力,属于中档题.17.答案:解:(1)由题意,体积V=πr2h,得h=.y=2πrh×m+2πr2×n=2π(+nr2).因为h≥4r,即≥4r,所以r≤3,即所求函数定义域为(0,3].(2)令f(r)=+nr2,则f'(r)=-+2nr.由f'(r)=0,解得r=.①若.<1,当n>2m时,.∈(0,3],由R(0,)..(.,3]f'(r)-0+f(r)减增得,当r =.时,f(r)有最小值,此时易拉罐制造费用最低.②若.≥1,即n≤2m时,由f'(r)≤0知f(r)在(0,3]上单调递减,当r=3时,f(r)有最小值,此时易拉罐制造费用最低.解析:本题主要考查导数在实际应用题中的应用,利用导数求得单调区间求出满足题意的结果,属于中档题.(1)由题意,体积V=πr2h,可求得h,再由易拉罐的制造费用公式求得费用,根据函数得意义求得定义域.(2)利用导数求出函数的单调区间,继而求得函数在定义域内的最值.18.答案:解:(1)(i)由题意,b=1,=,又a2=b2+c2,所以2c2-5c+2=0,解得c=2,或c=(舍去).故a2=5.所求椭圆的方程为+y2=1.(ii)设P(m,n),则+n2=1,即n2=1-.当m=-2,或n=0时,均不符合题意;当m≠-2,n≠0时,直线FP的斜率为,直线FP的方程为y=(x+2).故直线AO的方程为y=-x,Q点的纵坐标y Q=,所以=||=||=||,令=,得4m2+21m+27=0 ①,或4m2+19m+23=0 ②,由4m2+21m+27=0,解得m=-3,m=-,又-≤m≤,所以方程①无解.由于△=192-4×4×23<0,所以方程②无解,故不存在点P使=.(3)设M(x0,y0),A(-,t),则=(x0+c,y0),=(-,t).因为OA⊥FM,所以•=0,即(x0+c)(-)+ty0=0,由题意y0≠0,所以t=•.所以A(-,•).因为=(x0+,y0-•),=(x0,y0),所以•=(x0+)x0+(y0-•)y0=x02+y02+x0-•y0=x02+y02+x0-x0-a2=x02+y02-a2.因为M(x0,y0)在圆O上,所以•=0.即AM⊥OM,所以直线AM与圆O相切.同理可证直线AN与圆O相切.解析:(1)(i)将b=1代入椭圆的方程,根据椭圆的性质从而求出b,c;(ii)设P (m,n),表示出P点的坐标,根据FP、FQ的关系从而得到答案;(2)设出M(x0,y0),表示出A(-,t),求出,的坐标,由•=0,求出t,得到•的表达式,从而证出结论.本题考察了直线和椭圆的关系,考察椭圆的方程问题,考察向量的应用,本题是一道难题.19.答案:解:(1)f(x)=e x-x+1的导数为f′(x)=e x-1,可得f(x)在x=0处的切线斜率为0,切点为(0,2),可得切线方程为y=2;(2)f(x)的导数为f′(x)=e x-a,当a≤0时,f′(x)>0恒成立,f(x)在R上递增,与题意不符;当a>0时,由f′(x)=0,可得x=ln a,当x>ln a时,f′(x)>0,f(x)递增;当x<ln a时,f′(x)<0,f(x)递减,可得x=ln a处f(x)取得极小值a(2-ln a),函数f(x)的图象与x轴交于A(x1,0),B(x2,0)两点,且x1<x2,可得a(2-ln a)<0,即a>e2,存在1<ln a,f(1)=e>0,存在a>ln a,f(3ln a)=a3-3a lna+a>a3-3a2+a>0,又f(x)在(-∞,ln a),(ln a,+∞)的单调性和f(x)的图象在R上不间断,可得a>e2为所求取值范围;(3)证明:e-ax1+a=0,e-ax2+a=0,两式相减可得a=,设s=(s>0),则f′()=e-=[2s-(e s-e-s)],设g(s)=2s-(e s-e-s),g′(s)=2-(e s+e-s)<0,可得g(s)在(0,+∞)递减,即有g(s)<g(0)=0,而>0,可得f′()<0,由f′(x)=e x-a为递增函数,>,可得<f′()<0,即原不等式成立.解析:(1)求得f(x)的导数,可得切线的斜率和切点,即可得到所求切线方程;(2)求得f(x)的导数,讨论当a≤0时,当a>0时,判断函数的单调性,求得极值,由题意可得极小值小于0,结合函数零点存在定理,可得所求范围;(3)求得a=,设s=(s>0),求得f′()=[2s-(e s-e-s)],设g(s)=2s-(e s-e-s),求得g(s)的导数,判断单调性,结合基本不等式,可得证明.本题考查导数的运用:求切线方程和单调性、极值和最值,考查函数零点的判断和不等式的证明,考查转化思想和构造函数法,以及运算能力,属于难题.20.答案:解:(1)依题意,,故,所以a n=1+20(n-1)=20n-19,令,①则,②①-②得,==(29-20n)•3n-29,所以.(2)因为a k=b k,所以1+(k-1)d=q k-1,即,故,又,所以==,(ⅰ)当1<n<k时,由q>1知,=<0;(ⅱ)当n>k时,由q>1知,=(q-1)2q k-2(n-k)>0,综上所述,当1<n<k时,a n>b n;当n>k时,a n<b n;当n=1时,a n=b n.解析:(1)由q=3,b1=1可求得b5,从而得到a5,由a1=1及通项公式可求得a n,利用错位相减法即可求得数列{a n•b n}的前n项和;(2)由a k=b k,即1+(k-1)d=q k-1,得,,作差b n-a n变形,然后分1<n<k时,当n>k时,n=1三种情况讨论讨论差的符号即可作出大小比较;本题考查等差数列、等比数列的综合、数列求和,考查分类讨论思想,考查学生分析问题解决问题的能力,本题综合性强,难度较大.21.答案:解:∵A=(0<θ<2π),B=(0<k<1),∴由题意可得:BA==,∴=,解得:,∵0<θ<2π,0<k<1,∴解得:k=,θ=.解析:由题意及矩阵乘法的意义可得:BA==,由矩阵的相等及参数的范围即可求解.本题主要考查了矩阵乘法的意义,相等矩阵等知识的应用,属于基础题.22.答案:解:由题意,线段AB的中点坐标为(5,),设点P(ρ,θ)为直线l上任意一点,在直角三角形OMP中,ρcos(θ-)=5,所以,l的极坐标方程为ρcos(θ-)=5,(6分)令θ=0,得ρ=10,即C(10,0).(8分)所以,△ABC的面积为:×(9-1)×10×sin=20.(10分)解析:求出线段AB的中点坐标,在直角三角形OMP中,ρcos(θ-)=5,可得l的极坐标方程,求出C点坐标,即可求出△ABC的面积.本题考查l的极坐标方程及△ABC的面积,考查学生的计算能力,比较基础.23.答案:证明:由|b|-|a|≤|a+b|≤2,可得|b|≤|a|+2,| a2+2 a- b2+2 b |=|(a+b)(a-b)+2(a+b)|=|a+b|•|a-b+2|≤2|a-b+2|,要证| a2+2 a- b2+2 b |≤4(| a|+2),即证|a-b+2|≤2(| a|+2),由于|a-b+2|≤|a|+|b|+2,即证|a|+|b|+2≤2(| a|+2),即为|b|≤| a|+2,显然成立.故原不等式成立.解析:运用绝对值不等式可得|b|-|a|≤|a+b|≤2,可得|b|≤|a|+2,将原不等式左边分解因式,结合分析法证明,即可得证.本题考查不等式的证明,注意运用绝对值不等式的性质,以及分析法证明,考查推理能力,属于中档题.24.答案:解:以A为坐标原点,分别以AB,AD,AP为x,y,z轴建立如图所示空间直角坐标系;则:A(0,0,0),B(1,0,0),D(0,2,0),P(0,0,2);=λ,可得C(λ,2,0).(1)=(λ,2,-2),=(-1,2,0),向量与夹角的余弦值为.可得=,解得λ=10(舍去)或λ=2.实数λ的值为2.;(2)=(2,2,-2),=(0,2,-2),平面PCD的法向量=(x,y,z).则且,即:x+y-z=0,y-z=0,∴x=0,不妨去y=z=1,平面PCD的法向量=(0,1,1).又=(1,0,2).故cos==.直线PB与平面PCD所成角的正弦值为:.解析:(1)根据已知条件即可建立坐标系:以A为坐标原点,分别以边AB,AD,AP 所在直线为x,y,z轴建立空间直角坐标系,然后即可根据已知条件求出点P,A,B,C,D点的坐标,利用向量与夹角的余弦值为求出λ的值.(2)求出平面PCD的法向量,利用向量夹角的余弦公式求解直线PB与平面PCD所成角的正弦值.考查建立空间直角坐标系,利用空间向量求异面直线所成角,直线和平面所成角的方法,能求空间点的坐标,向量坐标的数乘运算,向量夹角余弦的坐标公式,理解平面法向量的概念,弄清直线和平面所成角,与直线的方向向量和法向量所成角的关系.25.答案:解:(1)S1=a1=a1=1,S2=a1+a2=2a1+a2=3;(2)设α=,β=,则a n=,S n=====,∵∴S n+2==3S n+1-S n,∴=3∴对任意正整数n,为定值3.解析:(1)由题意,代入可得求S1、S2的值;(2)首先利用级数求出S n,找出S n+2与S n,S n+1的关系,即可得解.本题考查了数列求和,熟练掌握级数和组合公式是解本题的关键,属难题.。

2020年江苏省金陵中学、海安高中、南京外国语学校高考数学四模试卷 (含答案解析)

2020年江苏省金陵中学、海安高中、南京外国语学校高考数学四模试卷 (含答案解析)

2020年江苏省金陵中学、海安高中、南京外国语学校高考数学四模试卷一、填空题(本大题共14小题,共70.0分)1. 若集合M ={−1,1},N ={−2,1,0},则M ∩N =________.2. 复数(1−i)(2+3i)(i 为虚数单位)的实部是 .3. 某高级中学共有学生3200人,其中高二年级与高三年级各有学生1000人,现采用分层抽样的方法,抽取容量为160的样本,则应抽取的高一年级学生人数为______. 4. 在伪代码中,_____________________表示将代数式xx+1的运算结果赋给变量y . 5. 从0,1,2,3中任意取出两个不同的数,其和为3的概率是______ . 6. 在平面直角坐标系xOy 中,直线2x +y =0为双曲线x 2a 2−y 2b 2=1(a >0,b >0)的一条渐近线,则该双曲线的离心率为 . 7. 已知cos(α+π4)=23,则sin(α−5π4)的值是______ .8. 已知正项等比数列{a n }中,a 1=1,其前n 项和为S n (n ∈N ∗),且1a 1−1a 2=2a 3,则S 4=______. 9. 在平面直角坐标系xOy 中,已知圆C :(x −1)2+(y −2)2=1,过x 轴上的一个动点P 引圆C的两条切线PA ,PB ,切点分别为A ,B ,则线段AB 长度的取值范围是______ . 10. 圆锥高为3,体积为3π,则该圆锥的侧面积为__________.11. 已知函数f(x)是奇函数,且当x >0时,f(x)=x 3+2x +1,则当x <0时,f(x)的解析式为__________.12. 已知数列{a n }满足a n =2n +1,设函数f(n)={a n ,n 为奇数f(n 2),n 为偶数且c n =f(2n +4),n ∈N ∗,则数列{c n }的前n 项和T n = ______ .13. 已知O 为△ABC 的外心,AB =3,AC =5,若AO ⃗⃗⃗⃗⃗ =x AB ⃗⃗⃗⃗⃗ +y AC⃗⃗⃗⃗⃗ ,且3x +5y =3,则cos∠BAC 的值为__ .14. 已知△ABC 中,角A 、B 、C 所对边分别为a ,b ,c ,若1+tanAtanB =2cb,则a 2bc的最小值为______ . 二、解答题(本大题共11小题,共144.0分)15. 如图,在长方体ABCD −A 1B 1C 1D 1中,AB =BC =EC =12AA 1.(1)求证:AC 1//平面BDE;(2)求证:A1E⊥平面BDE.16.已知△ABC的角A、B、C的对边分别为a、b、c,若向量m⃗⃗⃗ =(2a−b,c)与n⃗=(cosB,cosC)共线.(Ⅰ)求角C的大小;(Ⅱ)若|m⃗⃗⃗ |=2|n⃗|=2,求a的大小.17.如图①,一条宽为1km的两平行河岸有三个工厂A、B、C,工厂B与A、C的直线距离都是2km,BC与河岸垂直,D为垂足.现要在河岸AD上修建一个供电站,并计划铺设地下电缆和水下电缆,从供电站向三个工厂供电.已知铺设地下电缆、水下电缆的费用分别为2万元/km、4万元/km.(Ⅰ)已知工厂A与B之间原来铺设有旧电缆(原线路不变),经改造后仍可使用,旧电缆的改造费用是0.5万元/km.现决定将供电站建在点D处,并通过改造旧电缆修建供电线路,试求该方案总施工费用的最小值;(Ⅱ)如图②,已知供电站建在河岸AD的点E处,且决定铺设电缆的线路为CE、EA、EB,若),试用θ表示出总施工费用y(万元)的解析式,并求总施工费用y的最小值.∠DCE=θ(0≤θ≤π318.在平面直角坐标系xOy中,点A,F分别是椭圆C:x2a2+y2b2=1(a>b>0)左顶点,右焦点,椭圆C的右准线与x轴相交于点Q,已知右焦点F恰为AQ的中点,且椭圆C的焦距为2.(1)求椭圆C的标准方程;(2)过右焦点F的直线l与椭圆C相交于M,N.记直线AM,AN的斜率分别为k 1,k 2,若k 1+k 2=−1,求直线l的方程.19.已知函数f(x)=ax−1−lnx(a∈R)(Ⅰ)讨论函数f(x)在定义域内的极值点的个数;(Ⅱ)当x>y>e−1时,求证:e x−y>ln(x+1)ln(y+1).20.已知正项数列{a n}的前n项和为S n,且a1=a,(a n+1)⋅(a n+1+1)=6(S n+n),n∈N∗.n∈N∗.(1)求数列{a n}通项公式;(2)若对于∀n∈N∗都有S n≤n(3n+1)成立求实数a取值范围.21.已知矩阵[122a ]的属于特征值b的一个特征向量为[11],求实数a、b的值.22.在极坐标系中,已知圆ρ=2cosθ与直线5ρcosθ+12ρsinθ+a=0相切,求实数a的值.23.若实数a,b,c满足a2+b2+c2=4,求3a+4b+5c的最大值.24.某工厂有两条相互不影响的生产线分别生产甲、乙两种产品,产品出厂前需要对产品进行性能检测。

2020届江苏省南通市海安高级中学高三下学期模拟考试数学试题解析版

2020届江苏省南通市海安高级中学高三下学期模拟考试数学试题解析版

2020届江苏省南通市海安高级中学高三下学期模拟考试数学试题一、填空题1.已知全集2,1,0,1,{}2U =﹣﹣,集合2,,}1,{1A =﹣﹣则UA =_____.【答案】{}0,2【解析】根据补集的定义求解即可. 【详解】解:2,1,0,1,2{}{,2,1,1,}U A =﹣﹣=﹣﹣ {}0,2U A ∴=.故答案为{}0,2. 【点睛】本题主要考查了补集的运算,属于基础题.2.已知复数()()1z i a i =⋅+-(i 为虚数单位)为纯虚数,则实数a 的值为_____. 【答案】1﹣【解析】利用复数的乘法求解z 再根据纯虚数的定义求解即可. 【详解】解:复数()()()111z i a i a a i ⋅+++=﹣=﹣为纯虚数, 10,10,a a ∴+≠=﹣解得1a =﹣. 故答案为:1﹣. 【点睛】本题主要考查了根据复数为纯虚数求解参数的问题,属于基础题. 3.数据1,3,5,7,9的标准差为_____.【答案】【解析】先计算平均数再求解方差与标准差即可. 【详解】解:样本的平均数1357955x ++++==,∴这组数据的方差是()()()()()222222115355575955S ⎡⎤=-+-+-+-+-⎣⎦ 28,S ∴=标准差22S =, 故答案为:22 【点睛】本题主要考查了标准差的计算,属于基础题. 4.函数()12x f x =-的定义域是__________. 【答案】(],0-∞【解析】由120x -≥,得21x ≤,所以0x ≤,所以原函数定义域为(],0-∞,故答案为(],0-∞.5.在一底面半径和高都是2m 的圆柱形容器中盛满小麦,有一粒带麦锈病的种子混入了其中.现从中随机取出的32m 种子,则取出了带麦锈病种子的概率是_____. 【答案】14π【解析】求解32m 占圆柱形容器的的总容积的比例求解即可. 【详解】解:由题意可得:取出了带麦锈病种子的概率221224ππ==⨯⨯.故答案为:14π. 【点睛】本题主要考查了体积类的几何概型问题,属于基础题.6.如图是一个算法伪代码,则输出的i 的值为_______________.【答案】5【解析】执行循环结构流程图,即得结果. 【详解】执行循环结构流程图得9123410S =----=-<,结束循环,输出415i =+=. 【点睛】本题考查循环结构流程图,考查基本分析与运算能力,属基础题.7.在平面直角坐标系xOy 中,若双曲线()22210y x b b-=>经过点(3,4),则该双曲线的准线方程为_____.【答案】3x ±= 【解析】代入()3,4求解得b ,再求准线方程即可. 【详解】解:双曲线()22210y x b b-=>经过点()3,4,221631b∴=﹣,解得22b =,即b .又1,a ∴=c ==故该双曲线的准线方程为:3x ±= .故答案为:3x ±=. 【点睛】本题主要考查了双曲线的准线方程求解,属于基础题.8.设n S 是等比数列{}n a 的前n 项的和,396,,S S S 成等差数列,则258a a a +的值为_____. 【答案】2【解析】设等比数列{}n a 的公比设为,q 再根据396,,S S S 成等差数列利用基本量法求解,q 再根据等比数列各项间的关系求解258a a a +即可. 【详解】解:等比数列{}n a 的公比设为,q396,,S S S 成等差数列,可得9362,S S S +=若1,q =则1111836,a a a += 显然不成立,故1,q ≠则()()()9361111112111a q a q a q qqq---⋅=+---,化为6321,q q +=解得312q =﹣,则43251176811112214a a a q a q qa a q q -+++====故答案为:2. 【点睛】本题主要考查了等比数列的基本量求解以及运用,属于中档题.9.给出下列四个命题,其中正确命题的序号是______.(写出所有正确命题的序号) ①因为当3x π=时,2sin sin 3x x π⎛⎫+≠⎪⎝⎭,所以23π不是函数sin y x =的周期; ②对于定义在R 上的函数()f x ,若()()22f f -≠,则函数()f x 不是偶函数; ③“M N >”是“22log log M N >”成立的充分必要条件; ④若实数a 满足24a <,则2a ≤. 【答案】①②④.【解析】由周期函数的定义判断①;由偶函数的概念判断②;由充分必要条件的判定判断③;求解一元二次不等式判断④. 【详解】 因为当3x π=时,2sin sin 3x x π⎛⎫+≠ ⎪⎝⎭,所以由周期函数的定义知23π不是函数sin y x =的周期,故①正确;对于定义在R 上的函数()f x ,若()()22f f -≠,由偶函数的定义知函数()f x 不是偶函数,故②正确;由M N >,不一定有22log log M N >,反之成立,则“M N >”是“22log log M N >”成立的必要不充分条件,故③错误;若实数a 满足24a <,则22a -≤≤,所以2a ≤成立,故④正确. ∴正确命题的序号是①②④. 故答案为:①②④. 【点睛】本题考查命题的真假判断与应用,考查逻辑思维能力与推理论证能力,是中档题. 10.如图,是一个四棱锥的平面展开图,其中间是边长为2的正方形,上面三角形是等边三角形,左、右三角形是等腰直角三角形,则此四棱锥的体积为_____.【答案】43【解析】画图直观图可得该几何体为棱锥,再计算高求解体积即可. 【详解】解:如图,是一个四棱锥的平面展开图,其中间是边长为2的正方形,上面三角形是等边三角形,左、右三角形是等腰直角三角形,∴此四棱锥S ABCD ﹣中,ABCD 是边长为2的正方形,SAD 是边长为2的等边三角形,故CD AD ⊥,又CD SD ⊥,AD SD D ⋂= 故平面SAD ⊥平面ABCD ,∴SAD 的高SE 是四棱锥S ABCD ﹣的高, ∴此四棱锥的体积为:112233ABCD V S SE ⨯=⨯⨯=正方形=故答案为:3. 【点睛】本题主要考查了四棱锥中的长度计算以及垂直的判定和体积计算等,需要根据题意11.在平面直角坐标系xOy 中,若函数()f x lnx ax =﹣在1x =处的切线与圆22210C x x y a ++:﹣﹣=存在公共点,则实数a 的取值范围为_____.【答案】(][)0,12,+∞【解析】利用导数的几何意义可求得函数()f x lnx ax =﹣在1x =处的切线,再根据切线与圆存在公共点,利用圆心到直线的距离满足的条件列式求解即可. 【详解】解:由条件得到()1'f x a x=- 又()()1,'11f a f a =-=-所以函数在1x =处的切线为()()()1111y a x a a x =﹣﹣-=﹣﹣, 即()110a x y ﹣﹣﹣= 圆C 方程整理可得:()221x y a -+= 即有圆心()1,0C 且0a > 所以圆心到直线的距离d ==≤,≤解得2a ≥或01≤<a , 故答案为:(][)0,12,+∞.【点睛】本题主要考查了导数的几何意义求解切线方程的问题,同时也考查了根据直线与圆的位置关系求解参数范围的问题,属于基础题.12.已知函数()32,f x ax bx cx ++=若关于x 的不等式()0f x <的解集是()(),10,2∞⋃﹣﹣,则b ca+的值为_____. 【答案】3-【解析】根据题意可知20ax bx c ++=的两根为1,2-,再根据解集的区间端点得出参数的关系,再求解b ca+即可. 【详解】解:因为函数()()322f x ax bx cx x ax bx c =++=++,关于x 的不等式()0f x <的解集是()(),10,2-∞-⋃20ax bx c ∴++=的两根为:1﹣和2;所以有:()12ba +﹣=-且()12c a⨯﹣=; b a ∴=﹣且2c a =﹣;23b c a aa a+--∴==-; 故答案为:3﹣ 【点睛】本题主要考查了不等式的解集与参数之间的关系,属于基础题.13.在边长为4的菱形ABCD 中,60,A ︒=点P 在菱形ABCD 所在的平面内.若3,PA PC =PB PD ⋅=_____.【答案】1-【解析】以菱形的中心为坐标原点建立平面直角坐标系,再设(),P x y ,根据3,PA PC =P 的坐标,进而求得PB PD ⋅即可.【详解】解:连接,,AC BD 设,AC BD 交于点,O 以点O 为原点, 分别以直线,OC OD 为,x y 轴,建立如图所示的平面直角坐标系,则:()23,23()0202()(),A C B D --,,,,,, 设(),P x y321,PA PC ==,((2222392321x y x y ⎧++=⎪∴⎨⎪-+=⎩①﹣②得,312,x =-解得3x =, 32y ∴=±, 332P ⎛⎫∴- ⎪ ⎪⎝⎭或332P ⎛⎫ ⎪ ⎪⎝⎭,显然得出的PB PD ⋅是定值,∴取332P ⎛⎫ ⎪ ⎪⎝⎭则3731,,,2222PB PD ⎛⎫⎛⎫-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 37144PB PD ∴⋅=-=-. 故答案为:1-. 【点睛】本题主要考查了建立平面直角坐标系求解向量数量积的有关问题,属于中档题.14.设函数()21722,04,k x x f x x x ⎧+⎛⎫-+≤⎪ ⎪=⎝⎭⎨⎪>⎩,()43g x k x ⎛⎫⎪⎝⎭=-,其中0k >.若存在唯一的整数,x 使得()()f x g x <,则实数k 的取值范围是_____. 【答案】17[3,6] 【解析】根据分段函数的解析式画出图像,再根据存在唯一的整数x 使得()()f x g x <数形结合列出临界条件满足的关系式求解即可. 【详解】解:函数()21722,04,0k x x f x x x ⎧+⎛⎫-+≤⎪ ⎪=⎝⎭⎨⎪>⎩,且0,k > 画出()f x 的图象如下:因为()43g x k x ⎛⎫=-⎪⎝⎭,且存在唯一的整数,x 使得()()f x g x <, 故()g x 与()f x 在0x <时无交点,174k k +∴≥,得173k ≥; 又()43g x k x ⎛⎫=-⎪⎝⎭,()g x ∴过定点4,03⎛⎫⎪⎝⎭又由图像可知,若存在唯一的整数x 使得()()f x g x <时43x >,所以2x ≥ ()()58533939g k f ≥≥==,∴存在唯一的整数3,x =使得()()f x g x <所以()()22243g k f =≤=6k ⇒≤ ()()844163g k f ∴≤==6k ⇒≤.根据图像可知,当4x ≥时, ()()f x g x >恒成立.综上所述, 存在唯一的整数3,x =使得()()f x g x <,此时1763k ≤≤ 故答案为:17[3,6] 【点睛】本题主要考查了数形结合分析参数范围的问题,需要根据题意分别分析定点4,03⎛⎫ ⎪⎝⎭右边的整数点中3x =为满足条件的唯一整数,再数形结合列出2,4x =时的不等式求k 的范围.属于难题.二、解答题15.如图,四棱锥P ABCD -中,底面ABCD 是菱形,对角线,AC BD 交于点,O M 为棱PD 的中点,MA MC =.求证:(1)//PB 平面AMC ; (2)平面PBD ⊥平面AMC . 【答案】(1)详见解析;(2)详见解析.【解析】(1) 连结,OM 根据中位线的性质证明//PB OM 即可. (2) 证明AC BD ⊥,AC PD ⊥再证明AC ⊥平面PBD 即可.【详解】解:()1证明:连结,OMO 是菱形ABCD 对角线AC BD 、的交点,O ∴为BD 的中点, M 是棱PD 的中点, //,OM PB ∴OM ⊂平面,AMC PB ⊄平面,AMC//PB ∴平面,AMC()2解:在菱形ABCD 中,,AC BD ⊥且O 为AC 的中点,,MA MC =AC OM ∴⊥, OM BD O ⋂=, AC ∴⊥平面,PBD AC ⊂平面AMC ,∴平面PBD ⊥平面AMC .【点睛】本题主要考查了线面平行与垂直的判定,属于基础题.16.在锐角三角形ABC 中,角,,A B C 的对边分别为,,a b c .已知tan ,tan ,tan A B C 成等差数列,cos cos ,cos A C B 成等比数列. (1)求A 的值;(2)若ABC 的面积为1,求c 的值. 【答案】(1)4A π=;(2)3c =【解析】(1)根据,,tanA tanB tanC 成等差数列与三角形内角和可知()tanC tan A B =-+,再利用两角和的正切公式,代入2,tanB tanA tanC +=化简可得22tan tan tan 3A B A -=,同理根据三角形内角和与余弦的两角和公式与等比数列的性质可求得2tanAtanB =,联立即可求解求A 的值.(2)由(1)可知2,tan 3tanB C ==,再根据同角三角函数的关系与正弦定理可求得b ,再结合ABC 的面积为1,利用面积公式求解即可. 【详解】解:()1,,tanA tanB tanC 成等差数列, 可得2,tanB tanA tanC += 而()1tanA tanB tanC tan A B tanAtanB +=-+-=,即tan tan 2tan tan tan tan 1A BB A A B +-=-,展开化简得222tan tan 2tan tan tan tan A B B A B B --=,因为tan 0B ≠,故 22tan tan tan 3A B A -=①又cosA cosB 成等比数列,可得()cosAcosB cosC cos A B sinAsinB cosAcosB +==-=-, 即2sinAsinB cosAcosB =, 可得2,tanAtanB =②联立①②解得1tanA =(负的舍去), 可得锐角4A π=;()2由()1可得2,3tanB tanC ==,由sin 2cos BtanB B ==22,1,sin B cos B B +=为锐角,解得5sinB =,因为sin 3cos C tanC C ==22,1,sin C cos C C +=为锐角,故可得sinC ,由正弦定理可得sin2253sin10c Bb c cC===,又ABC的面积为1,可得21122212232bcsinA c⋅⋅==,解得3c=.【点睛】本题主要考查了等差等比中项的运用以及正切的和差角公式以及同角三角函数关系等.同时也考查了正弦定理与面积公式在解三角形中的运用,属于中档题.17.某房地产开发商在其开发的某小区前修建了一个弓形景观湖.如图,该弓形所在的圆是以AB为直径的圆,且300AB=米,景观湖边界CD与AB平行且它们间的距离为502米.开发商计划从A点出发建一座景观桥(假定建成的景观桥的桥面与地面和水面均平行),桥面在湖面上的部分记作PQ.设2AOPθ∠=.(1)用θ表示线段,PQ并确定sin2θ的范围;(2)为了使小区居民可以充分地欣赏湖景,所以要将PQ的长度设计到最长,求PQ的最大值.【答案】(1)502300sincosPQθθ-=2sin21θ<≤;(2)6.【解析】(1)过点Q作QH AB⊥于点,H再在AOP中利用正弦定理求解AP,再根据sin2QHAQπθ⎛⎫-⎪⎝⎭=求解AQ,进而求得PQ.再根据0PQ>确定sin2θ的范围即可.(2)根据(1)有150232cosPQ sinθθ⎫=-⎪⎭,再设()132cosf sinθθθ=-,求导分析函数的单调性与最值即可. 【详解】 解:()1过点Q 作QH AB ⊥于点,H 则502QH =在AOP 中,150,2OA OP AOP θ∠===,2OAP πθ∴∠-=, 由正弦定理得:sin 2sin 2OP APπθθ=⎛⎫- ⎪⎝⎭,300AP sin θ∴=,502cos sin 2QH AQ πθθ∴=⎛⎫- ⎪⎝⎭=, 502==300cos PQ AP AQ sin θθ∴--, 5023000cos PQ sin θθ->=,因为cos 0θ>, 化简得2sin 213θ<≤ ()2502130050232cos PQ sin sin θθθ⎫=-⎪⎭=, 令()132cos fθθθ=-2sin 21θ<≤,且2(0,)θπ∈, ()22sin tan '32cos 32cos cos f θθθθθθθ⎛⎫=-= ⎪⎝⎭()222sin cos tancoscosθθθθθ⎛⎫+⎪=⎪⎝⎭()()23cos tan1tan cos tan tanθθθθθθ⎡⎤=+=-⎣⎦因为(0,)2πθ∈,故cos0θ>令'()0,fθ=即3tan tan0θθ+-=,230(,)tan tanθθθ∴+=记000,2tanθθπ⎛⎫∈ ⎪⎝⎭,当00θθ<<时,()()'0,f fθθ>单调递增;当02πθθ<<时,()()'0,f fθθ<单调递减,又233sinθ=>,∴当tanθ时,()fθ取最大值,此时33sin cosθθ,1c osPQθθ⎫=-=⎪⎭PQ∴的最大值为【点睛】本题主要考查了三角函数在实际中的应用,需要根据题意建立角度与长度间的关系,进而求导分析函数的单调性,根据三角函数值求解对应的最值即可.属于难题.18.在平面直角坐标系xOy中,已知椭圆C的中心为坐标原点,O焦点在x轴上,右顶点()2,0A到右焦点的距离与它到右准线的距离之比为12.(1)求椭圆C的标准方程;(2)若,M N是椭圆C上关于x轴对称的任意两点,设()4,0P-,连接PM交椭圆C 于另一点E.求证:直线NE过定点,B并求出点B的坐标;(3)在(2)的条件下,过点B的直线交椭圆C于,S T两点,求OS OT⋅的取值范围.【答案】(1)22143x y +=;(2)证明详见解析,()1,0B -;(3)54,4⎡⎤--⎢⎥⎣⎦. 【解析】(1)根据题意列出关于,,a b c 的等式求解即可.(2)先根据对称性,直线NE 过的定点B 一定在x 轴上,再设直线PM 的方程为(4)y k x +=,联立直线与椭圆的方程, 进而求得NE 的方程,并代入11(4)y k x +=,22(4)y k x +=化简分析即可.(3)先分析过点B 的直线ST 斜率不存在时OS OT ⋅的值,再分析存在时,设直线ST 的方程为(1)y m x +=,联立直线与椭圆的方程,得出韦达定理再代入3434OS OT x x y y ⋅=+求解出关于k 的解析式,再求解范围即可. 【详解】解:()1设椭圆C 的标准方程()222210,x y a b a b+=>>焦距为2c ,由题意得,2,a =由212a c c a a a c-==-,可得1,c =则2223b a c =﹣=,所以椭圆C 的标准方程为22143x y +=;()2证明:根据对称性,直线NE 过的定点B 一定在x 轴上,由题意可知直线PM 的斜率存在, 设直线PM 的方程为(4)y k x +=,联立22(4)143y k x x y +⎧⎪⎨+=⎪⎩=,消去y 得到()2222433264120k x k x k +++﹣=, 设点1122(,),(,)M x y E x y ,则11(,)N x y ﹣. 所以22121222326412,4343k k x x x x k k -+=-=++,所以NE 的方程为()212221y y y y x x x x +-=--,令0,y =得()221221y x x x x y y -==+,将11(4)y k x +=,22(4)y k x +=代入上式并整理,()121212248x x x x x x x ++=++,整理得()()2222128241281322432k k x k k --==--++,所以,直线NE 与x 轴相交于定点(1,0)B -.()3当过点B 的直线ST 的斜率不存在时,直线ST 的方程为1x =-331,1,22S T ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭,, 此时54OS OT ⋅=-, 当过点B 的直线ST 斜率存在时,设直线ST 的方程为(1)y m x =+,且3344(,),(,)S x y T x y 在椭圆C 上,联立方程组22(1)143y m x x y +⎧⎪⎨+=⎪⎩=,消去y ,整理得22224384120m x m x m +++()﹣=, 则()()()()22222844341214410mmm m ++=﹣﹣=>.所以223434228412,,4343m m x x x x m m -+=-=++ 所以()()()222343434324439111m y y m x x m x x x m x =++=++=-++, 所以()2342342451253344343m OS OT x x y m m y +⋅=+=-=-++-, 由20,m ≥得54,4OS OT ⎡⎫⋅∈--⎪⎢⎣⎭,综上可得,OS OT ⋅的取值范围是54,4⎡⎤--⎢⎥⎣⎦.【点睛】本题主要考查了椭圆的基本量求解以及定值和范围的问题,需要分析直线的斜率是否存在的情况,再联立直线与椭圆的方程,根据韦达定理以及所求的解析式,结合参数的范围进行求解.属于难题.19.已知函数()212ax f x bx+=,其中0,0a b >>.(1)①求函数()f x 的单调区间; ②若12,x x 满足)1,2i x i =>,且1220,0x x x >+>.求证:()()122f x f x b>+ . (2)函数()2ln 12g x ax x -=.若12,x x ⎛∈ ⎝对任意,12,x x ≠都有()()()()1212||||f x f x g x g x ->-,求b a -的最大值.【答案】(1)①单调递增区间⎛-∞ ⎝,⎫+∞⎪⎭,单调递减区间⎛ ⎝;②详见解析;(2)116. 【解析】(1)①求导可得()221,02ax f x x bx-'=≠,再分别求解()0f x '>与()0f x '<的解集,结合定义域分析函数的单调区间即可.②根据(1)中的结论,求出()()122f x f x +的表达式,再分10x <与1>0x 两种情况,结合函数的单调性分析()()122f x f x +的范围即可.(2)求导分析()2ln 12g x ax x -=的单调性,再结合()f x 单调性,设12,x x <去绝对值化简可得()()()()11220[]f x g x f x g x --->,再构造函数()()()M x f x g x =﹣,x⎛∈ ⎝,根据函数的单调性与恒成立问题可知10≥,再换元表达b a -求解最大值即可. 【详解】解:()()2211,02ax f x x bx -'=≠,由()0f x '>可得x>或x <由()0f x '<可得x<<故函数的单调递增区间⎛-∞ ⎝,⎫+∞⎪⎭,单调递减区间⎛ ⎝;1220,0x x x +②>>,10x ∴>或10x <,若10x >,因为i x ,故1x >2x由①知f x ()在⎫+∞⎪⎭上单调递增,()()1223f x f x f b b +=>>, 若10,x <由1x 可得1x <x 1, 因为1220,0x x x +>>, 所以21x x >﹣, 由f x ①()在⎫+∞⎪⎭上单调递增,()()()()()1211122f x f x f x f x f x ++-->>=综上()()122f x f x +. ()20x<时,()2110axg x ax x x -'=-=<,g x ()在⎛ ⎝上单调递减,不妨设12,x x < 由(1)()f x 在⎛ ⎝上单调递减,由()()()()1212f x f x g x g x ->-, 可得()()()()1212f x f x g x g x ->-, 所以()()()()11220[]f x g x f x g x --->,令()()()M x f x g x =﹣,x ⎛∈ ⎝, 可得M x ()单调递减, 所以()()()222211211022ax bx ax M x ax bx x bx---'=-+=≤在⎛ ⎝上恒成立, 即120bx ≥﹣在⎛ ⎝上恒成立,即10≥,所以b ≤,2111241616b a a ⎫≤-=-+≤⎪⎭﹣ ,所以b a ﹣的最大值116. 【点睛】本题主要考查了分类讨论分析函数单调性的问题,同时也考查了利用导数求解函数不等式以及构造函数分析函数的最值解决恒成立的问题.需要根据题意结合定义域与单调性分析函数的取值范围与最值等.属于难题.20.已知{}{}{},,n n n a b c 都是各项不为零的数列,且满足1122,*,n n n n a b a b a b c S n N ⋯+=++∈其中n S 是数列{}n a 的前n 项和,{}n c 是公差为()0d d ≠的等差数列.(1)若数列{}n a 是常数列,2d =,23c =,求数列{}n b 的通项公式; (2)若n a n λ=λ(是不为零的常数),求证:数列{}n b 是等差数列; (3)若11a c d k ===(k 为常数,*k N ∈),()2,*n n k b c n n N +≥∈=.求证:对任意112,*,n n n n b b n n N a a ++≥∈>的恒成立. 【答案】(1)43n b n -=;(2)详见解析;(3)详见解析. 【解析】(1)根据2d =,23c =可求得n c ,再根据{}n a 是常数列代入1122,*,n n n n a b a b a b c S n N ⋯+=++∈根据通项与前n 项和的关系求解{}n b 即可.(2)取1n =,并结合通项与前n 项和的关系可求得11,n n n n n n S c S c a b ﹣﹣﹣=再根据1n n n a S S -=-化简可得1n n n S d nc nb λλ+﹣=,代入()112n n n S λ--=化简即可知()1332n n b n b d --=≥,再证明2132b b d -=也成立即可. (3)由(2) 当2n ≥时,11()n nn n n n n S c c a c a b +﹣﹣﹣=,代入所给的条件化简可得1,n n S ka ﹣=()11n n n n S S a k a ++﹣==,进而证明可得11n n k a a k-+=,即数列{}n a 是等比数列.继而求得21n n k a k -+⎛⎫= ⎪⎝⎭,再根据作商法证明11n n n n b b a a ++>即可. 【详解】()1解:22,3,d c ==21n c n ∴=﹣.{}n a 是各项不为零的常数列,12,n a a a ∴⋯===则1n S na =,则由1122n n n n c S a b a b a b ++⋯+=,及21,n c n=﹣得()1221n n n b b b ++⋯+﹣=, 当2n ≥时,()()121123n n n b b b ++⋯+﹣﹣﹣=,两式作差,可得43n b n=﹣. 当1n =时,11b =满足上式,则43n b n=﹣; ()2证明:1122n n n n a b a b a b c S ++⋯+=,当2n ≥时,11221111n n n n a b a b a b c S ++⋯+﹣﹣﹣﹣=,两式相减得:11,n n n n n n S c S c a b ﹣﹣﹣= 即()()11111,n n n n n n n n n n n n n n S a c S c a b S c c a c a b ++﹣﹣﹣﹣﹣﹣=﹣=.即1n n n S d nc nb λλ+﹣=.又()112n n n S λ--=,()12n n n n d nc nb λλλ-∴+=,即12n n n d c b -+=. ∴当3n ≥时,1122n n n d c b ---+=,两式相减得:()1332n n b n b d --=≥.∴数列{}n b 从第二项起是公差为32d 的等差数列.又当1n =时,由1111,S c a b =得11c b =,当2n =时,由22112113222b d c d c d b d -=+=++=+,得2132b b d -=. 故数列{}n b 是公差为32d 的等差数列;()3证明:由()2,当2n ≥时,()11n n n n n n n S c c a c a b +﹣﹣﹣=,即()1n n nn S d a b c ﹣=﹣, n n k b c +=,n n b c kd ∴+=,即n n b c kd ﹣=, 1•,n n S d a kd ∴﹣=即1n n S ka ﹣=. ()11n n n n S S a k a ∴++﹣==,当3n ≥时,()111,n n n S k a ka +﹣﹣==即11n n k a a k-+=. 故从第二项起数列{}n a 是等比数列,∴当2n ≥时,221n n k a a k -+⎛⎫= ⎪⎝⎭.()()()22111n n k n b c c kd c n k k k n k k k n k +++-+=+-+=+===.另外,由已知条件可得()1221122a a c a b a b ++=, 又()2122,,2c k b k b k k +===,21a ∴=,因而21n n k a k -+⎛⎫= ⎪⎝⎭.令nn nb d a =, 则()()()()()11111111101n n n n n n n k k n k d b a nd a k k b n +++-=++-=-=-+++<+. 故对任意的2,*,n n N ≥∈11n n n n b b a a ++>恒成立. 【点睛】本题主要考查了等差等比数列的综合运用,需要熟练运用通项与前n 项和的关系分析数列的递推公式继而求解通项公式或证明等差数列等.同时也考查了数列中的不等式证明等,需要根据题意分析数列为等比数列并求出通项,再利用作商法证明.属于难题.21.已知二阶矩阵a b A c d ⎡⎤=⎢⎥⎣⎦,矩阵A 属于特征值11λ=-的一个特征向量为111α⎡-⎤=⎢⎥⎣⎦,属于特征值24λ=的一个特征向量为232α⎡⎤=⎢⎥⎣⎦.求矩阵A .【答案】2321A ⎡⎤=⎢⎥⎣⎦【解析】运用矩阵定义列出方程组求解矩阵A 【详解】由特征值、特征向量定义可知,111A αλα=,即11111a b c d ⎡⎤⎡⎤⎡⎤=-⨯⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦,得1,1.a b c d -=-⎧⎨-=⎩同理可得3212,328.a b c d +=⎧⎨+=⎩解得2a =,3b =,2c =,1d =.因此矩阵2321A ⎡⎤=⎢⎥⎣⎦ 【点睛】本题考查了由矩阵特征值和特征向量求矩阵,只需运用定义得出方程组即可求出结果,较为简单22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,已知曲线C 的参数方程为2cos {sin x y αα== (α为参数).以直角坐标系原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为cos()4πρθ-=P 为曲线C 上的动点,求点P 到直线l 距离的最大值.【答案】(1)2214x y +=,4x y +=(2)max 2d = 【解析】【详解】试题分析:利用cos ,sin x y ρθρθ==将极坐标方程化为直角坐标方程:cos()4πρθ-=ρcosθ+ρsinθ=4,即为x +y =4.再利用点到直线距离公式得:设点P 的坐标为(2cosα,sinα),得P 到直线l 的距离2d =≤试题解析:解:cos()4πρθ-=化简为ρcosθ+ρsinθ=4,则直线l 的直角坐标方程为x +y =4.设点P 的坐标为(2cosα,sinα),得P 到直线l 的距离2d =≤,d max =2. 【考点】极坐标方程化为直角坐标方程,点到直线距离公式 23.若正数,,a b c 满足1a b c ++=,求111323232a b c +++++的最小值.【答案】1【解析】试题分析:由柯西不等式得[]111(32)(32)(32)323232a b c a b c ⎛⎫+++++++ ⎪+++⎝⎭9≥=,所以1111323232a b c ++≥+++试题解析:因为,,a b c 均为正数,且1a b c ++=, 所以(32)(32)(32)9a b c +++++=.于是由均值不等式可知[]111(32)(32)(32)323232a b c a b c ⎛⎫+++++++⎪+++⎝⎭33133(32)(32)(32)9(32)(32)(32)a b c a b c ≥⋅+++=+++,当且仅当13a b c ===时,上式等号成立. 从而1111323232a b c ++≥+++. 故111323232a b c +++++的最小值为1.此时13a b c ===.【考点】柯西不等式24.如图,在正四棱锥P ABCD ﹣中,底面正方形的对角线,AC BD 交于点O 且12OP AB =.(1)求直线BP 与平面PCD 所成角的正弦值; (2)求锐二面角B PD C --的大小. 【答案】(16(2)60︒. 【解析】(1) 以,,OE OF OP 分别为x 轴,y 轴,z 轴,建立空间直角坐标系, 设底面正方形边长为2,再求解BP 与平面PCD 的法向量,继而求得直线BP 与平面PCD 所成角的正弦值即可.(2)分别求解平面BPD 与平面PDC 的法向量,再求二面角的余弦值判断二面角大小即可. 【详解】解:()1在正四棱锥P ABCD ﹣中,底面正方形的对角线,AC BD 交于点,O 所以OP ⊥平面,ABCD 取AB 的中点,E BC 的中点,F 所以,,OP OE OF 两两垂直,故以点O 为坐标原点,以,,OE OF OP 分别为x 轴,y 轴,z 轴,建立空间直角坐标系.设底面正方形边长为2, 因为1,2OP AB =所以1,OP =所以()()()()1,1,0,1,1,0,1,1,0,0,0,1B C D P ﹣﹣﹣, 所以()1,1,1BP =﹣﹣,设平面PCD 的法向量是(),,n x y z =,因为()0,2,0CD =-,()1,1,1CP =﹣, 所以20CD n y ⋅=-=,0CP n x y z ⋅+=﹣=,取1,x =则0,1y z ==﹣, 所以()1,0,1n =- 所以6,BP n cos BP n BP n⋅=<>=所以直线BP 与平面PCD 所成角的正弦值为63. ()2设平面BPD 的法向量是(),,n x y z =,因为()1,1,1BP =﹣﹣,()-2,-2,1BD =,所以0,BP n x y z ⋅+=﹣﹣=220BD n x y ⋅=﹣﹣=,取1,x =则1,0,y z =﹣= 所以()1,1,0n =-,由()1知平面PCD 的法向量是()1,0,1n =-,所以12m ncos m n m n ⋅<,>== 所以,60m n ︒<>=,所以锐二面角B PD C ﹣﹣的大小为60︒. 【点睛】本题主要考查了建立平面直角坐标系求解线面夹角以及二面角的问题,属于中档题.25.定义:若数列{}n a 满足所有的项均由1,1﹣构成且其中1﹣有m 个,1有p 个()3m p +≥,则称{}n a 为“(),m p ﹣数列”.(1)(),,i j k a a a i j k <<为“()3,4﹣数列”{}n a 中的任意三项,则使得1i j k a a a =的取法有多少种?(2)(),,i j k a a a i j k <<为“(),m p ﹣数列”{}n a 中的任意三项,则存在多少正整数(),m p 对使得1100,m p ≤≤≤且1i j k a a a =的概率为12. 【答案】(1)16;(2)115.【解析】(1)易得使得1i j k a a a =的情况只有“1,1,1﹣﹣”,“1,1,1”两种,再根据组合的方法求解两种情况分别的情况数再求和即可.(2)易得“1,1,1﹣﹣”共有21m p C C 种,“1,1,1”共有3P C 种.再根据古典概型的方法可知213312m p pm pC C C C ++=,利用组合数的计算公式可得()()2232320pm p p mp m m +﹣﹣﹣﹣﹣=,当p m =时根据题意有()(),,,2,3,4,{},100m p k k k ∈⋯=,共99个;当2232320p p mp mm +﹣﹣﹣﹣=时求得()232m p +=,再根据1100,m p ≤≤≤换元根据整除的方法求解满足的正整数对即可.【详解】解:(1)三个数乘积为1有两种情况:“1,1,1﹣﹣”,“1,1,1”, 其中“1,1,1﹣﹣”共有:213412C C =种, “1,1,1”共有:344C =种,利用分类计数原理得:(),,i j k a a a i j k <<为“()3,4﹣数列”{}n a 中的任意三项,则使得1i j k a a a =的取法有:12416+=种.(2)与(1)同理,“1,1,1﹣﹣”共有21m p C C 种, “1,1,1”共有3P C 种,而在“(),m p ﹣数列”中任取三项共有3m p C +种,根据古典概型有:213312m p pm pC C C C ++=, 再根据组合数的计算公式能得到:()()2232320pm p p mp m m +﹣﹣﹣﹣﹣=, p m ①=时,应满足11003m p m p p m ≤≤≤⎧⎪+≥⎨⎪=⎩,()(),,,2,3,{,}4,100m p k k k ∴∈⋯=,共99个,2232320p p mp m m +②﹣﹣﹣﹣=时,应满足221100332320m p m p p p mp m m <≤<⎧⎪+≥⎨⎪--+--=⎩,视m 为常数,可解得()232m p +±=,1,m ≥5≥,根据p m ≥可知,()232m p ++=,1m ≥,5≥,根据p m ≥可知,()232m p ++=,(否则1p m≤﹣),下设k则由于p 为正整数知k 必为正整数,1100m ≤≤, 549k ∴≤≤,化简上式关系式可以知道:()()21112424k k k m -+-==, 1,1k k ∴+﹣均为偶数, ∴设()*21,k t t N +∈=,则224,t ≤≤()211246t t k m +-∴==, 由于,1t t +中必存在偶数,∴只需,1t t +中存在数为3的倍数即可,2,3,5,6,8,9,11,,23,24t ∴⋯=, 5,11,13,,47,49k ∴⋯=.检验:()()()23114850100,22424m k k p ++-++=≤== 符合题意,∴共有16个,综上所述:共有115个数对(),m p 符合题意. 【点睛】本题主要考查了排列组合的基本方法,同时也考查了组合数的运算以及整数的分析方法等,需要根据题意。

江苏省海安高级中学2020届高三阶段测试数学试题含答案

江苏省海安高级中学2020届高三阶段测试数学试题含答案

江苏省海安高级中学2020届高三阶段测试数学试题含答案(总9页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--江苏省海安高级中学2020届高三阶段性测试(三)数学Ⅰ参考公式:样本数据1x ,2x ,…,n x 的方差2211()ni i s x x n ==-∑,其中11ni i x x n ==∑.锥体的体积13V Sh =,其中S 为底面积,h 为高.一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答.题卡相应位置上........ 1. 设全集U ={1,2,3,4,5}.若U A ={1,2,5},则集合A = ▲ . 2. 已知复数z 满足(z 2)i 1i -=+(i 为虚数单位),则复数z 的实部是 ▲ .3. 已知样本数据1234a a a a ,,,的方差为2,则数据123421212121a a a a ++++,,,的方差为 ▲ .4. 右图是一个算法的伪代码,其输出的结果为 ▲ .5. 从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,则该三位数为奇数的概率为 ▲ .6. 在平面直角坐标系xOy 中,若双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的离心率为10,则双曲线C 的渐近线方程为 ▲ .7. 将函数f (x )的图象向右平移π6个单位后得到函数()π4sin 23y x =-的图象,则()π4f 的值(第4题)为 ▲ .8. 设定义在R 上的奇函数()f x 在区间[0 )+∞,上是单调减函数,且2(3)f x x -(2)f +0>,则实数x 的取值范围是 ▲ .9. 在锐角三角形ABC 中,若3sin 5A =,1tan()3A B -=-,则3tan C 的值为 ▲ .10. 设S n 为数列{}n a 的前n 项和.若S n =na n -3n (n -1)(n ∈N *),且211a =,则S 20的值为 ▲ .11. 设正实数x ,y 满足x yxy x y+=-,则实数x 的最小值为 ▲ . 12. 如图,正四棱柱1111ABCD A B C D -的体积为27,点E ,F分别为棱1B B ,1C C 上的点(异于端点),且//EF BC , 则四棱锥1A AEFD -的体积为 ▲ .13.已知向量a ,b ,c 满足++=0a b c ,且a 与b 的夹角的正切为12-,b 与c 的夹角的正切为13-,2=b ,则⋅a c 的值为 ▲ .14.已知()()()23f x m x m x m =-++,()22x g x =-,若同时满足条件:①x ∀∈R ,()0f x <或()0g x <;②()4x ∃∈-∞-,,()()0f x g x ⋅<,则实数m 的取值范围是▲ .二、解答题:本大题共6小题,共90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本题满分14分)已知△ABC的面积为18AC AB CB ,向量(tan tan sin 2)A B C ,m和(1cos cos )A B ,n是共线向量.C1(第12题)(1)求角C 的大小; (2)求△ABC 的三边长.16.(本题满分14分)如图,在四棱锥P -ABCD 中,已知底面ABCD 为矩形,且AB =2,BC =1,E ,F 分别是AB ,PC 的中点,PA ⊥DE .(1)求证:EF ∥平面PAD ; (2)求证:平面PAC ⊥平面PDE .17.(本题满分14分)如图,OM ,ON 是某景区的两条道路(宽度忽略不计,OM 为东西方向),Q 为景区内一景点,A 为道路OM 上一游客休息区.已知tan∠MON =-3,OA =6(百米),Q 到直线OM ,ON 的距离分别为3(百米),6105(百米).现新修一条自A 经过Q 的有轨观光直路并延伸至道路ON 于点B ,并在B 处修建一游客休息区.(1)求有轨观光直路AB 的长;C (第16AOBPQ MN (第17题)(2)已知在景点Q 的正北方6 百米的P 处有一大型组合音乐喷泉,喷泉表演一次的时长为9 分钟.表演时,喷泉喷洒区域以P 为圆心,r 为半径变化,且t 分钟时,r =百米)(0≤t ≤9,0<a <1).当喷泉表演开始时,一观光车S(大小忽略不计)正从休息区B 沿(1)中的轨道BA 以2(百米/分钟)的速度开往休息区A ,问:观光车在行驶途中是否会被喷泉喷洒到,并说明理由.18.(本题满分16分)在平面直角坐标系xOy 中,已知椭圆E :22221(0)x y abab 过点(1,.(1)求椭圆E 的标准方程;(2)若A ,B 分别是椭圆E 的左,右顶点,动点M 满足MB AB ⊥,且MA 交椭圆E 于点P . ①求证:OP OM ⋅为定值;②设PB 与以PM 为直径的圆的另一交点为Q ,求证:直线MQ 经过定点.19.(本题满分16分)已知数列{}n a 满足:123a a a k ===(常数k >0),112n n n n k a a a a -+-+=(n ≥3,*n ∈N ).数列{}n b 满足:21n n n n a a b a +++=(*n ∈N ). (1)求b 1,b 2的值; (2)求数列{}n b 的通项公式;(3)是否存在k ,使得数列{}n a 的每一项均为整数 若存在,求出k 的所有可能值;若不存在,请说明理由.20.(本题满分16分)设函数f (x )=(x -a )ln x -x +a ,a ∈R . (1)若a =0,求函数f (x )的单调区间;(2)若a <0,且函数f (x )在区间()22e e -,内有两个极值点,求实数a 的取值范围;(3)求证:对任意的正数a ,都存在实数t ,满足:对任意的x ∈(t ,t +a ), f (x )<a -1.数学Ⅰ参考答案一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答.题卡相应位置上........ 1. 【答案】{3,5}2. 【答案】33. 【答案】84. 【答案】10115. 【答案】356. 【答案】y =±3x7. 【答案】48.【答案】(1,2)9. 【答案】7910. 【答案】1 240 11. 1 12.【答案】9 13.【答案】4514.【答案】()42--,二、解答题:本大题共6小题,共90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本题满分14分)解:(1)因为向量(tan tan sin 2)AB C ,m和(1cos cos )A B ,n是共线向量,所以cos cos tan tan sin 20A B A B C, ……2分即sin A cos B +cos A sin B -2sin C cos C =0,化简得sin C -2sin C cos C =0,即sin C (1-2cos C )=0. (4)分因为0πC ,所以sin C >0,从而1cos 2C,π.3C……6分 (2)218AC AB CBAC BCBAAC ,于是AC 32. ……8分因为△ABC的面积为1sin2CA CBC,即1π32sin23CB,解得6 2.CB…… 11分在△ABC中,由余弦定理得2222212cos32622326254.2 AB CA CB CA CB C所以3 6.AB…… 14分16.(本题满分14分)证明:(1)取PD中点G,连AG,FG,因为F,G分别为PC,PD的中点,所以FG∥CD,且FG=12C D.……2分又因为E为AB中点,所以AE⊄⊂⊂()()003 30y x Q x x=->,,=3x=()3 3Q,()6y x=--360y xx y=-⎧⎨+-=⎩,39xy=-⎧⎨=⎩,,()3 9B-,AB==AB223121a bca⎧⎪+=⎪⎨⎪=⎪⎩,222c a b=-2242ab⎧=⎪⎨=⎪⎩,,E22142x y(2)M y,11()P x y,MA0042y yy x=+22142x y()2222000140822y y yx x+++-=()2124828yxy--=+()212288yxy--=+1288yyy=+ ()2002200288(2)88y yOP OM yy y--⎛⎫⋅=⋅⎪++⎝⎭,,()22002200488488y yy y--=+=++MQ(0 0)O,()2228822828PByykyyy+==----+MQ PB⊥02MQyk=MQ0(2)2yy y x-=-02yy x=MQ(0 0)O,41a k=+1312=2a aba+=2423121a a k k kba k k++++===()1213n n n na a k a a n+--=+≥()21+12n n n na a k a a n+-=+≥……4分①-②得122111n n n n n n n na a a a a a a a+-+--+-=-.即:121121n n n n n n n na a a a a a a a+-+-+-+=+.因此:2211n n n nn n a a a a a a +-+-++=, ……6分 故()23n n b b n -=≥,又因为12b =,221k b k+=,所以221n n b k n k⎧⎪=⎨+⎪⎩,为奇数,为偶数. ……8分 (3)假设存在k ,使得数列{}n a 的每一项均为整数,则k 为正整数. ……10分由(2)知21221222122(123)21n n n n n n a a a n k a a a k +-++=-⎧⎪=⎨+=-⎪⎩,,由162Z 4Z a k a k k=∈=++∈,,所以k =1或2, ……12分检验:当1k =时,312=+kk 为整数, 利用123Z a a a ∈,,结合,{a n }各项均为整数; ……14分 当2k =时变为21221222122(123)52n n n n n n a a a n a a a +-++=-⎧⎪=⎨=-⎪⎩,, 消去2121n n a a +-,得:222223(2)n n n a a a n +-=-≥ 由24Z a a ∈,,所以偶数项均为整数,而2221252n n n a a a ++=-,所以21n a +为偶数,故12a k ==,故数列{}n a 是整数列.综上所述,k 的取值集合是{}12,. ……16分 20.(本题满分16分)解:(1)当a =0时,f (x )=x ln x -x ,f’(x )=ln x ,令f’(x )=0,x =1,列表分析x (0,1) 1 (1,+∞)f’(x ) - 0 + f (x )单调递减单调递增故f (x )的单调递减区间为(0,1),单调递增区间为(1,+∞). (3)分(2)f (x )=(x -a )ln x -x +a ,f’(x )=ln x -a x,其中x >0,令g (x )=x ln x -a ,分析g (x )的零点情况.g’(x )=ln x +1,令g’(x )=0,x =1e,列表分析g (x )min =g (1e )=-1e -a , ……5分而f’(1e )=ln 1e -a e =-1-a e ,()2ef -'=-2-a e 2=-(2+a e 2),f’(e 2)=2-ae 2=1e2(2e 2-a ),①若a ≤-1e ,则f’(x )=ln x -ax ≥0,故f (x )在()22e e -,内没有极值点,舍;②若-1e <a <-2e 2,则f’(1e )=ln 1e-a e <0,f’(e -2)=-(2+a e 2)>0,f’(e 2)=1e2(2e 2-a )>0,因此f’(x )在()22e e -,有两个零点,设为1x ,2x ,所以当()21e x x -∈,时,f (x )单调递增,当()12x x x ∈,时,f (x )单调递减,当()22e x x ∈,时,f (x )单调递增,此时f (x )在()22e e -,内有两个极值点;③若-2e 2≤a <0,则f’(1e )=ln 1e -a e <0,f’(e -2)=-(2+a e 2)≤0,f’(e 2)=1e2(2e 2-a )>0,因此f’(x )在()22e e -,有一个零点,f (x )在()22e e -,内有一个极值点;综上所述,实数a 的取值范围为(-1e ,-2e 2). ……10分(3)存在1t =:x ∈(1,1+a ),f (x )<a -1恒成立. ……11分 证明如下:由(2)得g (x )在(1e,+∞)上单调递增,且g (1)=-a <0,g(1+a )=(1+a )ln(1+a )-a .因为当x >1时,ln x >1-1x (*),所以g(1+a )>(1+a )(1-1a +1)-a =0. 故g (x )在(1,1+a )上存在唯一的零点,设为x 0.由知,x ∈(1,1+a ),f (x )<max{f (1),f (1+a )}. ……13分又f (1+a )=ln(1+a )-1,而x >1时,ln x <x -1(**),所以f (1+a )<(a +1)-1-1=a -1=f (1).即x∈(1,1+a),f(x)<a-1.所以对任意的正数a,都存在实数t=1,使对任意的x∈(t,t+a),使f(x)<a-1.……15分补充证明(*):令F(x)=ln x+1x-1,x≥1.F’(x)=1x-1x2=x-1x2≥0,所以F(x)在[1,+∞)上单调递增.所以x>1时,F(x)>F(1)=0,即ln x>1-1 x.补充证明(**)令G(x)=ln x-x+1,x≥1.G’(x)=1x-1≤0,所以G(x)在[1,+∞)上单调递减.所以x>1时,G(x)<G(1)=0,即ln x<x-1.……16分。

2020届高考数学第四次模拟数学试题(解析版)

2020届高考数学第四次模拟数学试题(解析版)

2020届高三年级第四次模拟考试数学试题第I 卷(必做题,共160分)一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上.) 1.若集合{}A x x m =≤,{}1B x x =≥-,且{}AB m =,则实数m 的值为_______. 【答案】1-【解析】【分析】直接根据交集运算的定义求解即可. 【详解】解:∵{}A x x m =≤,{}1B x x =≥-,且{}AB m =, ∴1m =-,故答案为:1-.【点睛】本题主要考查集合的交集运算,属于基础题.2.已知i 为虚数单位,复数z 满足z (3+i )=10,则z 的值为_______.【解析】【分析】由复数的除法运算与求模长的计算公式求解即可.【详解】1010(3)33(3)(3)i z i z i i i -===-⇒==++-【点睛】本题考查复数的除法运算,还考查了求复数的模,属于基础题.3.从数字0,1,2中任取两个不同的数字构成一个两位数,则所得的两位数大于10的概率为_______.【答案】34【解析】【分析】本题是一个等可能事件的概率,列出基本事件总数,求出满足条件的事件,再根据古典概型的概率公式计算可得;【详解】解:从数字0,1,2中任取两个不同的数字构成一个两位数,有10,12,21,20,共4个,满足大于10的有3个,故概率34 P=故答案为:3 4【点睛】本题考查等可能事件的概率,解题的关键是理解事件两位数大于10确定此事件的计数方法,本题概率基本公式考查题,考查分析判断的能力,本题是一个基础题.4.如图所示,一家面包销售店根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,图中小矩形从左向右所对应的区间依次为[0,50),[50,100),[100,150),[150,200),[200,250].若一个月以30天计算,估计这家面包店一个月内这种面包的日销售量少于100个的天数为_______天.【答案】12【解析】【分析】根据频率分布直方图,求出对应的频率与频数即可.【详解】解:根据频率分布直方图,得:日销售量少于100个的频率为(0.0030.005)500.4+⨯=,则估计这家面包店一个月内日销售量少于100个的天数为:300.412⨯=.故答案为:12.【点睛】本题考查了频率分布直方图的应用问题,也考查了频率=频数样本容量的应用问题,属于基础题.5.执行如图所示的流程图,输出k的值为_______.【答案】4【解析】【分析】模拟执行程序,依次写出每次循环得到的S ,k 的值,当18S =时满足条件16S >,退出循环,输出k 的值为4.【详解】解:由题意,执行程序框图,可得1k =,0S =,3S =,2k =,不满足条件16S >,S 9=,3k =,不满足条件16S >,18S =,4k =,满足条件16S >,退出循环,输出k 的值为4.故答案为:4.【点睛】本题考查了循环结构的程序框图,根据框图的流程判断程序运行的功能是解答此类问题的关键,属于基础题.6.若双曲线()222210,0x y a b a b-=>>的渐近线为2y x =±,则其离心率的值为_______. 5【解析】【分析】利用渐近线斜率为b a和双曲线,,a b c 的关系可构造关于,a c 的齐次方程,进而求得结果. 【详解】由渐近线方程可知:2b a =,即224b a =,22224b c a a ∴=-=, 2225c e a ∴==,e ∴=.【点睛】本题考查根据双曲线渐近线方程求解离心率的问题,关键是利用渐进线的斜率构造关于,a c 的齐次方程.7.若三棱柱ABC —A 1B 1C 1的体积为12,点P 为棱AA 1上一点,则四棱锥P —BCC 1B 1的体积为_______.【答案】8【解析】【分析】利用等体积法和切割法即可求解 【详解】解析:11111111111111113P BCC B A BCC B ABC A B C A A B C ABC A B C ABC A B C V V V V V V ------==-=- 1112212833ABC A B C V -==⨯=. 答案:8【点睛】本题考查棱柱和棱锥的体积问题,属于基础题8.“ω=2”是“函数()sin()6f x x πω=+的图象关于点(512π,0)对称”的_______条件.(选填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”之一).【答案】充分不必要【解析】【分析】根据充分条件与必要条件的定义求解即可.【详解】解:当ω=2时,526126x πππωπ+=⨯+=,sin()06x πω+=,故此时()f x 的图象关于点(512π,0)对称; 而当()f x 的图象关于点(512π,0)对称,则5126k ππωπ⨯+=,1225k ω-=,k ∈Z ; 故“ω=2”是“函数()sin()6f x x πω=+的图象关于点(512π,0)对称”的充分不必要条件; 故答案为:充分不必要.【点睛】本题主要考查充分条件与必要条件的判断,考查三角函数的对称性,属于基础题.9.在△ABC 中,C =B +4π,AB =4AC ,则tanB 的值为_______. 【答案】2【解析】【分析】由C =B +4π,AB AC ,得sin sin()4C B B B π=⇒+=, 然后化简即可求解【详解】解析:由AB =4AC ,得sin sin()444C B B B π=⇒+=,cos sin 224B B B +=,化简得2cos sin B B =, 所以tanB 的值为2.答案:2【点睛】本题考查正弦定理,两角和的正弦公式,同角三角函数关系式,属于简单题10.若数列{}n a 的前n 项和为n S ,12(1)(21)n n n a n -=+--,则1001002a S -的值为_______. 【答案】299【解析】【分析】根据题意,利用通项公式求出100a ,利用分组并项求和法求出100S ,由此可求出答案.【详解】解:∵12(1)(21)n n n a n -=+--, ∴9910022(2199)a =⨯+,10011001242[(13)(57)(197199)]S -=+++++-++-+++-+10021100=-+, ∴10010010010022398(21100)299a S -=+--+=,故答案为:299.【点睛】本题主要考查数列的分组并项法的求和公式,考查计算能力,属于基础题.11.若集合P ={}22(, )40x y x y x +-=,Q =2(, )15x x y y ⎧⎫+⎪⎪≥⎨⎬⎪⎩,则P Q 表示的曲线的长度为_______.【答案】23π 【解析】【分析】作出2240x y x +-=与215x y+≥的图象,得到P Q 表示的曲线,利用圆的弧长即可求解. 【详解】由2240x y x +-=得22(2)4x y -+=,由215x y +≥得,221515,215x x y x ≥-⎪+⎪≤=⎨⎪-<-⎪⎩且0y >, 作出两曲线图像如下:此时P Q 表示的曲线长度为图中上半圆去掉劣弧AB 部分,1520x --=与圆心的距离221151d --==+,且r =2, 在Rt ACD 中,1cos 2ACD ∠=, 60ACD ∴∠=︒∴2120ACB ACD ∠=∠=︒,∴曲线长度为:1202243603πππ︒-⨯=︒. 故答案为:23π 【点睛】本题主要考查了集合的交集运算,直线与圆的相交,二元一次不等式表示平面区域,属于中档题.12.若函数2e ,?0()e 1,?0x m x f x x x ⎧+>=⎨-≤⎩的图象上存在关于原点对称的相异两点,则实数m 的最大值是_______. 【答案】2e 1+【解析】【分析】由题意题目可转化方程2e 1e x x m +=+有两个不等的正根,得2e 1e x m x =+-,令()2()e 1e 0x g x x x =+->,利用导数研究函数的单调性与最值,由此可得出答案.【详解】解:∵点(),x y 关于原点对称的点为(),x y --,∴题目可转化为函数()22e 1e 1y x x ⎡⎤=-⋅--=+⎣⎦与e x y m =+图像在第一象限内有两个交点, 即方程2e 1e x x m +=+有两个不等的正根,得2e 1e x m x =+-,令()2()e 1e 0x g x x x =+->,则2()e e x g x '=-,由()0g x '>得02x <<,由()0g x '<得2x >,∴函数()g x 在()0,2上单调递增,在()2,+∞上单调递减,∴2()(2)e 1g x g ≤=+,∴2e 1m ≤+,故答案为:2e 1+.【点睛】本题主要考查函数与方程的应用,考查利用导数研究函数的单调性与最值,考查转化与化归思想,属于中档题.13.在△ABC 中,AB =10,AC =15,∠A 的平分线与边BC 的交点为D ,点E 为边BC 的中点,若AB AD ⋅=90,则AB AE ⋅的值是_______. 【答案】1752【解析】【分析】把,AE AD 用,AB AC 表示,代入已知条件求得AB AC ⋅,再计算AB AE ⋅即得.【详解】由角平分线定理可知32AC CD AB BD ==,所以22()55AD AB BD AB BC AB AC AB =+=+=+-2355AC AB =+ 因为90AB AD ⋅=,所以22233232()1090555555AB AC AB AB AC AB AC AB ⋅+=+⋅=⨯+⋅=,75AC AB ⋅=, 所以22111175()()(1075)2222AB AE AB AB AC AB AC AB ⋅=⋅+=+⋅=⨯+= 故答案为:1752. 【点睛】本题考查平面向量的数量积,解题关键是以,AB AC 为基底,其他向量都用基底表示后再进行运算.14.若实数x ,y 满足4x 2+4xy +7y 2=1,则7x 2﹣4xy +4y 2的最小值是_______. 【答案】38【解析】【分析】 将式子化为为222222744744447x xy y x xy y x xy y -+-+=++,讨论x =0或x ≠0,将分子、分母同除x ,利用判别式0∆≥即可求解. 【详解】解析:222222744744447x xy y x xy y x xy y -+-+=++, 当x =0,原式的值为47, 当x ≠0,令222744(74)(44)470447y t t t m m t m t m x t t-+=⇒=⇒-+++-=++ 2438(44)4(74)(47)0783m m m m m ≠⇒∆=+---≥⇒≤≤. 故答案为:38【点睛】本题主要考查了判别式法求最值,属于中档题.二、解答题(本大题共6小题,共计90分,请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.)15.若函数()()sin f x M x ωϕ=+(M >0,ω>0,0<ϕ<π)的最小值是﹣2,最小正周期是2π,且图象经过点N (3π,1). (1)求()f x 的解析式;(2)在△ABC 中,若()85f A =,()1013f B =,求cosC 的值. 【答案】(1)()2cos f x x =.(2)1665 【解析】【分析】(1)利用三角函数的性质:最值求出M ,最小正周期求出ω,特殊点代入求出ϕ,即可求出解析式.(2)首先利用解析式求出4cos 5A =,5cos 13B =,再利用同角三角函数的基本关系求出sin A 、sin B ,然后结合三角形的内角和性质以及两角和的余弦公式即可求解.【详解】解:(1)因为()f x 的最小值是﹣2,所以M =2.因为()f x 的最小正周期是2π,即22T ππω==,所以ω=1, 又由()f x 的图象经过点(3π,1),可得13f π⎛⎫= ⎪⎝⎭,1sin 32πϕ⎛⎫+= ⎪⎝⎭, 所以236k ππϕπ+=+或526k ππ+,k ∈Z , 又0<ϕ<π,所以2πϕ=,故()2sin 2f x x π⎛⎫=+ ⎪⎝⎭,即()2cos f x x =. (2)由(1)知()2cos f x x =,又()85f A =,()1013f B =, 故82cos 5A =,102cos 13B =,即4cos 5A =,5cos 13B =, 又因为△ABC 中,A ,B ∈(0,π),所以3sin 5A ===,12sin 13B ===, 所以cosC =cos [π﹣(A +B )]=﹣cos (A +B )=﹣(cosAcosB ﹣sinAsinB ) =453121651351365⎛⎫-⨯-⨯= ⎪⎝⎭.【点睛】本题考查了三角函数的性质求解析式、三角恒等变换、诱导公式,熟记公式是解题的关键,属于基础题.16.如图,在四棱锥P—ABCD中,底面ABCD是菱形,PC⊥BC,点E是PC的中点,且平面PBC⊥平面ABCD.求证:(1)求证:P A∥平面BDE;(2)求证:平面P AC⊥平面BDE.【答案】(1)证明见解析;(2)证明见解析;【解析】【分析】(1)设AC BD=O,连结OE,从而可得AP//OE,再利用线面平行的判定定理即可证出.(2)利用面面垂直的性质定理可得PC⊥平面ABCD,即证出PC⊥BD,再由AC⊥BD,根据线面垂直的判定定理可得BD⊥平面P AC,最后利用面面垂直的判定定理即可证出.【详解】证明:(1)设AC BD=O,连结OE,因为底面ABCD是菱形,故O为BD中点,又因为点E是PC的中点,所以AP//OE,又因为OE⊂平面BDE,AP⊄平面BDE,所以AP//平面BDE.(2)因为平面PBC⊥平面ABCD,PC⊥BC,平面PBC平面ABCD=BC,PC⊂平面PBC,所以PC⊥平面ABCD又BD⊂平面ABCD,所以PC⊥BD,∵ABCD是菱形,∴AC⊥BD,又PC⊥BD,AC PC=C,AC⊂平面P AC,PC⊂平面P AC,所以BD⊥平面P AC又BD⊂平面BDE,所以平面P AC⊥平面BDE.【点睛】本题考查了线面平行的判定定理、线面垂直的判定定理、面面垂直的判定定理以及面面垂直的性质定理,考查了考生的逻辑推理能力,属于基础题.17.如图,在一旅游区内原有两条互相垂直且相交于点O的道路l1,l2,一自然景观的边界近似为圆形,其半径约为1千米,景观的中心C到l1,l2的距离相等,点C到点O的距离约为10千米.现拟新建四条游览道路方便游客参观,具体方案:在线段OC上取一点P,新建一条道路OP,并过点P新建两条与圆C相切的道路PM,PN(M,N为切点),同时过点P新建一条与OP垂直的道路AB(A,B分别在l1,l2上).为促进沿途旅游经济,新建道路长度之和越大越好,求新建道路长度之和的最大值.(所有道路宽度忽略不计)【答案】305【解析】【分析】fθ.然后求导,用导数知识求得最大值.【详解】解:连接CM,设∠PCM=θ,则PC=1cosθ,PM=PN=tanθ,OP=OC﹣PC=10﹣1cosθ,AB=2OP=20﹣2cosθ,设新建的道路长度之和为()fθ,设∠PCM=θ,用θ表示出各道路长,并求出和()则3()2tan 30cos f PM PN AB OP θθθ=+++=-+, 由1<PC ≤10得110≤cos θ<1,设01cos 10θ=,0θ∈(0,2π),则θ∈(0,0θ],0311sin 10θ=,223cos ()cos f θθθ-'=,令()0f θ'=得2sin 3θ= 设12sin 3θ=,1θ∈(0,0θ],θ,()f θ',()f θ的情况如下表: θ(0,1θ) 1θ(1θ,0θ) ()f θ'+ 0 - ()f θ单调递增极大值单调递减由表可知1θθ=时()f θ有极大值也是最大值,此时2sin 3θ=,5cos 3θ=,tan 5θ=,()305f θ=-答:新建道路长度之和最大值为305.【点睛】本题考查导数的实际应用,解题关键是建立三角函数的模型,引入参数∠PCM =θ,把各道路长用θ表示,并求出和()f θ.18.如图,在平面直角坐标系中,已知椭圆C :22221x y a b+=(a >b >0)的短轴长为2,F 1,F 2分别是椭圆C 的左、右焦点,过点F 2的动直线与椭圆交于点P ,Q ,过点F 2与PQ 垂直的直线与椭圆C 交于A 、B 两点.当直线AB 过原点时,PF 1=3PF 2.(1)求椭圆的标准方程;(2)若点H (3,0),记直线PH ,QH ,AH ,BH 的斜率依次为1k ,2k ,3k ,4k . ①若12215k k +=,求直线PQ 的斜率; ②求1234()()k k k k ++的最小值.【答案】(1)2212x y +=(2)①1或78②4225-【解析】 【分析】(1)已知条件有1b =,直线AB 过原点时,PQ ⊥x 轴,所以△PF 1F 2为直角三角形,利用椭圆定义和勾股定理可求得a ,得椭圆方程;(2)①设直线PQ :(1)y k x =-,代入到椭圆方程得后化简,设P (1x ,1y ),Q (2x ,2y ),应用韦达定理得2122412k x x k +=+,21222212k x x k-=+,计算12k k +并代入1212,x x x x +可得; ②分类讨论,当这两条直线中有一条与坐标轴垂直时,1234()()0k k k k ++=, 当两条直线与坐标轴都不垂直时,由①知122287k k k k +=+,同理可得342287kk k k-+=+,计算1234()()k k k k ++后应用基本不等式可得最小值.【详解】解:(1)因为椭圆C :22221x y a b+=(a >b >0)的短轴长为2,所以b =1,当直线AB 过原点时,PQ ⊥x 轴,所以△PF 1F 2为直角三角形, 由定义知PF 1+PF 2=2a ,而PF 1=3PF 2,故132PF a =,212PF a =, 由2221212PF PF F F =+得2222291144(1)444a a c a a =+=+-,化简得a 2=2, 故椭圆的方程为2212x y +=.(2)①设直线PQ :(1)y k x =-,代入到椭圆方程得:2222(12)4(22)0k x k x k +-+-=,设P (1x ,1y ),Q (2x ,2y ),则2122412k x x k +=+,21222212k x x k-=+, 所以121221121212[(1)(3)(1)(3)]33(3)(3)y y k x x x x k k x x x x --+--+=+=---- 12121212[24()6]3()9k x x x x x x x x -++=-++222222222224[246]2121222487391212k k k k k k k k k k k -⨯-⨯+++==-+-⨯+++所以122228715k k k k +==+, 解得:1k =或78k =,即为直线PQ 的斜率.②当这两条直线中有一条与坐标轴垂直时,1234()()0k k k k ++=, 当两条直线与坐标轴都不垂直时, 由①知122287k k k k +=+,同理可得342287kk k k-+=+ 故21234422244()()1565611356()113k k k k k k k k k --++==++++4225≥=-,当且仅当221k k =即k =±1时取等号. 综上,1234()()k k k k ++的最小值为4225-. 【点睛】本题考查求椭圆的标准方程,考查直线与椭圆相交中定值与最值问题.求椭圆方程时由于已知直线的特殊位置,利用椭圆的定义是解题关键,在直线与椭圆相交问题中,采取设而不求思想方法,即设直线方程,设交点坐标1122(,),(,)P x y P x y ,直线方程代入椭圆方程整理后应用韦达定理得1212,x x x x +,代入其他条件化简变形即可得.19.如果存在常数k 使得无穷数列{}n a 满足mn m n a ka a =恒成立,则称为()P k 数列. (1)若数列{}n a 是()1P 数列,61a =,123a =,求3a ; (2)若等差数列{}n b 是()2P 数列,求数列{}n b 的通项公式;(3)是否存在()P k 数列{}n c ,使得2020c ,2021c ,2022c ,…是等比数列?若存在,请求出所有满足条件的数列{}n c ;若不存在,请说明理由.【答案】(1)313a =;(2)0n b =或12n b =或2n n b =;(3)存在;满足条件的()P k 数列{}n c 有无穷多个,其通项公式为1n c k=.【解析】 【分析】(1)根据()P k 数列的定义,得623a a a =,1226a a a =,可求3a ;(2)根据()P k 数列的定义,得2mn m n b b b =,分10b =和10b ≠两种情况讨论. 当10b =,0n b =.当10b ≠时,由{}n b 是等差数列,对,m n 赋值,求出1b 和公差d ,即求n b ;(3)假设存在满足条件的()P k 数列{}n c ,设等比数列2020c ,2021c ,2022c ,…的公比为q .则有2020202020202020c kc c ⋅=,2020202120202021c kc c ⋅=,可得q =1,故当2020n ≥时,1n c k=.当12020n <<时,不妨设2020i n ≥,i N *∈且i 为奇数,由()()1122221i i i i i ii n n n n n n n n n n n c c kc c kc c k c c k c -----⨯⨯==⨯=⨯=⨯==,可得1n c k=. 即满足条件的()P k 数列{}n c 有无穷多个,其通项公式为1n c k=. 【详解】(1)由数列{}n a 是()1P 数列,得6231a a a ==,12263a a a ==,可得313a =; (2)由{}nb 是()2P 数列知2mn m n b b b =恒成立,取m =1得12n n b b b =恒成立, 当10b =,0n b =时满足题意,此时0n b =,当10b ≠时,由2112b b =可得112b =,取m =n =2得2422b b =, 设公差d ,则21132()22d d +=+解得0d =或者12d =,综上,0n b =或12n b =或2n n b =,经检验均合题意.(3)假设存在满足条件的()P k 数列{}n c ,不妨设该等比数列2020c ,2021c ,2022c ,…的公比为q , 则有2020202020202020202020202020202020202020,c kc c c q kc c ⋅-⋅=∴⋅=⋅,可得2020202020202020qkc ⋅-=①2020202120202020202120202021202020202020,c kc c c q kc c q ⋅-⋅=∴⋅=⋅⋅,可得2020202120212020qkc ⋅-=②综上①②可得q =1,故202020202020c c ⋅=,代入2020202020202020c kc c ⋅=得20201c k=, 则当2020n ≥时,1n c k=, 又20201202011,c kc c c k=⋅∴=, 当12020n <<时,不妨设2020i n ≥,i N *∈且i 为奇数, 由()()1122221i i i i i ii n n n n n n n n n n n c c kc c kc c k c c k c -----⨯⨯==⨯=⨯=⨯==,而1i n c k =,11()i in k c k -∴=,1()()i i n c k ∴=,1n c k∴=. 综上,满足条件的()P k 数列{}n c 有无穷多个,其通项公式为1n c k=. 【点睛】本题考查创新型题目,考查等差数列和等比数列的通项公式,考查学生的逻辑推理能力和计算能力,属于难题.20.设函数32()3ln 2f x x x ax ax =-++-. (1)若a =0时,求函数()f x 的单调递增区间;(2)若函数()f x 在x =1时取极大值,求实数a 的取值范围; (3)设函数()f x 的零点个数为m ,试求m 的最大值. 【答案】(1)单调增区间为(1,+∞)(2)92<-a (3)2 【解析】 【分析】(1)求导得到函数的单调增区间. (2)求导,讨论32a ≥-,9322a -<<,92a =-或32a =,92<-a 几种情况,分别计算函数极值得到答案.(3)考虑92a ≥-,92<-a 两种情况,求导得到单调区间,计算极值判断零点个数,得到答案.【详解】(1)当a =0时,3()3ln f x x x =-+,所以31()3x f x x-'=⋅,由()0f x '=得x =1,当x ∈(0,1)时,()f x '<0;当x ∈(1,+∞)时,()f x '>0, 所以函数()f x 的单调增区间为(1,+∞).(2)由题意得23(1)2()[(1)1]3x af x x x x -'=+++, 令22()(1)13a g x x x =+++(x >0),则3(1)()()x f x g x x-'=, 当213a +≥0即32a ≥-时,()g x >0恒成立, 故()f x 在(0,1)上递减,在(1,+∞)上递增,所以x =1是函数()f x 的极小值点,不满足; 当22(1)403a ∆=+-<即9322a -<<时,此时()g x >0恒成立, ()f x 在(0,1)上递减,在(1,+∞)上递增,所以x =1是函数()f x 的极小值点,不满足;当22(1)403a ∆=+-=即92a =-或32a =时,()f x 在(0,1)上递减,在(1,+∞)上递增,所以x =1是函数()f x 的极小值点,不满足;当22(1)403a∆=+->时,解得92<-a 或32a >(舍),当92<-a 时,设()g x 的两个零点为1x ,2x ,所以1x 2x =1,不妨设0<1x <2x ,又2(1)303a g =+<,所以0<1x <1<2x ,故123()()(1)()f x x x x x x x'=---, 当x ∈(0,1x )时,()f x '<0;当x ∈(1x ,1)时,()f x '>0;当x ∈(1,2x )时,()f x '<0;当x ∈(2x ,+∞)时,()f x '>0;∴()f x 在(0,1x )上递减,在(1x ,1)上递增,在(1,2x )上递减,在(2x ,+∞)上递增; 所以x =1是函数()f x 极大值点,满足. 综上所述:92<-a . (3)①由(2)知当92a ≥-时,函数()f x 在(0,1)上单调递减,在(1,+∞)上单调递增,故函数()f x 至多有两个零点,欲使()f x 有两个零点,需(1)10f a =-<,得1a >,()23ln 28443ln 280f a a =-++-=-+>;32()32320a a a a a f e a e ae ae a ae a -----=++->->>,()0,1ae -∈,故满足函数有2个零点. ②当92<-a 时,由(2)知()f x 在(0,1x )上递减,在(1x ,1)上递增,在(1,2x )上递减,在(2x ,+∞)上递增;而0<1x <1,所以311111()3ln (2)0f x x x ax x =-++->, 此时函数()f x 也至多有两个零点综上①②所述,函数()f x 的零点个数m 的最大值为2.【点睛】本题考查了函数的单调区间,根据极值求参数,零点个数问题,意在考查学生的计算能力和综合应用能力.第II 卷(附加题,共40分)【选做题】本题包括A ,B ,C 三小题,请选定其中两题作答,每小题10分共计20分,解答时应写出文字说明,证明过程或演算步骤. A.选修4—2:矩阵与变换21.已知矩阵A = 2 1a b ⎡⎤⎢⎥⎣⎦,若矩阵A 属于特征值3的一个特征向量为11α⎡⎤=⎢⎥⎣⎦,求该矩阵属于另一个特征值的特征向量.【答案】 11⎡⎤⎢⎥-⎣⎦【解析】 【分析】根据特征向量和特征值的定义列出矩阵方程求出,a b ,写出特征多项式,由特征多项式可求得另一个特征值,再得特征向量.【详解】解:由题意知 2113 111a A b α⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,所以2313a b +=⎧⎨+=⎩,即12a b =⎧⎨=⎩,所以矩阵A 的特征多项式21 2()(1)42 1f λλλλ--==----,由()0f λ=,解得3λ=或1λ=-,当1λ=-时,220220x y x y --=⎧⎨--=⎩,令x =1,则y =﹣1,所以矩阵A 的另一个特征值为﹣1,对应的一个特征向量为 11⎡⎤⎢⎥-⎣⎦.【点睛】本题考查特征值与特征向量,掌握特征值与特征向量的概念、特征多项式是解题关键.B.选修4—4:坐标系与参数方程22.在极坐标系中,已知直线:cos 2sin l m ρθρθ+=(m 为实数),曲线:2cos 4sin C ρθθ=+,当直线l 被曲线C 截得的弦长取得最大值时,求实数m 的值. 【答案】5m = 【解析】 【分析】将直线l 和圆C 的极坐标方程均化为普通方程,由题意可知直线l 过圆C 的圆心,由此可求得实数m 的值. 【详解】由题意知直线l 的直角坐标方程为20x y m +-=,又曲线C 的极坐标方程2cos 4sin ρθθ=+,即22cos 4sin ρρθρθ=+, 所以曲线C 的直角坐标方程为22240x y x y +--=,即()()22125x y -+-=,所以曲线C 是圆心为()1,2的圆,当直线l 被曲线C 截得的弦长最大时,得2120m +-=,解得5m =.【点睛】本题考查直线与圆的综合问题,考查极坐标方程与普通方程之间的转化,考查计算能力,属于基础题.C.选修4—5:不等式选讲23.已知实数x 、y 、z 满足21x y z ++=,求222x y z ++的最小值.【答案】16【解析】 【分析】利用柯西不等式得出()()()22222221122x y z x y z ++++≥++,由此可求得222x y z ++的最小值.【详解】由柯西不等式有()()()222222211221xy z x y z ++++≥++=,所以22216x y z ++≥(当且仅当112x y z ==即16x y ==,13z =时取等号),所以222x y z ++的最小值是16.【点睛】本题考查利用柯西不等式求最值,解答的关键就是对代数式进行配凑,考查计算能力,属于基础题.【必做题】解答时应写出文字说明,证明过程或演算步骤.24.如图,抛物线()2:20C y px p =>的焦点为F ,过点()2,0P 作直线l 与抛物线交于A 、B 两点,当直线l 与x 轴垂直时AB 长为42.(1)求抛物线的方程;(2)若APF 与BPO △的面积相等,求直线l 的方程.【答案】(1)24y x =;(2)240x y --=或240x y +-=.【解析】 【分析】(1)由题意可知点(2,22在抛物线C 上,将该点坐标代入抛物线C 的方程,求得p 的值,进而可求得抛物线C 的方程;(2)由题意得出2A B y y =,可得知直线AB 的斜率不为零,可设直线AB 的方程为2x my =+,将该直线方程与抛物线方程连理,列出韦达定理,由题意得出2A B y y =-,代入韦达定理后可求得m 的值,进而可求得直线AB 的方程.【详解】(1)当直线l 与x 轴垂直时AB 的长为42 又()2,0P ,取(2,22A ,所以(2222p =⋅,解得2p =,所以抛物线的方程为24y x =; (2)由题意知1122APF A A S FP y y =⋅=△,12BPO B B S OP y y =⋅=△, 因APF BPO S S =△△,所以2A B y y =,当0AB k =时,直线AB 与抛物线不存在两个交点,所以0AB k ≠, 故设直线AB 的方程为2x my =+,代入抛物线方程得2480y my --=,所以4A B y y m +=,80A B y y =-<,2A B y y ∴=-,可得2428A B B A B B y y y m y y y +=-=⎧⎨=-=-⎩,解得12m =±. 所以,直线AB 的方程为240x y --=或240x y +-=.【点睛】本题考查抛物线方程的求解,同时也考查了利用三角形面积关系求直线的方程,考查韦达定理设而不求法的应用,考查计算能力,属于中等题.25.若有穷数列{}n a 共有k 项(2)k ≥,且11a =,12()1r r a r k a r +-=+,当11r k ≤≤-时恒成立.设12k k T a a a =+++. (1)求2T ,3T ;(2)求k T .【答案】(1)20T =;313T =(2)1[1(1)]2k k T k =-- 【解析】【分析】(1)分别令2k =和3k =,得到r 的值,再计算2T ,3T 即可.(2)首先利用累乘法和组合数性质得到1111(2)2r r r k a C k+++=--,从而得到11221[(2)(2)(2)]2k k k k k k S C C C k=-+-++--,再利用二项式定理即可得到11[(12)1][1(1)]22k k k S k k =--=---. 【详解】(1)令2k =时,得1r =,由212(12)111a a -==-+,得21a =-,2110T =-=, 令3k =时,得1r =或2,由212(13)211a a -==-+,得22a =-, 由322(23)2213a a -==-+,得343a =,3411233T =-+=. (2)因12()1r r a r k a r +-=+,由累乘法得:321122(1)2(2)2()231r r a a a k k r k a a a r +---⨯⨯⨯=⨯⨯⨯+,所以1(1)(2)()!(2)(2)231(1)!(1)!r r r k k k r k a r k r k r +---=-⋅⋅⋅=-++--, 所以1111(2)2r r r k a C k+++=--, 当0r =时,111(2)12k a C k =⨯-⨯=-,也适合1111(2)2r r r k a C k+++=--, 所以11221[(2)(2)(2)]2k k k k k k S C C C k=-+-++--, 即0011221[(2)(2)(2)(2)1]2k k k k k k k S C C C C k=-+-+-++---, 所以11[(12)1][1(1)]22k k k S k k =--=---. 【点睛】本题主要考查了数列的累乘法,同时组合数的性质和二项式定理,考查了学生分析问题的能力,属于难题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年江苏省南京外国语学校、金陵中学、海安高中高考数学四模试卷题号一二总分得分一、填空题(本大题共14小题,共70.0分)1.设全集U={x|x<5,x∈N*},集合A={1,2},B={2,4},则∁U(A∪B)=______.2.复数(i为虚数单位)在复平面内对应的点在第象限______.3.将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和大于10的概率是______.4.对一批产品的质量(单位:克)进行抽样检测,样本容量为800,检测结果的频率分布直方图如图所示.根据标准,单件产品质量在区间[25,30)内为一等品,在区间[20,25)和[30,35)内为二等品,其余为次品.则样本中次品件数为______.5.在平面直角坐标系xOy中,若抛物线y2=2px的焦点恰好是双曲线的右焦点,则该抛物线的准线方程为______.6.如图是一个算法流程图,则输出的b的值为______.7.已知α∈(0,π),,则=______.8.函数的定义域为______.9.设数列{a n}为等差数列,其前n项和为S n,已知a1+a4+a7=60,a2+a5+a8=51,若对任意n∈N*,都有S n≤S k成立,则正整数k的值为______.10.如图,该几何体由底面半径相同的圆柱与圆锥两部分组成,且圆柱的高与底面半径相等.若圆柱与圆锥的侧面积相等,则圆锥与圆柱的高之比为______.11.在平面直角坐标系xOy中,圆C经过M(1,3),N(4,2),P(1,-7)三点,且直线l:x+ay-1=0(a∈R)是圆C的一条对称轴,过点A(-6,a)作圆C的一条切线,切点为B,则线段AB的长度为______.12.已知实数a,b∈(0,2),且满足,则a+b的值为______.13.已知菱形ABCD中,对角线AC=,BD=1,P是AD边上的动点(包括端点),则的取值范围为______.14.在△ABC中,若cos2A+cos2B+cos2C<1,sin B=,则(tan2A-2)•sin2C的最小值为______.二、解答题(本大题共11小题,共150.0分)15.已知函数f(x)=2sin(x+)•cos x.(1)若0≤x≤,求函数f(x)的值域;(2)设△ABC的三个内角A,B,C所对的边分别为a,b,c,若A为锐角且f(A)=,b=2,c=3,求cos(A-B)的值.16.如图,在三棱锥P-ABC中,平面PAC⊥平面ABC,AB=BC,PA⊥PC.点E,F,O分别为线段PA,PB,AC的中点,点G是线段CO的中点.(1)求证:FG∥平面EBO;(2)求证:PA⊥BE.17.在平面直角坐标系xOy中,已知椭圆C:(a>b>0)的离心率为,短轴长为2.(1)求椭圆C的标准方程;(2)设P为椭圆上顶点,点A是椭圆C上异于顶点的任意一点,直线PA交x轴于点M.点B 与点A关于x轴对称,直线PB交x轴于点N.问:在y轴的正半轴上是否存在点Q,使得∠OQM=∠ONQ?若存在,求点Q的坐标;若不存在,请说明理由.18.如图,已知某市穿城公路MON自西向东到达市中心O后转向东北方向,∠MON=,现准备修建一条直线型高架公路L,在MO上设一出入口A,在ON上设一出入口B,且要求市中心O到AB所在的直线距离为10km.(1)求A,B两出入口间距离的最小值;(2)在公路MO段上距离市中心O点30km处有一古建筑C(视为一点),现设立一个以C为圆心,5km为半径的圆形保护区,问如何在古建筑C和市中心O之间设计出入口A,才能使高架公路及其延长线不经过保护区?19.已知数列{a n}的各项均为正数,其前n项和为S n,且2S n+1-3S n=2a1,n∈N*.(1)求证:数列{a n}为等比数列;(2)若a1与a t(t为常数,t≥3,t∈N*)均为正整数,且存在正整数q,使得,,求a1的值.20.已知函数f(x)=ax-ln x-a,a∈R.(1)若a=1,求方程f(x)=0的根;(2)已知函数g(x)=-x•f(x)+ax2-2ax+a在区间(1,+∞)上存在唯一的零点,求实数a的取值范围;(3)当a=0时,是否存在实数m,使不等式在(1,+∞)上恒成立?若存在,求出m的最小值;若不存在,说明理由.21.已知直线l:x+y=1在矩阵对应的变换作用下变为直线l':x-y=1,求矩阵A.22.在直角坐标系xOy中,圆C的参数方程为(θ为参数).(1)以原点为极点、x轴正半轴为极轴建立极坐标系,求圆C的极坐标方程;(2)已知A(-2,0),B(0,2),圆C上任意一点M(x,y),求△ABM面积的最大值.23.设x,y,z∈R,且满足:x2+y2+z2=1,x+2y+3z=,求证:x+y+z=.24.一个暗箱中有形状和大小完全相同的3只白球与2只黑球,每次从中取出一只球,取到白球得2分,取到黑球得3分.甲从暗箱中有放回地依次取出3只球.(1)求甲三次都取得白球的概率;(2)求甲总得分ξ的分布列和数学期望.25.设n∈N*.(1)若,求S2019的值;(2)若,求T2019的值.-------- 答案与解析 --------1.答案:{3}解析:解:U={x|x<5,x∈N*}={1,2,3,4},因为A={1,2},B={2,4},所以A∪B={1,2,4},所以∁U(A∪B)={3},故答案为:{3}.U={x|x<5,x∈N*}={1,2,3,4},求出A∪B,然后求出其补集即可.本题考查了集合的并集和补集的混合运算,属基础题.2.答案:三解析:解:∵=,∴复数z在复平面内对应的点的坐标为(,-),在第三象限.故答案为:三.利用复数代数形式的乘除运算化简,求出z的坐标得答案.本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题.3.答案:解析:解:将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,基本事件总数n=6×6=36,出现向上的点数之和大于10包含的基本事件有:(5,6),(6,5),(6,6),共有m=3个,∴出现向上的点数之和大于10的概率p==.故答案为:.先求出基本事件总数,再利用列举法求出出现向上的点数之和大于10包含的基本事件的个数,由此能求出出现向上的点数之和大于10的概率.本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.4.答案:200解析:解:样本容量为800,检测结果的频率分布直方图如图所示.根据标准,单件产品质量在区间[25,30)内为一等品,在区间[20,25)和[30,35)内为二等品,其余为次品.其件数为:800×(0.0125+0.0250+0.0125)×5=200故答案为:200结合频数分布直方图确定落在[10,15,)、[15,20)、[35,40]的人数由容量××组距求出.本题考查由频数分布表、直方图求频数、频率,考查频率公式,频率分布直方图坐标轴的应用,属于基础题.5.答案:x=-2解析:解:双曲线的右焦点是(2,0),∴抛物线y2=2px的焦点为(2,0),∴=2,∴p=4∴抛物线的准线方程为:x=-=-2.故答案为:x=-2.根据双曲线方程求出焦点坐标,根据抛物线的几何性质求得p和准线方程.本题考查了抛物线的性质,属中档题.6.答案:8解析:解:a=1,b=1,a>10否,a=2,b=1,a>10否,a=1+2=3,b=2-1=1,a>10否,a=3+1=4,b=3-1=2,a>10否,a=4+2=6,b=4-2=2,a>10否,a=6+2=8,b=6-2=4,a>10否,a=8+4=12,b=12-4=8,a>10是,输出b=8,故答案为:8根据程序框图进行模拟运算即可.本题主要考查程序框图的识别和判断,利用模拟运算法是解决本题的关键.7.答案:-2解析:解:α∈(0,π),,故:,则:=-.故答案为:-2直接利用三角函数关系式的恒等变换和诱导公式的应用求出结果.本题考查的知识要点:三角函数关系式的恒等变换,诱导公式的应用,主要考察学生的运算能力和转换能力,属于基础题型.8.答案:{x|-1<x≤2}解析:解:要使函数有意义,则≥0,得≤0,得-1<x≤2,即函数的定义域为{x|-1<x≤2},故答案为:{x|-1<x≤2}根据函数成立的条件,建立不等式进行求解即可.本题主要考查函数的定义域的求解,要求熟练掌握常见函数成立的条件.9.答案:10解析:解:设等差数列{a n}的公差为d,∵a1+a4+a7=60,a2+a5+a8=51,∴3a1+9d=60,3a1+12d=51,联立解得:a1=29,d=-3,∴a n=29-3(n-1)=32-3n.令a n32-3n≥0,解得n≤=10+.由对任意n∈N*,都有S n≤S k成立,则正整数k的值=10.故答案为:10.设等差数列{a n}的公差为d,由a1+a4+a7=60,a2+a5+a8=51,可得3a1+9d=60,3a1+12d=51,联立解得:a1,d,利用a n≥0,解得n.本题主要考查等差数列的通项公式求和公式及其单调性,意在考查学生的转化能力和计算求解能力,属于中档题.10.答案:解析:解:设圆柱的底面圆半径为r,则圆柱的高为h=r,其侧面积为S1=2πr•r=2πr2;设圆锥的高为H,则母线长为,其侧面积为S2=πr•;又S1=S2,则2πr2=πr•,解得H=r,所以圆锥与圆柱的高之比为=.故答案为:.设圆柱的底面圆半径为r,高为r,求出侧面积S1;设圆锥的高为H,求出母线长和侧面积S2,利用S1=S2求出H,再计算的值.本题考查了圆柱与圆锥的侧面积计算问题,是基础题.11.答案:2解析:解:设圆的一般式方程为x2+y2+Dx+Ey+F=0,∵圆过M(1,3),N(4,2),P(1,-7)三点,∴,得D=-2,E=4,F=-20,即圆的方程为x2+y2-2x+4y-20=0,即(x-1)2+(y+2)2=25,圆心C(1,-2),半径R=5,∵直线l:x+ay-1=0(a∈R)是圆C的一条对称轴,∴直线过圆心,则1-2a-1=0,得a=0,则A(-6,0),过点A(-6,0)作圆C的一条切线,切点为B,则|AC|===,则线段AB的长度为==2,故答案为:2利用待定系数法求出圆的一般式方程,求a的值,结合切线长公式进行计算即可.本题主要考查直线和圆的位置关系的应用,利用待定系数法求出圆的方程,利用切线长公式是解决本题的关键.12.答案:2解析:解:已知实数a,b∈(0,2),且满足,则:a2-b2-4=22-b-2a-4b,即:(a2-22-b)+(2a-b2)+(4b-4)=0,∵实数a,b∈(0,2),且满足,即满足:(a2-22-b)+(2a-b2)+(4b-4)=0,取b=1代入方程计算方程的根a且在(0,2)即可,即:(a2-2)+(2a-1)=0,a∈(0,2),当a=1时(a2-2)+(2a-1)=0成立,所以a=1是方程(a2-2)+(2a-1)=0的一个根,且符合a,b∈(0,2)范围,所以a,b∈(0,2)时,且满足成立的a、b有a=b=1是符合.故a+b的值为2故答案为:2.利用已知将化简,计算a、b的值在实数a,b∈(0,2),且满足即可得答案.考查观察法.方程为0 时各部分的系数,对数据的分析.13.答案:[]解析:解:设=,(0≤λ≤1)由已知易得|AD|=1,∠DAB=,则=()•()=(-)•[-(λ-1)]=2+λ(λ-1)2-(2λ-1)=λ2=(λ-1)2,又0≤λ≤1,则≤,故答案为:[,].由平面向量数量积的运算及二次函数的值域问题得:易得|AD|=1,∠DAB=,则=()•()=(-)•[-(λ-1)]=2+λ(λ-1)2-(2λ-1)=λ2=(λ-1)2,又0≤λ≤1,则≤,得解.本题考查了平面向量数量积的运算及二次函数的值域问题,属中档题.14.答案:2-5解析:解:因为cos2A+cos2B+cos2C<1,sin B=,所以cos2A+cos2C<1-sin2B=,所以+,所以cos2A+cos2C<-1,所以2cos(A+C)cos(A-C)<-1,又sin B=,当B=时,A+C=,-,即2cos(A+C)cos(A-C)>0,即B=不合题意,即B=,即A+C=,所以(tan2A-2)•sin2C=(tan2A-2)•sin2(-A)=(tan2A-2)•cos2A=(tan2A-2)•,令1+tan2A=t(t>1),则(tan2A-2)•==t≥2=2-5,故答案为:2-5.由三角函数求值及重要不等式得:因为cos2A+cos2B+cos2C<1,sin B=,所以B=,即A+C=,所以(tan2A-2)•sin2C=(tan2A-2)•sin2(-A)=(tan2A-2)•cos2A=(tan2A-2)•,令1+tan2A=t,(t>1)则(tan2A-2)•==t≥2=2-5,得解.本题考查了三角函数求值及重要不等式,属难度很大的题型.15.答案:解:(1)f(x)=2sin(x+)•cos x=(sin x+cos x)•cos x=sin x cosx+cos2x=sin2x+cos2x+=sin(2x+)+;…(2分)由得,,∴,…(4分)∴,即函数f(x)的值域为;…(6分)(2)由,得,又由,∴,∴,解得;…(8分)在△ABC中,由余弦定理a2=b2+c2-2bc cos A=7,解得;…(10分)由正弦定理,得,…(12分)∵b<a,∴B<A,∴,∴cos(A-B)=cos A cos B+sin A sin B=.…(15分)解析:(1)利用三角恒等变换化简f(x),根据x的取值范围即可求出函数f(x)的值域;(2)由f(A)的值求出角A的大小,再利用余弦定理和正弦定理,即可求出cos(A-B)的值.本题考查了三角恒等变换以及正弦、余弦定理的应用问题,是综合性题目.16.答案:证明:(1)连接AF交BE于Q,连接QO,因为E,F分别为边PA,PB的中点,所以Q为△PAB的重心,可得:=2,又因为O为线段AC的中点,G是线段CO的中点,所以=2,于是,所以FG∥QO,因为FG⊄平面EBO,QO⊂平面EBO,所以FG∥平面EBO.(2)因为O为边AC的中点,AB=BC,所以BO⊥AC,因为平面PAC⊥平面ABC,平面PAC∩平面ABC=AC,BO⊂平面ABC,所以BO⊥平面PAC,因为PA⊂平面PAC,所以BO⊥PA,因为点E,O分别为线段PA,AC的中点,所以EO∥PC,因为PA⊥PC,所以PA⊥EO,又BO∩OE=O,BO,EO⊂平面EBO,所以PA⊥平面EBO,因为BE⊂平面EBO,所以PA⊥BE.解析:(1)连AF交BE于Q,连QO,推导出Q是△PAB的重心,从而FG∥QO,由此能证明FG∥平面EBO.(2)推导出BO⊥AC,从而BO⊥面PAC,进而BO⊥PA,再求出OE⊥PA,由此能证明PA⊥平面EBO,利用线面垂直的性质可证PA⊥BE.本题考查线面垂直、线面平行的证明,考查空间中线线、线面、面面间的关系等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、数形结合思想,是中档题.17.答案:解:(1)设椭圆的焦距为2c,由题意可得:b=1,=,a2=b2+c2,解得a=2.∴椭圆C的标准方程为+y2=1.(2)设B(m,n),M(x M,0),直线BP的方程为:y-1=x,令y=0,可得:x N=,∴N(,0).由点A,B关于x轴对称,∴A(m,-n).同理可得:M.假设在y轴的正半轴上存在点Q(0,t)(t>0),使得∠OQM=∠ONQ.由tan∠OQM=tan∠ONQ,可得:=,即t2=|x M x N|,∴t2==4,又t>0,解得t=2.经过验证:t=2时,∠OQM=∠ONQ.∴在y轴的正半轴上存在点Q(0,2),使得∠OQM=∠ONQ.解析:(1)设椭圆的焦距为2c,由题意可得:b=1,=,a2=b2+c2,解得a.即可得出椭圆C的标准方程.(2)设B(m,n),M(x M,0),直线BP的方程为:y-1=x,令y=0,可得N(,0).由点A,B关于x轴对称,可得A(m,-n).同理可得:M.假设在y轴的正半轴上存在点Q(0,t)(t>0),使得∠OQM=∠ONQ.由tan∠OQM=tan∠ONQ,可得:=,即可得出.本题考查了椭圆的标准方程及其性质、斜率计算公式、数形结合方法,考查了推理能力与计算能力,属于中档题.18.答案:解:(1)过点O作OE⊥AB于点E,则OE=10.设∠AOE=α,,则.∴AB=AE+BE=10tanα+10tan()=.∵.∴当,AB取最小值20().(2)以O为原点建立平面直角坐标系,则圆C的方程为(x+30)2+y2=25.设直线AB的方程为y=kx+t,(k>0,t>0).∴,,解得t<20k或>60k(舍),∴OA<20.又∵当AB∥ON时,OA→10,∴.解析:(1)过点O作OE⊥AB于点E,则OE=10.设∠AOE=α,,则.AB=AE+BE=10tanα+10tan()=.利用三角函数知识,可得AB取最小值.(2)以O为原点建立平面直角坐标系,则圆C的方程为(x+30)2+y2=25.设直线AB的方程为y=kx+t,(k>0,t>0).可得,即可求解本题考查了三角知识的应用,直线与圆的位置关系,属于中档题.19.答案:(1)证明:2S n+1-3S n=2a1,n∈N*.可得2S n+2-3S n+1=2a1,相减可得:2a n+2=3a n+1,即=.又2S2-3S1=2a1,解得:=.综上可得:数列{a n}为等比数列,公比为.(2)解:∵a t=a1•,a1与a t为正整数.∴a1是2t-1的倍数,不妨设a1=k2t-1,k∈N*.故a t=k•3t-1.由a t≤(q+1)t-1,得(q+1)t-1≥k•3t-1≥3t-1,于是q≥2.又a1≥q t-1,a t≤(q+1)t-1,得≤,于是≤,∴≤,即q≤2.∴q=2.由a t=a1•≤3t-1,知a1≤2t-1,又a1≥2t-1,∴a1=2t-1.解析:(1)2S n+1-3S n=2a1,n∈N*.可得2S n+2-3S n+1=2a1,相减可得:2a n+2=3a n+1.又2S2-3S1=2a1,可得:.即可证明结论.(2)a t=a1•,a1与a t为正整数.可得a1是2t-1的倍数,不妨设a1=k2t-1,k∈N*.故a t=k•3t-1.由a t≤(q+1)t-1,得(q+1)t-1≥k•3t-1≥3t-1,于是q≥2.又a1≥q t-1,a t≤(q+1)t-1,得≤,可得≤,即q≤2.解得q,即可得出.本题主要考查等比数列的定义通项公式、不等式的性质,考查学生的转化能力和逻辑推理与计算能力,属于难题.20.答案:解:(1)当a=1时,f(x)=0即为,x-ln x-1=0,令t(x)=x-ln x-1,所以t′(x)=1-=,当x∈(0,1)时,t′(x)<0,f(x)单调递减,当x∈(1,+∞)时,t′(x)>0,(x)单调递增,所以,t(x)min=t(1)=0,故方程f(x)=0的根为:x=1;(2)函数g(x)=-x•f(x)+ax2-2ax+a=x lnx-a(x-1).所以g′(x)=ln x+1-a,当a≤1时,由x>1,知g′(x)>0,所以g(x)在(1,+∞)是增函数,且图象不间断;又g(1)=0,所以:x>1时,g(x)>g(1)=0,即函数g(x)在(1,+∞)上没有零点,不合题意;当a>1时,由g′(x)=0,解得:x=>1,当1<x<时,g′(x)<0,故g(x)在(1,)上是减函数;当x>时,g′(x)>0,故g(x)在(,+∞)上是增函数;所以1<x<时,g(x)<g(1)=0,因为,g(e a)=ae a-a(e a-1)=a>0且函数g(x)的图象在(1,+∞)上不间断,所以函数g(x)在(1,+∞)上有一个零点,符合题意;综上所述,实数a的取值范围为:a∈(1,+∞).(3)存在吗,使不等式在(1,+∞)上恒成立;设h(x)=-=,令t(x)=e x-1-x,则t′(x)=)=e x-1-1,当x>1时,t′(x)>0,t(x)在(1,+∞)单调增,又t(1)=0,故t(x)>0恒成立,所以当x>1时,h(x)>0;当a=0时,φ(x)=f(x)+m(x2-1)=-ln x+m(x2-1),①当m≤0,x>1时,φ(x)=f(x)+m(x2-1)=-ln x+m(x2-1)<0恒成立;所以不等式在(1,+∞)上不恒成立;②当m>0时,由φ′(x)=-+mx==0,得:x=;当x∈(0,)时,φ′(x)<0,φ(x)在(0,J)单调减,当x∈(,+∞时,φ′(x)>0,φ(x)在(,+∞)单调增,故φ(x)在x=;处取得极小值;(i)当0<m<1时,>1;φ()<φ(1)=0,而h()>0.故不等式在(1,+∞)上不恒成立;(ii)当m≥1时,构造函数F(x)=φ(x)-h(x)=-ln x+m(x2-1)-,F′(x)=-+mx-+;当m≥1,x>1时,mx≥x,<1,->-1,F′(x)=-+mx-+>)=-+x+-1=>0;所以F(x)在(1,+∞)单调增,又F(1)=0;所以当x∈(1,+∞时,F(x)>0恒成立,即φ(x)-h(x)>0恒成立,故存在m≥1,使得在(1,+∞)上恒成立;综上所述,m的最小值为1;故答案为:(1):x=1;(2):a∈(1,+∞);(3):m的最小值为1.解析:(1)若a=1时求方程f(x)=0的根转换成令t(x)=x-ln x-1求极值可得;(2)利用函数g(x)=-x•f(x)+ax2-2ax+a求导,讨论a利用函数的性质判断增减性讨论零点可得实数a的取值范围;(3)当a=0时,假设存在实数m,使不等式在(1,+∞)上恒成立,证明假设,转化成新函数h(x)=-=,令t(x)=e x-1-x,则t′(x)=)=e x-1-1,讨论单调性集m可判断是否存在m.本题考查了利用导数研究函数的单调性极值与最值、方程与不等式的解法、等价转化方法,考查了推理能力与计算能力,属于难题.21.答案:解:设直线l:x+y=1上任意一点M(x,y)在矩阵A的变换作用下,变换为点M′(x′,y′),由[]=[][]=[],得,又点M′(x′,y′)在l′:x-y=1上,∴x′-y′=1,即(mx+ny)-y=1,依题意,解得:,则矩阵A=[].解析:设直线l:x+y=1上任意一点M(x,y)在矩阵A的变换作用下,变换为点M′(x′,y′),根据矩阵A列出关系式,得到x与x′,y与y′的关系式,再由M′(x′,y′)在直线l'上,求出m与n的值,即可确定出矩阵A.此题考查了几种特殊的矩形变换,找出M在矩阵A的变换作用下点M′两点的坐标关系是解本题的关键.22.答案:解:(1)圆C的参数方程为(θ为参数)所以普通方程为(x-3)2+(y+4)2=4.(2分),x=ρcosθ,y=ρsinθ,可得(ρcosθ-3)2+(ρsinθ+4)2=4,化简可得圆C的极坐标方程:ρ2-6ρcosθ+8ρsinθ+21=0.(5分)(2)点M(x,y)到直线AB:x-y+2=0的距离为(7分)△ABM的面积所以△ABM面积的最大值为(10分)解析:(1)圆C的参数方程为,通过三角函数的平方关系式消去参数θ,得到普通方程.通过x=ρcosθ,y=ρsinθ,得到圆C的极坐标方程.(2)求出点M(x,y)到直线AB:x-y+2=0的距离,表示出△ABM的面积,通过两角和的正弦函数,结合绝对值的几何意义,求解△ABM面积的最大值.本小题主要考查极坐标系与参数方程的相关知识,具体涉及到极坐标方程与平面直角坐标方程的互化、平面内直线与曲线的位置关系等内容.本小题考查考生的方程思想与数形结合思想,对运算求解能力有一定要求.23.答案:证明:∵14=(x+2y+3z)2≤(12+22+32)(x2+y2+z2)=14,∴,∴z=3x,y=2x,又,∴x=,y=,z=,∴.解析:由条件利用二维形式的柯西不等式求得x、y、z的值,从而证得x+y+z=.本题主要考查二维形式的柯西不等式的应用,属于基础题.24.答案:解:(1)记事件A表示甲取球时取得白球,则P(A)==,∴甲三次都取得白球的概率P=()3=.(2)甲总得分情况有6分,7分,8分,9分四种可能,记ξ为甲总得分,则P(ξ=6)=()3=,P(ξ=7)==,P(ξ=8)==,P(ξ=9)=()3=,∴甲总得分ξ的分布列为:ξ 6 7 8 9P甲总得分ξ的数学期望为:E(ξ)==.解析:(1)记事件A表示甲取球时取得白球,则P(A)==,由此能求出甲三次都取得白球的概率.(2)甲总得分情况有6分,7分,8分,9分四种可能,记ξ为甲总得分,分别求出相应的概率,由此能求出甲总得分ξ的分布列和甲总得分ξ的数学期望.本题考查概率的求法,考查离散型随机变量的分布列、数学期望的求法,考查相互独立事件概率乘法公式等基础知识,考查推理能力与计算能力,是中档题.25.答案:解:(1)因为(x-1)2n=+++……+,令x=1,则=0,即++……+=++……+,而=22n,所以=22n-1,故S2019=24037,(2)因为T n=,当1≤k≤n,k∈N*时,=====,故T n+1==+T n-+ =2=3×8n+1-T n,所以T n+1-=-(T n-),又T1=2,所以()是以为首项,以-为公比的等比数列,所以T n=,所以T2019=.解析:(1)根据二项式(x-1)2n=+++……+,令x=1,结合而=22n,即可得到结论.(2)因为T n=,当1≤k≤n,k∈N*时,=====,得到T n+1和T n的递推关系,进而构造等比数列,得到T n的表达式,即可求出T2019.本题考查了二项式定理的应用,组合数的运算,构造法求数列的通项公式等,属于难题.。

相关文档
最新文档