江苏省海安高级中学2020届高三阶段测试数学试题含答案
江苏省海安高级中学2020届高三第二次模拟考试数学试题及解析word

2020届高三年级阶段检测(二)数学Ⅰ一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上. 1.设集合{}1,3A =,{}2230B x x x =--<,则A B =I ____________.2.已知z i 12i ⋅=+(i 为虚数单位),则复数z =__________.3.命题“20210x x x ∃<-->,”的否定是______________.4.袋中有形状和大小都相同的4只球,其中1只白球,1只红球,2只黄球.现从中一次随机摸出两只球,则这两只球颜色不同的概率为____________.5.“sin cos 0αα+=”是“cos20α=”的__________条件.(填写“充分必要”、“充分不必要”、“必要不充分”、“既不充分也不必要”之一)6.设等比数列{}n a 的前n 项和为n S .若28365262a a a a S ==-,,则1a 的值为__________.7.若幂函数()a f x x =的图象经过点)12,则其单调递减区间为___________. 8.若函数()sin f x x x ωω= (x ∈R ,0ω>)满足()()02f f αβ==,,且||αβ-的最小值等于2π,则ω的值为___________. 9.已知函数()2241020ax x x f x x bx c x ⎧--≥⎪=⎨++<⎪⎩,,,是偶函数,直线y t =与函数()y f x =的图象自左向右依次交于四个不同点A ,B ,C ,D .若AB BC =,则实数t 的值为______________.10.设集合{}1 A a =-,,,2a e B e ⎧⎫=⎨⎬⎩⎭(其中e 是自然对数的底数),且A B ≠∅I ,则满足条件的实数a 的个数为_______________.11.已知过原点O 的直线与函数()3xf x =的图象交于A ,B 两点,点A 在点O ,B 之间,过A 作平行于y轴的直线交函数()9xg x =的图象于C 点,当BC ∥x 轴时,点A 的横坐标为_____________.12.设点P 在函数()1e 2xf x =的图象上,点Q 在函数()()ln 2g x x =的图象上,则线段PQ 长度的最小值为__________________.13.设()f x 为偶函数,且当(]20x ∈-,时,()()2f x x x =-+;当[)2x ∈+∞,时,()()()2f x a x x =--.关于函数()()g x f x m =-的零点,有下列三个命题:①当4a =时,存在实数m ,使函数()g x 恰有5个不同的零点; ②若[]01m ∀∈,,函数()g x 的零点不超过4个,则2a ≤;③对()1m ∀∈+∞,,()4a ∃∈+∞,,函数()g x 恰有4个不同的零点,且这4个零点可以组成等差数列. 其中,正确命题的序号是_________________.14.已知函数()2211x kx f x x x ++=++,若对于任意正实数123,,x x x ,均存在以()()()123,,f x f x f x 为三边边长的三角形,则实数k 的取值范围是_______________.二、解答题:本大题共6小题,共90分.解答时写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分14分)已知集合{}220A x x x =-->,集合(){}222550B x x k x k =+++<,k R ∈.(1)求集合B ;(2)记M A B =I ,且集合M 中有且仅有一个整数,求实数k 的取值范围. 16.(本小题满分14分) 已知π02α⎛⎫∈ ⎪⎝⎭,,ππ2β⎛⎫∈ ⎪⎝⎭,,1cos 3β=-,()7sin 9αβ+=.(1)求sin α的值; (2)求()tan +2βα的值.17.(本小题满分14分)设数列{}n a ,{}n b 的各项都是正数,n S 为数列{}n a 的前n 项和,且对任意N n *∈,都有22n n n a S a =-,1b e =,21n n b b +=,ln n n n c a b =⋅(e 是自然对数的底数).(1)求数列{}n a ,{}n b 的通项公式; (2)求数列{}n c 的前n 项和n T . 18.(本小题满分16分)已知矩形纸片ABCD 中,6,12AB AD ==,将矩形纸片的右下角沿线段MN 折叠,使矩形的顶点B 落在矩形的边AD 上,记该点为E ,且折痕MN 的两端点M ,N 分别在边,AB BC 上.设,MNB MN l θ∠==,EMN ∆的面积为S .(1)将l 表示成θ的函数,并确定θ的取值范围;(2)求l 的最小值及此时sin θ的值;(3)问当θ为何值时,EMN ∆的面积S 取得最小值?并求出这个最小值.19.(本小题满分16分)已知函数()y f x =.若在定义域内存在0x ,使得()()00f x f x -=-成立,则称0x 为函数()y f x =的局部对称点.(1)若a ,b ∈R 且a ≠0,证明:函数()2f x ax bx a =+-有局部对称点;(2)若函数()2xg x c =+在定义域[]1,1-内有局部对称点,求实数c 的取值范围;(3)若函数()12423xx h x m m +=-⋅+-在R 上有局部对称点,求实数m 的取值范围.20.(本小题满分16分) 已知函数()ln f x x =.(1)求函数()()1g x f x x =-+的零点; (2)设函数()f x 的图象与函数1ay x x=+-的图象交于()11A x y ,,()()1112B x y x x <,两点,求证:121a x x x <-;(3)若0k >,且不等式()()()2211x f x k x --≥对一切正实数x 恒成立,求k 的取值范围.数学Ⅱ21.本大题共两小题,每小题10分,共计20分.请在答题卡指定区域内........作答.解答应写出文字说明、证明过程或演算步骤.B.选修4—2:矩阵与变换 已知矩阵()001a k A k ⎡⎤=≠⎢⎥⎣⎦的一个特征向量为1k α⎡⎤=⎢⎥-⎣⎦,A 的逆矩阵1A -对应的变换将点()3,1变为点()1,1.求实数a ,k 的值.A MBNC DEC.(选修4—4:坐标系与参数方程)已知曲线C 的极坐标方程为4sin ρθ=.以极点为原点,极轴为x 轴的非负半轴建立平面直角坐标系,直线l的参数方程为1212x t y ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数),求直线l 被曲线C 截得的线段长度.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域内........作答.解答应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)如图,在正四棱锥P ABCD -中,PA AB ==,点M ,N 分别在线段PA 和BD 上,13BN BD =.(1)若13PM PA =,求证:MN AD ⊥; (2)若二面角M BD A --的大小为π4,求线段MN 的长度.23.(本小题满分10分)在一次电视节目的答题游戏中,题型为选择题,只有“A ”和“B ”两种结果,其中某选手选择正确的概率为p ,选择错误的概率为q ,若选择正确则加1分,选择错误则减1分,现记“该选手答完n 道题后总得分为n S ”.(1)当12p q ==时,记3S ξ=,求ξ的分布列及数学期望; (2)当13p =,23q =时,求82S =且()01234i S i ≥=,,,的概率.江苏省海安高级中学2020届第二次学测参考答案数学Ⅰ一、填空题:本大题共14小题,每小题5分,共计70分. 1.答案:{}1 2.答案:2z i =- 3.答案:20,210x x x ∀<--≤ 4.答案:565.答案:充分不必要6.答案:-27.答案:()0,+∞8.答案:19.答案:52-10.答案:2 1l.答案:3log 212.)1ln 2-13.答案:①②③14.答案:1,42⎡⎤-⎢⎥⎣⎦二、解答题:本大题共6小题,共90分. 15.(本小题满分14分)解:(1)因为22(25)50x k x k +++<,所以(25)()0x x k ++<. 当52k -<-即52k >时,5,2B k ⎛⎫=-- ⎪⎝⎭;………………………………………………………2分当52k -=-即52k =时,B =∅;………………………………………………………………4分 当52k ->-即52k <时,5,2B k ⎛⎫=-- ⎪⎝⎭.……………………………………………………6分 (2)由220x x -->得()(),12,x ∈-∞-+∞U ,…………………………………………8分 当52k -<-即52k >时,M 中仅有的整数为-3, 所以43k -≤-<-,即(]3,4k ∈;………………………………………………………………10分 当52k ->-即52k <时,M 中仅有的整数为-2, 所以23-<-≤时,即[)3,2k ∈-;………………………………………………………………12分 综上,满足题意的k 的范围为[)(]3,23,4-U ………………………………………………14分 16.(本小题满分14分) 解:(1)因为1,,cos 23πβπβ⎛⎫∈=-⎪⎝⎭,所以sin 3β===………………………………………………2分又0,2πα⎛⎫∈ ⎪⎝⎭,故3,22ππαβ⎛⎫+∈⎪⎝⎭,从而cos()αβ+===,………………………………4分所以sin sin[()]sin()cos cos()sin ααββαββαββ=+-=+-+711933⎛⎛⎫=⨯--= ⎪ ⎝⎭⎝⎭……………………………………………………………6分(2)由(1)得,1sin ,0,32παα⎛⎫=∈ ⎪⎝⎭,故cos 3α===,所以sin tan cos 4ααα==…………………………………………………………8分因为22222222cos sin 1tan 222cos cos sin 22cos sin 1tan 222βββββββββ--=-==++,且1cos 3β=-, 所以221tan 1231tan 2ββ-=-+,解得2tan 22β=, 因为,2πβπ⎛⎫∈ ⎪⎝⎭,所以,242βππ⎛⎫∈ ⎪⎝⎭,从而tan 02β>,所以tan2β=…………………………………………………………………………12分故tan tan24tan 121tan tan 122βαβαβα+⎛⎫+=== ⎪⎝⎭-⋅-………………………………14分17.(本小题满分14分)解:(1)因为0n a >,22n n n a S a =-,①当1n =时,21112a S a =-,解得11a =;……………………………………………………2分当2n ≥时,有21112n n n a S a ---=-,②由①-②得,()()2211112(2)n n n n n n n n a a S S a a a a n -----=---=+≥.而0n a >,所以11(2)n n a a n --=≥,…………………………………………………………4分 即数列{}n a 是公差为1的等差数列,故n a n =………………………………………………6分又因为21n n b b +=,且0n b >,取自然对数得1ln 2ln n n b b +=,又因为1ln ln 1b e ==,所以1ln 2ln n nb b +=, 所以{}ln n b 是1为首项,以2为公比的等比数列,所以1ln 2n n b -=,即12n n b e -=…………………………………………………………………………8分(2)由(1)知,1ln 2n n n n c a b n -==⨯,………………………………………………………10分 所以1221112(2)3(2)(1)(2)(2)n n n T n n --=⨯+⨯+⨯++-⨯+⨯L ,③123121(2)2(2)3(2)(1)(2)(2)n n n T n n -⨯=⨯+⨯+⨯++-⨯+⨯L ,④③减去④得:2112222n nn T n --=++++-⨯L ,所以(1)21nn T n =-⋅+…………………………………………………………………………14分18.(本小题满分16分)解:(1),2ENM MNB EMA θθ∠=∠=∠=.故cos ,sin ,cos 2sin cos 2NB l MB ME l AM ME l θθθθθ=====.因为6AM MB +=,所以sin cos2sin 6l l θθθ+=,…………………………………………2分 从而263sin (cos 21)sin cos l θθθθ==+………………………………………………………4分又12BN ≤,6BM ≤,所以124ππθ≤≤,所以23sin cos 124l ππθθθ⎛⎫=≤≤ ⎪⎝⎭…………………6分 (2)记()2sin cos ,124f ππθθθθ=≤≤,则224()sin cos f θθθ=.记22212cos ,()(1),,24x f x x x θθ⎡+==-∈⎢⎣⎦.记2()(1)g x x x =-,则2()23g x x x '=-,令212()0,,324g x x ⎡+'==∈⎢⎣⎦.所以()g x 在12,23⎡⎤⎢⎥⎣⎦上单调递增,在22,34⎡⎢⎣⎦上单调递减,………………………………8分故当22cos 3x θ==时l 取最小值,此时sin 3θ=,l .………………10分(3)EMN ∆的面积23191sin cos 22sin cos 124S l ππθθθθθ⎛⎫==⨯≤≤ ⎪⎝⎭,从而2268114sin cos S θθ=⨯设21cos ,1242t t ππθθ⎛⎫=≤≤≤≤ ⎪⎝⎭,………………12分 记323()(1),()34f t t t f t t t '=-=-令3()0,4f t t '==.()f t 在1,234⎡⎤⎢⎥⎣⎦上单调递增,在2,434⎡+⎢⎣⎦上单调递减,故当23cos 4t θ==,记6πθ=时,面积S 取最小值为15分 答:略…………………………………………………………………………………………16分19.(本小题满分16分)解:(1)由()2f x ax bx a =+-得()2f x ax bx a -=--,代入()()0f x f x -+=得,()()220ax bx a ax bx a +-+--=,………………………………2分 得到关于x 的方程20(0)ax a a -=≠,由于a R ∈且0a ≠,所以1x =±,所以函数()2(0)f x ax bx a a =+-≠必有局部对称点……………………………………………4分(2)方程2220x x c -++=在区间[]1,1-上有解,于是222x x c --=+,设12(11),22x t x t =-≤≤≤≤,所以12c t t-=+…………………………………………………6分 令11(),22s t t t t =+≤≤,则221(1)(1)()1t t s t t t -+'=-=,当1,12t ⎛⎫∈⎪⎝⎭时,()0s t '<,故函数()s t 在区间1,12⎛⎫⎪⎝⎭上单调递减, 同理函数()s t 在区间()1,2上单调递增,所以1522t t ≤+≤, 所以514c -≤≤-………………………………………………………………………………10分 (3)12()423xx h x m m --+-=-⋅+-,由于()()0h x h x -+=,所以()1212423423x x x x m m m m --++-⋅+-=--⋅+-于是()()()244222230x x x x m m --+-++-=(*)在R 上有解,……………………12分 令22(2)xxt t -+=≥,则2442x x t -+=-,所以方程(*)变为222280t mt m -+-=在区间[)2,+∞内有解, 需满足条件:()2248402m m ⎧∆=--≥≥即1m m ⎧-≤≤⎪⎨-≤≤⎪⎩得1m ≤≤16分 20.(本小题满分16分)解:(1)令()ln 1g x x x =-+,所以11()1xg x x x-'=-=. 当()0,1x ∈时,()0g x '>,()g x 在()0,1上单调递增;当()1,x ∈+∞时,()0g x '<,()g x 在()1,+∞上单调递减;所以max ()(1)0g x g ==,所以()g x 的零点为1x =………………………………………………2分(2)因为111222ln 1ln 1a x x x a x x x ⎧=+-⎪⎪⎨⎪=+-⎪⎩,所以211221ln ln 1x x a x x x x ⎛⎫-=⋅- ⎪-⎝⎭,………………………………4分要证121a x x x <-,即证211212121ln ln 1x x x x x x x x x ⎛⎫-⋅-<- ⎪-⎝⎭,即证2112ln 1x x x x ⎛⎫>-⎪⎝⎭,令2111,ln 1x t t x t =>>-……………………………………………………6分 由(1)知ln 1x x ≤-,当且仅当1x =取等,所以11ln 1t t<-,即1ln 1t t>-,所以原不等式成立.…………………………………………………………………8分 (3)不等式()221ln (1)x x k x -≥-对一切正实数x 恒成立. 因为()()222(1)1ln (1)1ln 1k x x x k x x x x -⎡⎤---=--⎢⎥+⎣⎦…………………………………………10分 设222(1)122(1)1()ln ,()1(1)(1)k x k x k x h x x h x x x x x x -+-+'=-=-=+++. 记22()2(1)1,4(1)44(2)x x k x k k k ϕ=+-+∆=--=-, ①当0∆≤,即02k <≤时,()0h x '≥恒成立,故()h x 单调递增.于是当01x <<时,()()10h x h <=,又210x -<,故()221ln (1)x x k x ->-, 当1x >时,()()10h x h >=,又210x ->,故()221ln (1)x x k x ->-, 又当1x =时,()221ln (1)x x k x -=-.因此当02k <≤时,()221ln (1)x x k x -≥-对一切正实数x 恒成立.…………………………12分 ②当0∆>,即2k >时,设22(1)10x k x +-+=的两个不等实根分别为()3434,x x x x <.又()1420k ϕ=-<,于是3411x k x <<-<.故当()1,1x k ∈-时,()0h x '<,从而()h x 在()1,1k -在单调递减;当()1,1x k ∈-时,()()10h x h <=,此时210x ->,于是()21()0x h x -<,即()221ln (1)x x k x -<-,舍去;…………………………………………………………15分 综上,k 的取值范围是02k <≤.…………………………………………………………16分数学Ⅱ21.本大题共两小题,每小题10分,共计20分. B.选修4-2:矩阵与变换 解:设特征向量为1k α⎡⎤=⎢⎥-⎣⎦对应的特征值为λ, 则0111a k k k λ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦,即1ak k k λλ-=⎧⎨=⎩, 因为0k ≠,所以2a =.………………………………………………………………………………5分 因为13111A -⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦,所以1311A ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦,即2130111k ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 所以23k +=,解得1k =,综上,2a =,1k =.……………………………………………………………………………………10分 C.(选修4-4:坐标系与参数方程)解:将曲线C 的极坐标方程化为直角坐标方程为2240x y y +-=,即22(2)4x y +-=,它表示以()0,2为圆心,2为半径的圆,…………………………………………4分直线方程l 的普通方程为1y =+,……………………………………………………………………6分 圆C 的圆心到直线l 的距离12d =,……………………………………………………………………8分故直线l 被曲线C 截得的线段长度为=…………………………………………10分【必做题】第22题、第23题,每题10分,共计20分. 22.(本小题满分10分)证明:连接,AC BD 交于点O ,以OA 为x 轴正方向,以OB 为y 轴正方向,OP 为z 轴建立空间直角坐标系.因为PA AB ==,则(1,0,0), (0,1,0), (0,1,0), (0,0,1)A B D P -.(1)由13BN BD =u u u r u u u r ,得10,,03N ⎛⎫ ⎪⎝⎭,由13PM PA =u u u u r u u u r ,得12,0,33M ⎛⎫ ⎪⎝⎭, 所以112,,,(1,1,0)333MN AD ⎛⎫=--=-- ⎪⎝⎭u u u u r u u u r . 因为0MN AD ⋅=u u u u r u u u r ,所以MN AD ⊥.…………………………………………………………4分(2)因为M 在PA 上,可设PM PA λ=u u u u r u u u r ,得(,0,1)M λλ-.所以(,1,1),(0,2,0)BM BD λλ=--=-u u u u r u u u r设平面MBD 的法向量(),,n x y z =r ,由00n BD n BM ⎧⋅=⎪⎨⋅=⎪⎩r u u u r r u u u u r ,得20(1)0y x y z λλ-=⎧⎨-+-=⎩, 其中一组解为1,0,x y z λλ=-==,所以可取(1,0,)n λλ=-r ………………………………………8分因为平面ABD 的法向量为()0,0,1OP =u u u r , 所以cos 4||||n OP n OP π⋅=r u u u r r u u u r,即2=,解得12λ=, 从而111,0,,0,,0223M N ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,所以6MN ==………………………………………………10分 23.(本小题满分10分)解:(1)ξ的取值为3,-1,1,3,又因为12p q ==;……………………………………………1分 故311(3)28P ξ⎛⎫=-== ⎪⎝⎭,311(3)28P ξ⎛⎫=== ⎪⎝⎭, 223113(1)228P C ξ⎛⎫=-=⨯⨯= ⎪⎝⎭;223113(1)228P C ξ⎛⎫==⨯⨯= ⎪⎝⎭,…………………………………3分 所以ξ的分布列为:所以1331()(3)(1)308888E ξ=-⨯+-⨯++⨯=;……………………………………………………5分 (2)当82S =时,即答完8题后,正确的题数为5题,错误的题数是3题,…………………6分 又已知0(1,2,3,4)i S i =≥,第一题答对,若第二题回答正确,则其余6题可任意答对3题;若第二题回答错误,第三题回答正确,则后5题可任意答对题,………………………………8分此时的概率为()5333658712308803333P C C ⨯⎛⎫⎛⎫=+⋅⋅== ⎪ ⎪⎝⎭⎝⎭(或802187).……………………10分。
江苏省海安中学2020届高三数学上学期阶段测试试题三(含解析)

江苏省海安中学2020届高三数学上学期阶段测试试题三(含解析)一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.设全集{1U =,2,3,4,5},若{1U A =ð,2,4},则集合A = . 解:全集{1U =,2,3,4,5}, 若{1U A =ð,2,4}, 则集合{3A =,5}. 故答案为:{3,5}.2.已知复数z 满足(2)1(z i i i -=+为虚数单位),则z 的模为 . 解:Q 复数z 满足(2)1(z i i i -=+为虚数单位),21()(1)22i i i z i i +-+∴=+=+- 213i i =+-=-,||9110z ∴=+=,故答案为:10.3.已知一组数据123,,,n a a a a L 的平均数为a ,极差为d ,方差为2S ,则数据12+1a ,22+1a ,32+1a ,L 2+1n a 的方差为_____.故答案为:24S4.如图是一个算法的伪代码,其输出的结果为 .解:模拟执行伪代码,可得:111111111100(1)()()11223101122310111111S =+++⋯+=-+-+⋯+-=-=⨯⨯⨯.故答案为:1011. 5.从0、2中选一个数字.从1、3、5中选两个数字,组成无重复数字的三位数.其中无重复的个数为 .解:从0、2中选一个数字0,则0不只能排在百位,从1、3、5中选两个数字之一排在百位,共有122312A A =种; 从0、2中选一个数字2,从1、3、5中选两个数字全排列,共有233318C A =种; 故共有121830+=种. 故答案为:30.6.在平面直角坐标系xoy 中,若双曲线2222:1(0,0)x y C a b a b-=>>线C 的渐近线方程为 .解:因为22()1()10c ba a =+=,所以3b a =,所以渐近线方程为3y x =±.故答案为:3y x =±. 7.将函数()f x 的图象向右平移6π个单位后得到函数4sin(2)3y x π=-的图象,则()4f π的值为 .解:由将函数()f x 的图象向右平移6π个单位后得到函数4sin(2)3y x π=-的图象, 可得把函数4sin(2)3y x π=-的图象向左平移6π个单位后得函数()f x 的图象,故()4sin(2)4sin 233f x x x ππ=+-=,则()4sin 442f ππ==,故答案为:4.8.设定义在R 上的奇函数()f x 在区间[0,)+∞上是单调减函数,且2(3)f x x f -+(2)0>,则实数x 的取值范围是 .解:根据题意,()f x 是在R 上的奇函数()f x ,且在区间[0,)+∞上是单调减函数, 则其在区间(,0])-∞上递减, 则函数()f x 在R 上为减函数,2(3)f x x f -+(2)20(3)f x x f >⇒->-(2)22(3)(2)32f x x f x x ⇒->-⇒-<-,解可得:12x <<;即实数x 的取值范围是(1,2);故答案为:(1,2).9.在锐角三角形ABC中,3sin5A=,1tan()3A B-=-,则3tan C的值为.解:锐角三角形ABC中,3sin5A=,1tan()3A B-=-,A B∴<,4cos5A=,sin3tancos4AAA==.3tan1tan tan4tan()331tan tan1tan4BA BA BA B B---=-==++Qg,13tan9B∴=.则tan tan3tan3tan()3791tan tanA BC A BA B+=-+=-=-g,故答案为:79.10.设nS为数列{}na的前n项和,若*3(1)()n nS na n n n N=--∈,且211a=,则20S的值为.解:由2122232(21)S a a a=+=-⨯-,211a=,可得15a=.解法1:当2n…时,由1n n na S S-=-,得13(1)[(1)3(1)(2)]n n na na n n n a n n-=-------,1(1)(1)6(1)n nn a n a n-∴---=-,即*16(2,)n na a n n N--=∈…,∴数列{}na是首项15a=,公差为6的等差数列,202019205612402S⨯∴=⨯+⨯=.解法2:当2n…时,由13(1)()3(1)n n n nS na n n n S S n n-=--=---,可得1(1)3(1)n nn S nS n n---=-,∴131n nS Sn n--=-,∴数列{}nSn是首项151S=,公差为3的等差数列,∴2053196220S=+⨯=,201240S∴=.11.设正实数x,y满足x yxyx y+=-,则实数x的最小值为.解:由正实数x,y满足x yxyx y+=-,化为22(1)0xy x y x +-+=,∴22221212(1)401010xx x y y x y y ⎧=--⎪-⎪+=>⎨⎪=>⎪⎩V …,化为426101x x x ⎧-+⎨>⎩…, 解得21x +….因此实数x 的最小值为21+. 故答案为:21+.12.如图,正四棱柱1111ABCD A B C D -的体积为27,点E ,F 分别为棱1B B ,1C C 上的点(异于端点),且//EF BC ,则四棱锥1A AEFD -的体积为 .解:连接DE ,Q 正四棱柱1111ABCD A B C D -的体积为27,点E ,F 分别为棱1B B ,1C C 上的点(异于端点),且//EF BC , ∴11A AED A FED V V --=,∴11113A AED E A AD A AD V V S AB --==V g111111119662A ADD ABCD A C D S AB V -===g , ∴四棱锥1A AEFD -的体积19A AEFD V -=.故答案为:9.13.已知向量a r ,b r ,c r 满足0a b c ++=r r r r ,且a r 与b r 的夹角的正切为12-,b r 与c r的夹角的正切为13-,||2b =r ,则a c r rg 的值为 .解:可设AB a =u u u r r ,BC b =u u u r r ,CA c =u u u r r,由题意可得1tan 2B =,1tan 3C =, 则11tan tan 23tan tan()1111tan tan 123B C A B C B C ++=-+=-=-=---⨯, 即为135A =︒,又B ,C 为锐角,22sin cos 1B B +=,sin 1cos 2B B =, 可得5sin B =, 同理可得10sin C =, 由正弦定理可得2sin135510==︒r r, 即有210||c =r ,25||a =r ,则2102524||||cos455a c c a =︒==r r r rg g g g g .故答案为:45.14.已知()(2)(3)f x m x m x m =-++,()22x g x =-,若同时满足条件: ①x R ∀∈,()0f x <或()0g x <; ②(,4)x ∃∈-∞-,()()0f x g x <. 则m 的取值范围是 .解:对于①()22x g x =-Q ,当1x <时,()0g x <, 又Q ①x R ∀∈,()0f x <或()0g x <()(2)(3)0f x m x m x m ∴=-++<在1x …时恒成立 则由二次函数的性质可知开口只能向下,且二次函数与x 轴交点都在(1,0)的左面则03121m m m <⎧⎪--<⎨⎪<⎩40m ∴-<<即①成立的范围为40m -<<又Q ②(,4)x ∈-∞-,()()0f x g x < ∴此时()220x g x =-<恒成立()(2)(3)0f x m x m x m ∴=-++>在(,4)x ∈-∞-有成立的可能,则只要4-比1x ,2x 中的较小的根大即可,()i 当10m -<<时,较小的根为3m --,34m --<-不成立, ()ii 当1m =-时,两个根同为24->-,不成立,()iii 当41m -<<-时,较小的根为2m ,24m <-即2m <-成立.综上可得①②成立时42m -<<-. 故答案为:(4,2)--.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答.解答时应写出文字说明、证明过程或演算步骤 15.(本小题满分14分)已知ABC ∆的面积为93()18AC AB CB -=u u u r u u u r u u u r g ,向量(tan tan ,sin 2)m A B C =+r和向量(1,cos cos )n A B =r是共线向量.(1)求角C ;(2)求ABC ∆的边长c .解:(1)Q //m n r r,(tan tan )cos cos sin 2A B A B C ∴+=,即sin cos cos sin sin2A B A B C +=,sin()sin 2A B C ∴+=,sin 2sin cos C C C ∴= sin 0C ≠Q ,∴1cos 2C =,(0,)C π∈Q ∴3C π=(2)由()18AC AB CB -=u u u r u u u r u u u rg 得:2()18AC AB BC AC +==u u u r u u u r u u u r u u u r g ,∴11332sin 329322b S ab C a ====V g g , ∴62a =,2222cos 54c a b ab C ∴=+-=,∴36c =16.(本小题满分14分)如图,四棱锥P ABCD -的底面为矩形,且2AB =,1BC =,E ,F 分别为AB ,PC 中点.(1)求证://EF 平面PAD ;(2)若平面PAC ⊥平面ABCD ,求证:平面PAC ⊥平面PDE .证明:(1)方法一:取线段PD 的中点M ,连接FM ,AM .因为F 为PC 的中点,所以//FM CD ,且12FM CD =.因为四边形ABCD 为矩形,E 为AB 的中点,所以//EA CD ,且12EA CD =.所以//FM EA ,且FM EA =. 所以四边形AEFM 为平行四边形. 所以//EF AM .又AM ⊂平面PAD ,EF ⊂/平面PAD ,所以//EF 平面PAD . 方法二:连接CE 并延长交DA 的延长线于N ,连接PN . 因为四边形ABCD 为矩形,所以//AD BC , 所以BCE ANE ∠=∠,CBE NAE ∠=∠.又AE EB =,所以CEB NEA ∆≅∆.所以CE NE =. 又F 为PC 的中点,所以//EF NP .⋯(5分)又NP ⊂平面PAD ,EF ⊂/平面PAD ,所以//EF 平面PAD . 方法三:取CD 的中点Q ,连接FQ ,EQ .在矩形ABCD 中,E 为AB 的中点,所以AE DQ =,且//AE DQ . 所以四边形AEQD 为平行四边形,所以//EQ AD .又AD ⊂平面PAD ,EQ ⊂/平面PAD ,所以//EQ 平面PAD . 因为Q ,F 分别为CD ,CP 的中点,所以//FQ PD . 又PD ⊂平面PAD ,FQ ⊂/平面PAD ,所以//FQ 平面PAD .又FQ ,EQ ⊂平面EQF ,FQ EQ Q =I ,所以平面//EQF 平面PAD . 因为EF ⊂平面EQF ,所以//EF 平面PAD . (2)设AC ,DE 相交于G .在矩形ABCD 中,因为2AB BC =,E 为AB 的中点.所以2DA CDAE DA==. 又DAE CDA ∠=∠,所以DAE CDA ∆∆∽,所以ADE DCA ∠=∠. 又90ADE CDE ADC ∠+∠=∠=︒,所以90DCA CDE ∠+∠=︒. 由DGC ∆的内角和为180︒,得90DGC ∠=︒.即DE AC ⊥. 因为平面PAC ⊥平面ABCD因为DE ⊂平面ABCD ,所以DE ⊥平面PAC , 又DE ⊂平面PDE ,所以平面PAC ⊥平面PDE .17.(本小题满分14分)如图,OM ,ON 是两条海岸线,Q 为海中一个小岛,A 为海岸线OM 上的一个码头.已知tan 3MON ∠=-,6OA km =,Q 到海岸线OM ,ON 的距离分别为3km 610.现要在海岸线ON 上再建一个码头,使得在水上旅游直线AB 经过小岛Q .(1)求水上旅游线AB 的长;(2)若小岛正北方向距离小岛6km 处的海中有一个圆形强水波P ,从水波生成th 时的半径为3(r at a =为大于零的常数).强水波开始生成时,一游轮以182/km h 的速度自码头A 开往码头B ,问实数a 在什么范围取值时,强水波不会波及游轮的航行.解:(1)以点O 为坐标原点,直线OM 为x 轴,建立直角坐标系如图所示. 则由题设得:(6,0)A ,直线ON 的方程为3y x =-,0(Q x ,03)(0)x >. 061010=00x > 得03x =,(3,3)Q ∴. ∴直线AQ 的方程为(6)y x =--,即60x y +-=,由360y x x y =-⎧⎨+-=⎩ 得39x y =-⎧⎨=⎩ 即(3,9)B -,∴22(36)992AB =--+即水上旅游线AB 的长为92km . (2)设试验产生的强水波圆P ,由题意可得(3,9)P ,生成t 小时时,游轮在线段AB 上的点C 处,则 182AC t =,102t剟,(618,18)C t t ∴-. 强水波不会波及游轮的航行即2210,2PC r t ⎡⎤>∈⎢⎥⎣⎦对恒成立.2222(183)(189)9PC t t r at =-+->=,当0t = 时,上式恒成立,当10,0,2t t ⎛⎤≠∈ ⎥⎝⎦时即时,()101017248.7248,0,2a t g t t t t t ⎛⎤<+-=+-∈ ⎥⎝⎦令,10()724824548g t t t=+-…,当且仅当51(0,]2t 时等号成立, 所以,在024548a << 时r PC < 恒成立,亦即强水波不会波及游轮的航行.18.(本小题满分16分)在平面直角坐标系xOy 中,已知椭圆2222:1(0)x y E a b a b+=>>过点6),其左、右焦点分别为1F 、2F ,离心率为22. (1)求椭圆E 的方程;(2)若A 、B 分别为椭圆E 的左、右顶点,动点M 满足MB AB ⊥,且MA 交椭圆E 于点P . ()i 求证:OP OM u u u r u u u u rg为定值; ()ii 设PB 与以PM 为直径的圆的另一交点为Q ,问:直线MQ 是否过定点,并说明理由. 解:(1)由题意可得22131222ab c a⎧+=⎪⎪⎨⎪=⎪⎩且222a b c -=,解得2a =,2b =,即有椭圆方程为22142x y +=; (2)()i 证明:由(2,0)A -,(2,0)B ,MB AB ⊥, 设0(2,)M y ,1(P x ,1)y , 可得00:42y yMA y x =+, 代入椭圆方程可得,2222000(1)40822y y y x x +++-=,由201204(8)28y x y --=+,可得201202(8)8y x y -=-+,00011208428y y yy x y ==+=+, 则200022004(8)8488y y OP OM y y y -=-+=++u u u r u u u u r gg 为定值;()ii 直线MQ 过定点(0,0)O .理由如下:由题意可得2001222100088282(8)2(8)PBy y y k x y y y +==-+---+g 02y =-, 由PB 与以PM 为直径的圆的另一交点为Q , 可得MQ PB ⊥,即有02MQ y k =. 则直线0:0(2)2y MQ y y x -=-, 即02y y x =, 故直线MQ 过定点(0,0)O . 19.(本小题满分16分)已知数列{}n a 满足:123a a a k ===(常数0)k >,*112(3,)n n n n k a a a n n N a -+-+=∈….数列{}n b 满足:*21()n n n n a a b n N a +++=∈. (1)求1b ,2b ,3b ,4b 的值; (2)求出数列{}n b 的通项公式;(3)问:数列{}n a 的每一项能否均为整数?若能,求出k 的所有可能值;若不能,请说明理由.解:(1)由已知可知:41a k =+,52a k =+,624a k k=++. 把数列{}n a 的项代入21n n n n a a b a +++=,求得132b b ==,2421k b b k+==;(2)由*112(3,)n n n n k a a a n n N a -+-+=∈…,可知:121n n n n a a k a a +--=+.⋯① 则:211n n n n a a k a a +-+=+.⋯② ①-②有:2211n n n nn n a a a a a a +-+-++=,即:2n n b b -= ∴132123122n n a a b b b a --+==⋯===,242222321n n a a k b b b a k -++==⋯===. ∴41(1)22nn k b k k+-=+;(3)假设存在正数k ,使得数列{}n a 的每一项均为整数,则由(2)可知:2122122212221n n n n n n a a a k a a a k +-++=-⎧⎪+⎨=-⎪⎩,⋯③ 由1a k Z =∈,624a k Z k =++∈,可知1k =,2.当1k =时,213k k+=为整数,利用1a ,2a ,3a Z ∈,结合③式,可知{}n a 的每一项均为整数;当2k =时,③变为2122122212252n n n n n n a a a a a a +-++=-⎧⎪⎨=-⎪⎩,⋯④ 用数学归纳法证明21n a -为偶数,2n a 为整数.1n =时,结论显然成立,假设n k =时结论成立,这时21n a -为偶数,2n a 为整数,故212212n n n a a a +-=-为偶数,22n a +为整数,1n k ∴=+时,命题成立. 故数列{}n a 是整数列.综上所述,k 为1,2时,数列{}n a 是整数列. 20.(本小题满分16分)设函数()()f x x a lnx x a =--+,a R ∈. (1)若0a =,求函数()f x 的单调区间;(2)若0a <,试判断函数()f x 在区间2(e -,2)e 内的极值点的个数,并说明理由; (3)求证:对任意的正数a ,都存在实数t ,满足:对任意的(,)x t t a ∈+,()1f x a <-. 解:(1)当0a =时,()f x xlnx x =-,()f x lnx '=, 令()0f x '=,1x =,列表分析故()f x 的单调递减区间为(0,1),单调递增区间为(1,)+∞.(2)()()f x x a lnx x a =--+,()af x lnx x'=-,其中0x >,令()g x xlnx a =-,分析()g x 的零点情况.()1g x lnx '=+,令()0g x '=,1x e=,列表分析11()()min g x g a e e==--,而11()1f ln ae ae e e '=-=--,222()2(2)f e ae ae -'=--=-+,221()2(2)22a f e e a e e '=-=-,①若1a e -„,则()0a f x lnx x '=-…,故()f x 在2(e -,2)e 内没有极值点;②若122a e e -<<-,则11()0f ln ae e e '=-<,22()(2)0f e ae -'=-+>,221()(2)02f e e a e '=->,因此()f x '在2(e -,2)e 有两个零点,()f x 在2(e -,2)e 内有两个极值点; ③若202a e -<„,则11()0f ln ae e e '=-<,22()(2)0f e ae -'=-+„,221()(2)02f e e a e '=->,因此()f x '在2(e -,2)e 有一个零点,()f x 在2(e -,2)e 内有一个极值点;综上所述,当(a ∈-∞,1]e-时,()f x 在2(e -,2)e 内没有极值点;当1(a e ∈-,2)2e -时,()f x 在2(e -,2)e 内有两个极值点;当2[2a e ∈-,0)时,()f x 在2(e -,2)e 内有一个极值点. (3)猜想:(1,1)x a ∈+,()1f x a <-恒成立. 证明如下:由(2)得()g x 在1(e ,)+∞上单调递增,且g (1)0a =-<,(1)(1)(1)g a a ln a a +=++-.因为当1x >时,11(*)lnx x >-,所以1(1)(1)(1)01g a a a a +>+--=+.故()g x 在(1,1)a +上存在唯一的零点,设为0x . 由知,(1,1)x a ∈+,(){f x max f <(1),(1)}f a +.又(1)(1)1f a ln a +=+-,而1x >时,1(**)lnx x <-, 所以(1)(1)111f a a a f +<+--=-=(1). 即(1,1)x a ∈+,()1f x a <-.所以对任意的正数a ,都存在实数1t =,使对任意的(,)x t t a ∈+,使()1f x a <-. 补充证明(*): 令1()1F x lnx x =+-,1x ….111()022x F x x x x -'=-=…,所以()F x 在[1,)+∞上单调递增.所以1x >时,()F x F >(1)0=,即11lnx x>-. 补充证明(**)令()1G x lnx x =-+,1x ….1()10G x x'=-„, 所以()G x 在[1,)+∞上单调递减.所以1x >时,()G x G <(1)0=,即1lnx x <-.海安中学2020届高三阶段测试三数学附加题21.[选做题,本题包括三小题,请选定其中两题,并在相应区域作答]A.已知二阶矩阵[]a b A c d =,矩阵A 属于特征值11λ=-的一个特征向量为11[]1a =-,属于特征值24λ=的一个特征向量为13[]2a =.求矩阵A .解:由特征值、特征向量定义可知,111A αλα=, 即1111111a b c d ⎡⎤⎡⎤⎡⎤⎡⎤=-⨯⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦⎣⎦,得11a b c d -=-⎧⎨-=⎩同理可得3212328a b c d +=⎧⎨+=⎩ 解得2a =,3b =,2c =,1d =.因此矩阵2321A ⎡⎤=⎢⎥⎣⎦. B .在极坐标系中,已知(A 1,3π ),(B 9,3π),线段AB 的垂直平分线l 与极轴交于点C ,求l 的极坐标方程及ABC ∆的面积. 解:由题意,线段AB 的中点坐标为(5,)3π,设点(,)P ρθ为直线l 上任意一点, 在直角三角形OMP 中,cos()53πρθ-=,所以,l 的极坐标方程为cos()53πρθ-=,令0θ=,得10ρ=,即(10,0)C .(8分)所以,ABC ∆的面积为:1(91)10sin 23π⨯-⨯⨯=22.已知实数a ,b 满足||2a b +„,求证:22|22|4(||2)a a b b a +-++„. 证明:由||||||2b a a b -+剟,可得||||2b a +„,22|22||()()2()|a a b b a b a b a b +-+=+-++|||2|2|2|a b a b a b =+-+-+g „,要证22|22|4(||2)a a b b a +-++„, 即证|2|2(||2)a b a -++„, 由于|2|||||2a b a b -+++„, 即证||||22(||2)a b a +++„, 即为||||2b a +„,显然成立. 故原不等式成立.23.如图,在四棱锥P ABCD -中,已知棱AB ,AD ,AP 两两垂直,长度分别为1,2,2.若DC AB λ=u u u r u u u r ,且向量PC u u u r 与BD u u u r 夹角的余弦值为15.(1)求实数λ的值;(2)求直线PB 与平面PCD 所成角的正弦值.解:以A 为坐标原点,分别以AB ,AD ,AP 为x ,y ,z 轴建立如图所示空间直角坐标系; 则:(0A ,0,0),(1B ,0,0),(0D ,2,0),(0P ,0,2);DC AB λ=u u u r u u u r ,可得(C λ,2,0).(1)(PC λ=u u u r ,2,2)-,(1BD =-u u u r ,2,0),向量PC u u u r 与BD u u u r 15.215814λ=++g 10λ=(舍去)或2λ=.实数λ的值为2.;(2)(2PC =u u u r ,2,2)-,(0PD =u u u r ,2,2)-,平面PCD 的法向量(n x =r,y ,)z .则0n PC =u u u r r g 且0n PD =u u ur r g ,即:0x y z +-=,0y z -=,0x ∴=,不妨去1y z ==, 平面PCD 的法向量(0n =r,1,1).又(1PB =u u u r ,0,2).故10cos ,||||n PB n PB n PB <>==u u u r r u u ur g r u u u r r .直线PB 与平面PCD 10.24.已知数列{}n a 的通项公式为1515[(()]5n nn a +--,*n N ∈.记1212nn n n n n S C a C a C a =++⋯+.(1)求1S ,2S 的值;(2)求所有正整数n ,使得n S 能被8整除.解:(1)1212nn nn n n S C a C a C a =++⋯+ 122151515()()5nn n n n C C C +++=+⋯+-g g122151515((()]nn n n n C C C ---++⋯+g g1515(1]5n n+-=+-+ 3535[()(]5n n +-=-, 即有1515S ==g ;23535S =g ;(2)3535[((]5n nn S +-=-, 22235353535[((][()(]55n n n n n S ++++-+-=-=-g 135353535()[()(]3n nn n S S ++-+---=-,即213n n n S S S ++=-,*n N ∈,因此2n S +除以8的余数,完全由1n S +,n S 除以8的余数确定, 因为11a =,21a =,所以11111S C a ==,12221223S C a C a =+=,3213918S S S =-=-=, 432324321S S S =-=-=,543363855S S S =-=-=, 654316521144S S S =-=-=,765343255377S S S =-=-=, 87631131144987S S S =-=-=,987329613772584S S S =-=-=,由以上计算及213n n n S S S ++=-可知,数列{}n S 各项除以8的余数依次是: 1,3,0,5,7,0,1,3,0,5,7,0,⋯,它是一个以6为周期的数列,从而n S 除以8的余数等价于n 除以3的余数, 所以3n k =,*k N ∈,即所求集合为:{|3n n k =,*}k N ∈.。
2020届江苏省南通市海安高级中学高三下学期阶段考试数学试题(解析版)

故答案为:10. 第1页共21页2020届江苏省南通市海安高级中学高三下学期阶段考试数学试题一、填空题1.已知集合 A 1,0,3 , B {1,2,3},则 Al B ________________ 【答案】{3}【解析】由交集的定义AB ⑶,应填答案⑶.【答案】姮2【解析】由已知得 Z 2 1 i ,将其整理成 i1 Z -2 3. -i 2,即可求出模【详解】解:由题意知,Z 2 i2 i 1 i 1 3i 1 3. 1 i1 i 1 i22i 2所以:Z h 23 2尿V 222故答案为:.2【点睛】本题考查了复数的运算,考查了复数的模•本题的易错点在于化简时,错把i2计算• 3.某人5次上班途中所用的时间(单位:分钟)分别为 12, 8, 10, 11, 的平均数为 ________【答案】10【解析】代入求解平均数的公式计算即可 【详解】解:平均数-12 8 10 11 9 10.5【点睛】 2 .已知复数Z 满足1 i Z2 i ,则复数Z 的模为当成了 1来9•则这组数• 2,0【解析】根据流程框图进行循环计算,跳出循环时b 的值即为所求 【详解】解:第一次循环:b 2,a 2;第二次循环:b 4,a 3•此时a 3不成立故答案为:4. 【点睛】本题考查了程序框图•对于循环结构是常考的题型,一般做法为根据框图,计算每次循环 的结果,注意,临界即跳出循环时的计算结果 •通常循环框图常和数列求和综合到一块 • 5 •在平面直角坐标系 XOy 中,已知双曲线χ2y 21的右焦点与抛物线2y 2px p 0的焦点重合,则 P 的值为 ______________ .【答案】2 2【解析】求出双曲线的右焦点2,0 ,令P\ 2即可求出P 的值•2【详解】 解双曲线c21 1 2,即右焦点为^2,0 .即抛物线y2 2px P 0的焦点为本题考查了平均数的计算•易错点为计算出错b 的值为所以^2'2 ,解得P 2丿2 .故答案为:2 2. 【点睛】本题考查了双曲线的标准方程,考查了抛物线的方程•易错点是误把P 当做了抛物线焦 点的横坐标•6.已知一个口袋中有形状、大小都相同的5只球,其中3只白球,2只红球.从中一次随机摸出2只球,则这2只球颜色相同的概率为 ________ . 【答案】0.4【解析】从中一次随机摸2只球,写出基本事件总数 n 和这2只球颜色相同包含的基本 事件数m,由古典概型概率公式计算即可. 【详解】一个口袋中有形状、大小都相同的5只球,其中3只白球,2只红球.从中一次随机摸出2只球,基本事件总数 n= C I = 10, 这2只球颜色相同包含的基本事件个数m= C l C 2 = 4,m 4•••这2只球颜色相同的概率为 P= =0.4.n 10故答案为:0.4. 【点睛】本题考查古典概型概率的求法 ,考查运算求解能力,是基础题. 7 .现有一个橡皮泥制作的圆锥,底面半径为 1 ,高为4.若将它制作成一个总体积不变 的球,则该球的表面积为 ________ . 【答案】44 3 4【解析】 求出圆锥的体积,则由题意,设球的半径为r ,可得一r 3—,求出球的半径,进33而可求球的表面积. 【详解】4 3 4 2则4 r3 ,解得r「所以表面积为4 r 4故答案为:4 【点睛】本题考查了圆锥的体积,考查了球的体积,考查了球的表面积.结合方程的思想,根据题意 第3解:由题意知,圆锥的体积为-3I 2 4 ..设球的半径为r3页共21页求出球的半径•对于球的问题,一般都要首先明确半径的大小8.已知等比数列a n的前n项的和为S n ,aι 16 9®,则a3的值为__________________ .【答案】43【解析】由S6 9S3可得S3 q 1 9S3,进而可求出公比的值,即可求a s的值•【详解】解:S6 a1a2 a3 a°a§a6 d a? a? ^q3 a2q3a3q3S3 q3 1Q S6 9S3S3q3 1 9S3解得,q = 2 .所以a3 a^24.故答案为:4.【点睛】本题考查了等比数列的通项公式,考查了等比数列的前n项和.等比数列问题,一般可采用基本量法进行求解,但是这种方法计算量比较大.因此,对于等比数列的问题,一般首先考虑利用性质简化计算.UiX r IrIJDr IJrill9.已知e ,∈2是夹角为60°的两个单位向量,a 3e∣2e? , b 2e∣ ke? k R ,r r r且a (a b) 8则k的值为___________ .【答案】67【解析】由题意知;;b 3e1 2e23∈r1 2ee2 2e r1 ke r28 ,进而可求k的值.【详解】r r r r r r r r r r r r r解:a a b 3e 2e23e12e22e1ke23e12e2e1 2 k e23e⅛2 3k 8 6 & 2 2+k e2 3 3k 8 cos60o 2 2k 7k 11 8.2解得k 6.7故答案为:6.7【点睛】本题考查了平面向量的数量积.对于向量的数量积问题若题目中无向量的坐标,则在求数量积时,一般套用定义求解;若题目中已知了向量的坐标,求数量积时一般代入数量积的坐标公式.10.在平面直角坐标系XOy中,已知圆C : x2y22x 8 0 ,直线6BC 【解析】由tan BADBC tanDACBAC ,可得BC613 15d 6 BC 1 - 13 15,进而l : y k X 1 ,k R 过定点A ,与圆C 交于点B, D ,过点A 作BC 的平行线交CD 于点E ,则AEC 的周长为 ____________ . 【答案】5【解析】由题意得A(1,0),圆心为C 1,0 ,半径为r 3,由平行可知-EA ED ,化简后CB CD可得EA CE r ,进而可求三角形的周长• 【详解】解:当 X 1 时,y 0 与 k 无关则 A(1,0)∙圆 C :x2y 22x 8 x 1y 29所以,圆的圆心为C 1,0 ,半径为r 3.则由题意知,ED r CE故答案为:5. 【点睛】,考查了圆的标准方程•本题的关键在于,由平行得比例关 系•若联立直线与圆的方程,求解各点的坐标,这种思路也可以求出最后答案 ,但计算量太大•11.如图,已知两座建筑物 AB,CD 的高度分别为15m 和9m,且AB BC CD ,从 建筑物AB 的顶部A 看建筑物CD 的张角为 CAD ,测得tan CAD —,则B,C 间13可求B,C 间的距离.Q EA 与CB 平行EA ED 即EA 』 CB CD r r EA CE r则 AEC 的周长AC AE CEAC r 2 3 5.本题考查了直线过定点的问题 白勺距离 _____ m.【答案】12【详解】BC 解:由题意知tan BAD -AB CDBC~6^tan DAC BACBC 6tan DAC tan BAC 1 tan DAC tan BAC2BC239BC 180 0 ,解得BCBC6 j⅛,整理得1 -13 151512 或BC .Q BC CD 9, BC 122故答案为:12.【点睛】本题考查了三角恒等变换的应用•难点在于已知正切值的使用•有的同学可能由正切值求出正弦和余弦,结合正弦定理和余弦定理列出方程进行求解•由于本题所给的正切值求出的正弦余弦值数比较大,因此这种思路计算量较大,效率不高而且容易做错•m12 •设曲线yx+1m 0在X t,t 1处的切线为I ,则点P 2t, 1 到I的最大距离为【答案】、.2【解析】求出切线方程为mx 2t 1 y 2mt m 0 ,从而则P 2t, 1 到I的距离可用t表示出来,结合基本不等式即可求解【详解】解:y'整理得mxd2 d22mt2mt2mt2则切线方程为0•则P2t,2m2 m2m41的距离2m,当且仅当1 2 即d 2.2m2t 1 2- 2t 1时等号成立【答案】{3,5} 第7页共21页【点睛】本题考查了切线的求解,考查了点到直线的距离,考查了基本不等式•求最值常见的思路 有导数法、函数图像法、函数单调性法、基本不等式法 •本题的难点是对距离进行变形 整理•的取值范围是3【答案】三2【详解】5r ,t的情况•本题的难点是分界点能否取得的判断f k (x) InX 恰有3个不同的零点,贝U k 的取值集合为13.已知函数y c0s(3X) , Xt 5既有最小值也有最大值,则实数t【解析】由诱导公式可知3y cosSin X ,令 mX ,结合函数图像,讨论最大值为1和1两种情况2,进而求出 t的取值范围•解:y 3cos — 2Sin X 令m X •则由X -I t6可得Sin m, m•要使其既有最小值又有最大值若最大值为 13若最大值为 1,则t 2 ,解得t5•综上所述:-2 2故答案为:【点睛】本题考查了诱导公式 ,考查了三角函数最值问题•本题的易错点是漏解,只考虑了最大值14. 已知函数f 1(x)X 1 , f k 1 (X) f 1(f k (X)) , k 5, k N•若函数【解析】由题意写出fι(x), f2(x), f3(x), f4(x), f5(x)的解析式,根据图像的平移变换分别画出它们的图像,判断哪个函数图像与y In X图像有三个交点,即为所求.【详解】解:由题意知f1(x) X 1 , f2(x) IlX 1 I,f3(x) IIX 111,f4(χ) IIIlX 1 1 1 1,f5(χ) IIIlX 1111 1 •则其函数图像为∖r1*. 'I J. * I I i I . I I I I I 鼻⅛ n d I J i 2 ]■⅜ J < β 1 1 ]e4r/fL由图像可知,当k 3或5时,函数y f k(x) InX恰有3个不同的零点•故答案为:{3,5}.【点睛】本题考查了函数的图像变换考查了函数的零点•若函数f(x) g(x) h(x),则函数f(x)的零点个数就等同于函数g(x), h(x)图像的交点个数•本题的难点是画含绝对值的函数图像•对于y f (x),首先画出y f(x)的图像,然后将X轴下方的图像向上翻折即可;对于y f(x)的图像,首先画出y f (x)的图像,然后将y轴右侧向左翻折、解答题15.在平面直角坐标系XOy中,设向量∖ 3sin x,sin X , cosx,sin X , X 0,(1)若a b ,求X的值;(2)求a b的最大值及取得最大值时X的值•5 3【答案】(1)或;(2)最大值一,X .6 6 2 3r r r r 1【解析】⑴求出∣a∣,∣b∣,由IalIbl可得ISi nx∣ ?,结合X [0,]可求出所求•r r 1⑵a b Sin 2x ,结合X [0,]和正弦函数的图像,即可分析出最值及取得6 2最大值时X的值•【详解】解:(1)因为a ( .3 sin x,sin x), b (cosx,sin x)所以∣a∣ 3sin2x sin2x 2∣si nx∣,∣b∣ . CQS X Si nx2 1r r 1因为∣a ∣ ∣b ∣,所以∣ Sinx∣ .因为X [0,],所以SinX 2(2)ab.3sin xcosxSin X Sin2x1 cos2x 1 Sin 2x 12 2 2 6 2因为X [0,],所以2x11, ,于;曰 1 . Sin 2x1 36 6 6 2 6 2 2所以当π π2x ,即X时,a b取最人值 36 2 3 2【点睛】本题考查了向量的模,考查了向量的数量积,考查了三角恒等变换,考查了三角函数的最值•对于y ASin ωxφ型的函数,在求最值、对称轴、对称中心、单调区间时,一般(2)平面EDB i ⊥平面B I BD .【答案】(1)证明见解析;(2)证明见解析.【解析】⑴取B l D的中点F ,连OF l EF通过证明AC//EF从而证明线面平行.⑵通过AC BD ,B i B AC推出EF BB i, EF BD ,从而证明EF 平面B i BD , 进而可证面面垂直 . 【详解】证明:(1)在正方体ABCD A i B i C i D i中,设AC与BD相交于点0 ,则Q为BD的中点1取B i D 的中点F ,连OF, EF 所以QF∕∕BB i,QF -BB v2在正方体ABCD A i B i C i D i中,AA i∕∕BB i, AA i BB i.又点E是A i A的中点所以AE∕∕0F, AE OF .于是四边形AEFO是平行四边形从而AC//EF .又因为AC 平面EDB i ,EF 平面EDB i,所以AC//平面EDB i .A IB lC lD I中,E是棱A l A的中点.求证:都是采取整体的思想进行计算•⑵在正方体ABCD A1B1C1D1中,B1B 平面ABCD ,而AC 平面ABCD ,所以B I B AC.又在正方体ABCD A I B I C I D I中,四边形ABCD为正方形所以AC BD.由⑴知,EF//AC ,于是EF BB-EF BD .又B1B 平面B l BD , BD 平面B1BD, B j B BD B ,所以EF 平面B1BD .又因为EF 平面EDB1 ,所以平面EDB1 平面B1BD .【点睛】本题考查了线面平行的判定,考查了面面垂直的判定•线面平行或者面面平行的判定,一般都归结为证明线线平行;线面垂直或者面面垂直的判定,一般都归结为证明线线垂直•此类问题如果采用逻辑推理的方法无法证明,有时也可以建立空间直角坐标系,运用空间向量证明平行和垂直•2 217 .如图,在平面直角坐标系XOy中,已知代B两点分别为椭圆笃当1,a b 0a b的右顶点和上顶点,且AB , 7 ,右准线I的方程为X 4.(1)求椭圆的标准方程;(2)过点A的直线交椭圆于另一点P ,交I于点Q若以PQ为直径的圆经过原点,求直线PQ 的方程.2 2 _ _ _ _【答案】⑴仝y1;(2)、.3X y 2 3 0或3x y 2、、3 0.4 3【解析】(1)由右准线I 的方程为X 4以及AB 、、7可列出方程组2—4 Ca 2b 2 C 2解.a 2b 2得即可求出椭圆的方程 ⑵设PQ 的方程为y k(x 2),与椭圆方程联立,求出P 8k 264k 23 12k24k 2 3;联立y k(x 2) UUU 可得Q(4,2k),由OP OQ 可知OP X 4 IujOQ 0 ,从而可求出k,3 ,进而可求直线的方程• 【详解】 解:(1)设椭圆的焦距为 2c(c 0) •由题意得2-4 C2 ,2a b 2 2,解得a 4,b ■, a 2b 2■, 7C 2所以椭圆的标准方程为 (2)由题意得直线 PQ 不垂直于X 轴,设PQ 的方程为y k(x 2) y 联立x 2 4 k(x 2 y 3 2), 2 2 ,消y 得4k 3 X 1, 2 2 16k X 16k 12 0.又直线PQ 过点 A(2,0),则方程必有一根为 2则X P 8k 26 4k 23代入直线y k(x 2),得点 P 8k 26 4k 23 12k 产.联立 y k(xX 42),所以 Q(4,2k).又以PQ 为直径的圆过原点 ,所以OP OQ . IlJU UUir 8k 2 6 则OPOQ 4汁28k 2 24 4k 230 ,解得k 2所以直线PQ 的方程为.3x y 2-、3【点睛】本题考查了椭圆的准线方程,考查了椭圆的性质,考查了直线与椭圆相交问题,考查了向量的数量积•本题第二问的难点在于圆过原点这一条件得运用 •一般若题目中已知圆过某 点,则一般等量关系为:圆心到该点的距离为半径或者圆上两点与已知点的连线垂直 18 •下图是一块平行四边形园地 ABCD ,经测量,EB 2.5m , FC 7.5m 时,EF 最短,其长度为 5. 3 .(3)当0 X 10,由二次函数的性质可求最值 ;当10≤x≤20时,由基本不等式可求最值【详解】1解:⑴当点F 与点C 重合时,由题设知,s BEC - S YABCD .41 1于是一EB h AB h ,其中h 为平行四边形AB 边上的高.2 41得EB -AB ,即点E 是AB 的中点.2⑵因为点E 在线段AB 上,所以0 X 20.当10≤ x≤20时,由(1)知点F 在线段BC 上.因为AB20m, BC 10m, ABC 120 所以 S Y ABCD AB BC SinABC 20 10 —100、3. 2AB 20m,BC 10m, ABC 120o•拟过线段AB 上一点E 设计一条直路EF (点将该园地分为面积之比为 3:1的左,X, EF y (单位:m).(2) 求y 关于X 的函数关系式; (3) 试确定点E,F 的位置,使直路EF 的长度最短.2 X 25x 25【答案】(1) E 是AB 的中点;(2)yχ2 10θ∞ 10010 X10;(3)当201【解析】(I)由S BE C S YABCD 41 1可知-EB h 4AB h,从而证明E 是AB 的中点. ⑵求出平行四边形的面积为 S YABCD100,3,进而可求S EBF 25 3 ,从而用X 可将BF 表示出来,利用余弦定理即可得到y 关于X 的函数关系式.当点F 与点C 重合时,试确定点 E 的位置; (1) F 在四边形ABCD 的边上,不计直路的宽度),1由S EBF X BF sin1202 25 3得,BF .所以EBF中,由余弦定理得X得 CF 10 X .当 BE CF 时,EF .. 102 (2x 10)22 10 (2x 10) cos120当 BE CF 时,EF X 102(10 2x)22 10 (10 2x) cos60本题考查了函数模型的应用 ,考查了余弦定理,考查了基本不等式•本题的易错点是没有 讨论自变量的取值,从而造成了漏解•求最值时,常用的方法有:导数法、函数图像法、函数 单调性法、基本不等式法• 19.已知函数y f (X)的定义域为D ,若满足 X D,x f(x) f(x),则称函数f(χ)为’L 型函数”.(1)判断函数y e x 和y InX 是否为(L 型函数”,并说明理由;(2)设函数 f(x) (X 1)lnx (X 1)lna,a 0 ,记 g(x)为函数 f (x)的导函数• ①若函数 g(x)的最小值为1,求a 的值;②若函数 f(x)为“L 型函数 ”,求a 的取值范围.【答案】 (1) y e x不是,yIn X 是,理由见解析;(2)①a e ;②02a e . 【解析】(1)分别求出两个函数的定义域 ,判断 X D,xf(x) f (x)即可综上: 当E 距点B2.5m , F 距点C7.5m 时,EF 最短,其长度为5、. 3 .2X当且仅当X 2= 10000即X 10时,取等号 【点睛】y EFx 2100 X100.当0 X 10时,点F 在线段CD 上,由S 四边形EBCF-(X CF) 10 Sin60 2 25 3化简均为y EF 2 ∖ X 2 5x25.综上,y⑶当0 曰、【/是当X2 X 25x 2510χ210000100 X 210 X20X 10 时,y2 X 25x 2525 752 时,y min155、3,此时 CF 10 X当 10≤ x ≤20 时,y χ2 10000100 2,.'X 2X 210000100 10、3 X 22x 100 cos12010000所以由零点存在性定理得X 0 (1,a)使g X 00,又g(x)在(1,)上为增函数1⑵①求出g(x) f (x) InX 1 In a, x (O,),再求g (x),通过导数探究当 XX 取何值时,g(χ)取最小值,令最小值为1,即可求出a 的值•②由题意X (0, ),(X 1)f (X) (X 1)[(x 1)lnx (X 1)ln a] 0恒成立,分别讨论当0 a e 2和a e 2时,通过探究f(x)的单调性判断是否使得不等式恒成立,从而求出a 的取值范围.【详解】解:⑴对于函数y e x,定义域为R ,显然0 ee 0不成立,所以y e x 不是’L 型函数 对于函数y Inx ,定义域为(0,).当 0 X Hdlnx 0,所以(X 1)l nx 0,即 xlnx In X ; 当 X 1 时,Inx 0,所以(X 1)l nx 0,即 xl nx ln x . 所以 X (0,),都有xl nx Inx .所以函数y Inx 是型函数”.X 11⑵①因为 g(x) f (x) In XInaInX 1 Ina, x (0,)XX1 1 X 1所以g (x)22.当X (0,1)时,g(χ) 0所以g(x)在(0,1)上为减函数X X X当X (1,)时,g (x) 0,所以g(x)在(1,)上为增函数. 所以 g(x)min g(1) 2 In a .所以 2 In a 1,故 a e . ②因为函数f (x) (X 1)l nx (X 1)l na 为(L 型函数所以 X (0,),(x 1)f (x) (X 1)[(x 1)l nx (X 1)l n a] 0().(i)当 2 In a 0 ,即 0 a e 2时,由①得 g(x) 0,即 f (x) 0.所以f (X)在(0,)上为增函数,又 f (1) 0,当X (0,1)时,f (X) 0所以(X 1)f (X) 0;当 X [1,)时,f (x) 0,所以(X 1)f (X) 0.所以X (0,),适合()式.2 1(ii) 当 2 In a 0,即 a e 2时,g(1) 0,g(a) - 10.第15页共21页所以由零点存在性定理得X0 (1,a)使g X0 0,又g(x)在(1,)上为增函数所以当X 1,X o 时,g(x) 0,所以f (X)在1,X o 上为减函数又f(1) 0,所以当X 1,X o 时,f(x) 0,所以(X 1)f(x) 0,不适合()式. 综上得,实数a 的取值范围为0 a e 2∙ 【点睛】本题考查了不等式的性质,考查了函数的最值,考查了不等式恒成立问题.本题的难点在 于最后一问,学生往往想不起来通过函数的单调性等来判断函数在某一区间的正负问题 20 .已知数列 a n 的首项为1,各项均为正数,其前n 项和为S n ,1设数列 b n 满足 b 1 1 , b n 1b n a n ,求证:- 2.、a n 1 i 1 b【解析】⑴令n 1,n2即可求出a 2 ,a 3的值;1当n 1时,-b 11•从而可证.【详解】【答案】(1)a 22,a 3 3;(2)证明见解析;(3)证明见解析.a n 1 a n ⑵由2 Sn —1 n an 1得2Sm a n a na n an —(n 2)两式相减进行整理可得 an 1 a n 1 a n a n a n 1(n ≥ 2),即可证明 a n 为等差数列. ⑶由⑵可知b n 1b n n , b n b n 1 n1(n 2)两式相减整理得 丄 b n 1 b n 1 (n 2),则b n1 丄丄丄b i b 1 b 2 b 3 1 丄 bib nbl b 2 b n b n 1 ,通过放缩即可证明;解:⑴令n 1得,2S∣a ? a 〔 a 2 a 1,又a 11,解得a 2 2;令n 2得,2S 2a 〔a 2,即 2a 1a 3 a 2a 22a 1a 32 ,从而a3 3.2S na n QnOW n N •(1) 求a 2,a 3的值;(2) 求证:数列 a n 为等差数列;(3)1a ∏ 1a ∏⑵因为2S ∏ a ∏ 1 a∏ ①;所以2S ∏ 1 Jn 2)② a∏ 1 a ∏①-②得,2a ∏ a ∏ 1a∏ a ∏ 1 a∏ a ∏a∏ 1 a ∏ a ∏ .因为数列 a ∏的各项均为正数,所以a ∏ 0.a ∏ 1 a ∏从而2 口 ∏ a ∏ 1 a ∏ a ∏ a ∏ 1去分母得,2 a ∏ 1 a ∏ a ∏ a ∏ a ∏ 1 a ∏ a ∏ 1 a ∏ 1 a∏ 1 a n 化简并整理得,a ∏a ∏1 2a ; a ∏a ∏ 0,即 2a ∏ a ∏ 1 a ∏1(∏ 2),所以 a ∏ 1 a ∏ a ∏ a ∏ι( n ≥ 2).所以数列 a n 为等差数列. (3)由(2)知,b ∏ 1b ∏ ∏ ③.当 ∏ 1 时,b 2b 1 1 ,又 b 1,所以 b 2 1.由③知,b ∏b ∏ 1 ∏ 1(∏ 2) ④.③-④得,b ∏1b ∏ b ∏b ∏ 1 1 (∏ 2)即b ∏b ∏ 1 b∏ 1 1(∏2),依题意,b ∏ 0 ,所以占b ∏ 1 b ∏ b ∏ 1(∏2).b 11 b2 b 3b∏1 b ib 3 b 1 b 4 b 2 b 5 b 3b ∏ b ∏ 2 b ∏ 1 b ∏1 b ibi b 2 b ∏ b ∏ 12.b ∏1b ∏12 a ∏ 1 ,当 ∏ 1时,11 ,原不等式也成立.b 1∏ 1综上得,- i 1 b 2云1 【点睛】 本题考查了由递推公式求项 ,考查了等差数列的定义,考查了放缩法,考查了数列求和.本 题难点在于整理出丄 b ∏ 1 b ∏1(∏ b ∏ 2),从而对所证式子进行化简.涉及到S n 和a ∏的递推公式时,一般代入公式a ∏S nT \进行求解. S n 1, n 2 21•已知 a,b R,若 M= ba3所对应的变换 TM 把直线2x-y=3变换成自身,试3求实数a, b.【答案】户■- J -- 【解析】【详解】 JC R = 十 αυ一 τ, = ⅛x + 3V.L*aμT 2x r-y f= l.∖2(-x+α})- (⅛x + 3y) = 3.即-一一 --_.■此直线即为-'-/ ■ .■- ■二—2 -口二 2.2C 7 — 3 二—1.则.-.22 •在极坐标系中,设P 为曲线C : 2上任意一点,求点P 到直线l : Si n-3的最大距离• 【答案】5【解析】将圆C 和直线l 的极坐标方程化为直角坐标方程, 转化为求圆上的点到直线 I 距 离的最大值,求出圆心到直线 I 距离,即可求出结论. 【详解】 曲线C :2化直角坐标方程为 X 2 y 24表示圆,1 Sin— 3,- Sin 3 OCoS 3 ,322化为直角坐标方程为 ,3x y 6 0,6 圆C 上点P 到直线I 距离的最大值为 .【点睛】想,属于基础题本题考查极坐标方程与直角坐标方程互化、圆上点到直线距离的最值, 考查数形结合思设a b c 6 ,求证:.a bl ',厂2, 3 二.23 .设a, b, C为正实数,【答案】证明见解析2 2 2 2 2 2 2【解析】 根据柯西不等式 Xi% X 2y 2 X 3y 3 % X 2 X 3 y ι y 2 y 3 ,将原式进行配凑并结合已知条件 a b c 6加以计算,即可得证;【详解】证明:因为a, b, C 为正实数,a b c 6,2 2所以,a . b 1 . c 2 .. a 1 ., b 11 . c 2 1a b 1 c 2 1 1 1 27于是λa ..尸 、、厂2, 3.3 ,当且仅当,a 、、L 、、厂2 ,即a 3,b 2,C 1时取等号,所以,a ..尸、、厂2, 3. 3 ,得证; 【点睛】本题考查利用柯西不等式证明不等式,属于中档题 24 •假定某篮球运动员每次投篮命中率均为 P(O P 1).现有3次投篮机会,并规定连续两次投篮均不中即终止投篮 ,已知该运动员不放弃任何一次投篮机会,且恰好用完3次投篮机会的概率是 -25(1)求P 的值;(2)设该运动员投篮命中次数为X ,求X 的概率分布及数学期望E(X).3【答案】(1); (2)分布列见解析,期望为5【解析】 分析:(1)设事件A :恰用完3次投篮机会”则其对立事件 A :前两次投篮均不应概率即可详解:(1)设事件A :恰用完3次投篮机会”则其对立事件 A :前两次投篮均不中解得P 3.5(2)依题意,X 的所有可能值为0,1,2,3,213 125所以,PA 1 P A⑵X 的所有可能值为 250,1,2,3,计算其对依题意,PA 1 P A25,25所以m3 C k c ;k C :k L点睛:利用对立事件计算概率是概率问题中长用的方法,所以出现 关键字眼时要注意利用对立事件的思路解题,往往能够简化计算 25 •设 S 4k a 1 a 2 La 4k ( k N *),其中 ai 0,1( i 1,2,L ,4k ).当S 4k 除以4的余数是b ( b 0,1,2,3)时,数列a 1,a 2丄,a 4k 的个数记为m b .(1) 当k 2时,求m 1的值;(2) 求m3关于k 的表达式,并化简.2k 1【答案】(1) 64; (2)m 3 4【解析】(1) (1)根据定义,确定条件: 8个数的和除以4的余数是1,因此有1个1或5个1,其余为0,从而m C 8 C 564 ;(2)--:个数的和除以4的余数是3,因此有3个1,或7个1,或11个1,∙∙∙,或4k 1 个1 ,其余为0, m 3 C 43k CJ k Cr k L C4k 1,再根据组合数性质即可化简求值• 【详解】(1)当k 2时,数列a 1,a 2,a 3^L ,%中有1个1或5个1,其余为0, 所以 m C 8 C 8564 .(2)依题意,数列a 1, a 2,L ,a 4k 中有3个1,或7个1,或11个1,…, 或4k 1个1 ,其余为0,4k 1C4k第20页共21页X 的概率分布列为 数学期望E X24 ,125兰2竺3空空125 125 125 125至多”至少”等其他同理,得 m 1 C 41k C 45k C49kL C 44k k 3因为 C 4ik C 44k k ii 3,7,11,L ,4k 1 ,所以 m 1 m 31 3 9 4k 3 4k 1 4k 1m 3 C 4kC 4k C 4k L C 4k C 4k 2点睛】 本题考查组合数的性质,组合数的运算,属中档题所以 m 34k 224k 22k 14。
2020届江苏省南通市海安高级中学高三阶段测试三数学试题(解析版)

2020届江苏省南通市海安高级中学高三阶段测试三数学试题一、填空题1.设全集{1,2,3,4,5}U =,若{1,2,4}U A =ð,则集合A =_________. 【答案】{3,5}.【解析】直接求根据{1,2,4}U A =ð求出集合A 即可. 【详解】解:因为全集{1,2,3,4,5}U =若{1,2,4}U A =ð, 则集合A ={3,5}. 故答案为:{3,5}. 【点睛】本题考查补集的运算,是基础题.2.已经复数z 满足(2)1z i i -=+(i 是虚数单位),则复数z 的模是________. 10 【解析】【详解】(2)1z i i -=+Q ,11323,i iz i i i++∴=+==- 10z =10.3.已知一组数据123,,a a a ,…,n a 的平均数为a ,极差为d ,方差为2S ,则数据121,a +221,a +321a +,…,21n a +的方差为___________.【答案】24S【解析】根据在一组数据的所有数字上都乘以同一个数字,得到的新数据的方差是原来数据的平方倍,得到结果. 【详解】解: ∵数据123,,a a a ,…,n a 的方差为2S ,∴数据121,a +221,a +321a +,…,21n a +的方差是22224S S ⨯=, 故答案为:24S . 【点睛】此题主要考查了方差,关键是掌握方差与数据的变化之间的关系. 4.如图是一个算法的伪代码,其输出的结果为_______.【答案】1011【解析】由题设提供的算法流程图可知:1111101122310111111S =++⋅⋅⋅+=-=⨯⨯⨯,应填答案1011. 5.从0,2 中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为______。
【答案】18【解析】试题分析:分类讨论:从0、2中选一个数字0,则0只能排在十位;从0、2中选一个数字2,则2排在十位或百位,由此可得结论.解:从0、2中选一个数字0,则0只能排在十位,从1、3、5中选两个数字排在个位与百位,共有23A =6种;从0、2中选一个数字2,则2排在十位,从1、3、5中选两个数字排在个位与百位,共有23A =6种; 2排在百位,从1、3、5中选两个数字排在个位与十位,共有23A =6种;故共有323A =18种,故答案为18. 【考点】计数原理点评:本题考查计数原理的运用,考查分类讨论的数学思想,正确分类是关键6.在平面直角坐标系xOy 中,若双曲线()2222:10,0x y C a b a b-=>>10,则双曲线C 的渐近线方程为_______. 【答案】3y x =±【解析】10,可以得到10ca=222a b c +=求出,a b 的关系,从而得出渐近线的方程. 【详解】解:因为双曲线()2222:10,0x y C a b a b-=>>10,所以10ca= 故2210c a=, 又因为222a b c +=,所以22210a b a +=,即229b a=,即3=b a , 所以双曲线的渐近线3y x =±. 【点睛】本题考查了双曲线渐近线的问题,解题的关键是由题意解析出,a b 的关系,从而解决问题. 7.将函数f(x)的图象向右平移π6个单位后得到函数()π4sin 23y x =-的图象,则()π4f 为 .【答案】4【解析】试题分析:将函数f(x)的图象向右平移π6个单位后得到函数()π4sin 23y x =-的图象,即将函数()π4sin 23y x =-的图象向左平移π6个单位得y=4sin[2(x+π6)π3-]=4sin2x ,所以()π4f =4sin 42π=. 故答案为:4.【考点】三角函数的图象平移.8.设定义在R 上的奇函数()f x 在区间[0,)+∞上是单调减函数,且()23(2)0f x x f -+>,则实数x的取值范围是_________ 【答案】(1,2)【解析】根据题意,由函数的奇偶性和单调性分析可得函数()f x 在R 上为减函数,则()23(2)0f x x f -+>可以转化为232x x -<-,解可得x 的取值范围,即可得答案.【详解】解:根据题意,()f x 是在R 上的奇函数,且在区间[0,)+∞上是单调减函数, 则其在区间(,0)-∞上递减, 则函数()f x 在R 上为减函数,()()22223(2)03(2)(3)(2)32f x x f f x x f f x x f x x -+>⇒->-⇒->-⇒-<-,解得:12x <<;即实数x 的取值范围是(1,2); 故答案为:(1,2). 【点睛】本题考查函数的单调性与奇偶性的综合应用,关键是分析函数在整个定义域上的单调性. 9.在锐角三角形ABC 中3sin 5A =,1tan()3A B -=-,则3tan C 的值为_________.【答案】79【解析】由题意可得tan A ,进而可得tan B ,而tan tan()C A B =-+,由两角和与差的正切公式可得. 【详解】解:∵在锐角三角形ABC 中3sin 5A =, 24cos 1sin 5A A ∴=-=, sin 3tan cos 4A A A ∴==, 31tan tan()1343tan tan[()]311tan tan()9143A A B B A A B A A B +--∴=--===+--⨯, 313tan tan 7949tan tan()3131tan tan 3149A B C A B A B ++∴=-+=-=-=--⨯, 3tan 79C ∴=故答案为:79. 【点睛】本题考查两角和与差的正切公式,属中档题.10.已知n S 为数列{}n a 的前n 项和3(1)(*)n n S na n n n N =--∈且211a =.则1a 的值________ 【答案】5【解析】由3(1)(*)n n S na n n n N =--∈,且211a =.取2n =即可得出. 【详解】解:∵3(1)(*)n n S na n n n N =--∈,且211a =.12226a a a ∴+=-,即1265a a =-=.故答案为:5. 【点睛】本题考查了递推式的简单应用,是基础题. 11.设正实数x ,y 满足x yxy x y+=-,则实数x 的最小值为______. 21.【解析】由正实数x ,y 满足x y xy x y +=-,化为()2210xy x y x +-+=,可得()222212121401010x x x y y x y y ⎧∆=--≥⎪⎪-⎪+=>⎨⎪=>⎪⎪⎩,计算即可. 【详解】解:由正实数x ,y 满足x yxy x y+=-, 化为()2210xy xy x +-+=,∴()222212121401010x x x y y x y y ⎧∆=--≥⎪⎪-⎪+=>⎨⎪=>⎪⎪⎩,化为426101x x x ⎧-+≥⎨>⎩, 解得21x ≥.因此实数x 21.故答案为:21+. 【点睛】本题考查了一元二次方程的实数根与判别式、根与系数的关系、一元二次不等式的解法,考查了推理能力和计算能力,属于中档题.12.如图正四棱柱1111ABCD A B C D -的体积为27,点E ,F 分别为棱11,B B C C 上的点(异于端点)且//EF BC ,则四棱锥1A AEFD -的体积为___________.【答案】9【解析】由11113A AED E A AD A AD V V S AB --∆==⋅,由此能求出四棱锥1A AEFD -的体积. 【详解】 解:连接DE ,∵正四棱柱1111ABCD A B C D -的体积为27,点E ,F 分别为棱11,B B C C 上的点(异于端点),且//EF BC ,11A AED A FED V V --∴=,1111111111193662A AED E A AD A AD A ADD ABCD A C D V V S AB S AB V --∆-∴==⋅=⋅==,∴四棱锥1A AEFD -的体积19A AEFD V -=.故答案为:9. 【点睛】本题考查四棱锥的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力、运算求解能力,是中档题.13.已知向量,,a b c r r r 满足0a b c ++=r r r 且a r 与b r 的夹角的正切为12-,b r 与c r 的夹角的正切为13-,||2b =r ,则a c ⋅r r的值为___________.【答案】45【解析】可设,,AB a BC b CA c ===u u u r u u u r u u u r r r r ,由题意可得11tan ,tan 23B C ==,由两角和的正切公式,可得tan A ,再由同角的基本关系式可得sin ,sin B C ,再由正弦定理可得AB ,AC ,由数量积的定义即可得到所求值. 【详解】解:可设,,AB a BC b CA c ===u u u r u u u r u u u r r r r,由题意可得11tan ,tan 23B C ==, 则11tan tan 23tan tan()1111tan tan 123B C A B C B C ++=-+=-=-=---⨯, 即为135A ︒=,又,B C 为锐角,22sin 1sin cos 1,cos 2B B B B +==, 可得5sin 5B =, 同理可得10sin C =, 由正弦定理可得2sin135510︒==r r,即有2102555c a ==r r ,则2102524||||cos 4525a c c a ︒⋅=⋅⋅==u u rr r r .故答案为:45. 【点睛】本题考查向量的数量积的定义,考查正弦定理和三角函数的化简和求值,以及运算求解能力,属于中档题.14.已知()(2)(3),()22x f x m x m x m g x =-++=-,若同时满足条件:①,()0x R f x ∀∈<或()0<g x ;②(,4),()()0x f x g x ∃∈-∞-<.则m 的取值范围是________________.【答案】()4,2m ∈--【解析】根据()220xg x =-<可解得x<1,由于题目中第一个条件的限制,导致f(x)在1x ≥是必须是()0f x <,当m=0时,()0f x =不能做到f(x)在1x ≥时()0f x <,所以舍掉,因此,f(x)作为二次函数开口只能向下,故m<0,且此时2个根为122,3x m x m ==--,为保证条件成立,只需1221{31x m x m =<=--<1{24m m <⇒>-,和大前提m<0取交集结果为40m -<<;又由于条件2的限制,可分析得出在(,4),()x f x ∃∈-∞-恒负,因此就需要在这个范围内g(x)有得正数的可能,即-4应该比12x x 两个根中较小的来的大,当(1,0)m ∈-时,34m --<-,解得交集为空,舍.当m=-1时,两个根同为24->-,舍.当(4,1)m ∈--时,24m <-,解得2m <-,综上所述,(4,2)m ∈--.【考点定位】本题考查学生函数的综合能力,涉及到二次函数的图像开口,根大小,涉及到指数函数的单调性,还涉及到简易逻辑中的“或”,还考查了分类讨论思想.二、解答题15.已知ABC ∆的面积为3()18AC AB CB ⋅-=u u u r u u u r u u u r ,向量(tan tan ,sin 2)m A B C =+u r和向量(1,cos cos )n A B =r是共线向量.(1)求角C ;(2)求ABC ∆的边长c .【答案】(1) 3C π=(2) 36【解析】(1)利用向量共线的条件,建立等式,再利用和角的正弦公式化简等式,即可求得角C ;(2)由()18AC AB CB ⋅-=u u u r u u u r u u u r 得:2()18AC AB BC AC ⋅+==u u u r u u u r u u u r u u u r ,进而利用ABC ∆的面积为93,及余弦定理可求ABC ∆的边长c . 【详解】(1)因为向量(tan tan ,sin 2)m A B C =+r 和(1,cos cos )n A B =r是共线向量, 所以cos cos (tan tan )sin 20A B A B C +-=, 即sin cos cos sin 2sin cos 0A B A B C C +-=, 化简sin 2sin cos 0C C C -=, 即sin (12cos )0C C -=.因为0C π<<,所以sin 0C >,从而1cos ,2C =3C π=.(2)()18AC AB CB ⋅-=u u u r u u u r u u u r Q ,18()AC AB CB ∴=⋅-u u u r u u u r u u u r 2||AC AC AC =⋅=u u u r u u u r u u u r 则||1832AC ==u u u r32AC =因为ABC V 的面积为93, 所以1sin 932CA CB C ⋅= 即132sin 9323CB π⨯=解得62CB =在ABC V 中,由余弦定理得2222cos AB CA CB CA CB C =+-⋅221(32)(62)232622=+-⨯54=,所以5436AB ==【点睛】本题重点考查正弦、余弦定理的运用,考查向量知识的运用,解题的关键是正确运用正弦、余弦定理求出三角形的边.16.如图,四棱锥P-ABCD的底面为矩形,且AB=2,BC=1,E,F分别为AB,PC中点.(1)求证:EF∥平面PAD;(2)若平面PAC⊥平面ABCD,求证:平面PAC⊥平面PDE.【答案】证明:(1)方法一:取线段PD的中点M,连结FM,AM.因为F为PC的中点,所以FM∥CD,且FM=12 CD.因为四边形ABCD为矩形,E为AB的中点,所以EA∥CD,且EA=12 CD.所以FM∥EA,且FM=EA.所以四边形AEFM为平行四边形.所以EF∥AM.……………………… 5分又AM⊂平面PAD,EF⊄平面PAD,所以EF∥平面PAD.………7分方法二:连结CE并延长交DA的延长线于N,连结PN.因为四边形ABCD为矩形,所以AD∥BC,所以∠BCE=∠ANE,∠CBE=∠NAE.又AE=EB,所以△CEB≌△NEA.所以CE=NE.又F为PC的中点,所以EF∥NP.………… 5分又NP⊂平面PAD,EF⊄平面PAD,所以EF∥平面PAD.……………7分方法三:取CD的中点Q,连结FQ,EQ.在矩形ABCD中,E为AB的中点,所以AE=DQ,且AE∥DQ.所以四边形AEQD为平行四边形,所以EQ∥AD.又AD⊂平面PAD,EQ⊄平面PAD,所以EQ∥平面PAD.………………2分因为Q,F分别为CD,CP的中点,所以FQ∥PD.又PD⊂平面PAD,FQ⊄平面PAD,所以FQ∥平面PAD.又FQ,EQ⊂平面EQF,FQ∩EQ=Q,所以平面EQF∥平面PAD.…………… 5分因为EF⊂平面EQF,所以EF∥平面PAD.……………………………… 7分(2)设AC,DE相交于G.在矩形ABCD中,因为AB=2BC,E为AB的中点.所以DAAE=CDDA=2.又∠DAE=∠CDA,所以△DAE∽△CDA,所以∠ADE=∠DCA.又∠ADE+∠CDE=∠ADC=90°,所以∠DCA+∠CDE=90°.由△DGC的内角和为180°,得∠DGC=90°.即DE⊥AC.……………………… 10分因为平面PAC⊥平面ABCD 因为DE⊂平面ABCD,所以DE⊥平面PAC,又DE⊂平面PDE,所以平面PAC⊥平面PDE.………………………… 14分【解析】略17.如图,OM,ON是两条海岸线,Q为海中一个小岛,A为海岸线OM上的一个码头.已知,,Q到海岸线OM,ON的距离分别为3 km,km.现要在海岸线ON上再建一个码头,使得在水上旅游直线AB经过小岛Q.(1)求水上旅游线AB的长;(2)若小岛正北方向距离小岛6 km处的海中有一个圆形强水波P,从水波生成t h时的半径为(a 为大于零的常数).强水波开始生成时,一游轮以km/h的速度自码头A开往码头B,问实数a在什么范围取值时,强水波不会波及游轮的航行.【答案】(1)(2)【解析】试题分析:(1)由条件建立直角坐标系较为方便表示:,直线的方程为.由Q到海岸线ON的距离为km,得,解得,再由两直线交点得,利用两点间距离公式得(2)由题意是一个不等式恒成立问题:设小时时,游轮在线段上的点处,而不等式恒成立问题往往利用变量分离将其转化为对应函数最值问题:试题解析:(1)以点为坐标原点,直线为轴,建立直角坐标系如图所示.则由题设得:,直线的方程为.由,及得,∴.∴直线的方程为,即,由得即,∴,即水上旅游线的长为.(2)设试验产生的强水波圆,由题意可得P(3,9),生成小时时,游轮在线段上的点处,则,∴.强水波不会波及游轮的航行即,当时 ,当.,,当且仅当时等号成立,所以,在时恒成立,亦即强水波不会波及游轮的航行.【考点】函数实际应用,不等式恒成立18.在平面直角坐标系xOy 中已知椭圆222:1(0)3x y E a b a +=>>过点61,2⎛ ⎝⎭,其左、右焦点分别为12F F 、,离心率为22.(1)求椭圆E 的方程;(2)若A ,B 分别为椭圆E 的左、右顶点,动点M 满足MB AB ⊥,且MA 交椭圆E 于点P . (i )求证:OP OM ⋅uu u r uuu r为定值;(ii )设PB 与以PM 为直径的圆的另一交点为Q ,问:直线MQ 是否过定点,并说明理由.【答案】(1) 22142x y += (2) (i )证明见解析,定值为4 (ii )直线MQ 过定点(0,0)O .【解析】(1)由题意得离心率公式和点满足的方程,结合椭圆的,,a b c 的关系,可得,a b ,进而得到椭圆方程;(2)(i )设()02,,M y ()11,P x y ,求得直线MA 的方程,代入椭圆方程,解得点P 的坐标,再由向量的数量积的坐标表示,计算即可得证;(ii )直线MQ 过定点O (0,0).先求得PB 的斜率,再由圆的性质可得MQ ⊥PB ,求出MQ 的斜率,再求直线MQ 的方程,即可得到定点. 【详解】解:(1)易得22312122a b c a⎧⎪+=⎪⎨⎪=⎪⎩,且222c a b =-, 解得2242a b ⎧=⎨=⎩,,所以椭圆E 的方程为22142x y +=(2)设()02,,M y ()11,P x y , ①易得直线MA 的方程为:0042y yy x =+, 代入椭圆22142x y +=得,2222000140822y y y x x ⎛⎫+++-= ⎪⎝⎭, 由()201204828y x y --=+得,()20120288y x y --=+,从而012088y y y =+, 所以示()()20002200288,2,88y y OP OM y y y ⎛⎫-- ⎪⋅=⋅ ⎪++⎝⎭u u u r u u u u r ()22002200488488y y y y --=+=++, ②直线MQ 过定点(0,0)O ,理由如下:依题意,()2020020882288PBy y k y y y +==---+, 由MQ PB ⊥得,02MQ y k =, 则MQ 的方程为:00(2)2y y y x -=-,即02yy x =,所以直线MQ 过定点(0,0)O . 【点睛】本题考查椭圆的方程和性质,主要考查椭圆的离心率公式和方程的运用,注意联立直线方程和椭圆方程,运用韦达定理,同时考查向量的数量积的坐标表示和直线和圆的位置关系,属于中档题. 19.已知数列{}n a 满足:123a a a k ===(常数0k >),111n n n n K a a a a -+-+=()*3,n n N ≥∈.数列{}n b 满足:21n n n n a a b a +++=()*n N ∈. (1)求1,b 2,b 3,b 4b 的值; (2)求出数列{}n b 的通项公式;(3)问:数列{}n a 的每一项能否均为整数?若能,求出k 的所有可能值;若不能,请说明理由.【答案】(1) 132b b ==,2421k b b k +==;(2) 41122nn k b k k+-=+(); (3) k 为1,2时数列{}n a 是整数列.【解析】(1)经过计算可知:45621,2,4a k a k a k k=+=+=++,由数列{}n b 满足:21n n n n a a b a +++=(n=1,2,3,4…),从而可求1,b 2,b 3,b 4b ;(2)由条件可知121n n n n a a k a a +--=+.得211n n n n a a k a a +-+=+,两式相减整理得2n n b b -=,从而可求数列{}n b 的通项公式;(3)假设存在正数k ,使得数列{}n a 的每一项均为整数,则由(2)可知:2122122222211n n n n n n a a a k a a a k +-+=-⎧⎪+⎨=+-⎪⎩,由1a k Z =∈,624Z a k k =++∈,可求得1,2k =.证明1,2k =时,满足题意,说明1,2k =时,数列{}n a 是整数列. 【详解】(1)由已知可知:45621,2,4a k a k a k k=+=+=++, 把数列{}n a 的项代入21n n n n b a a a =+++求得132b b ==,2421k b b k+==; (2)由121n n n n k a a a a --++=3,n n N ≥∈*() 可知:121n n n n a a k a a +--=+① 则:211n n n n a a k a a +-+=+② ①−②有:2211n n n nn n a a a a a a +-+-++=,即:2n n b b -=2123n n b b --∴==…13122a a b a +===,222n n b b -== (242321)a a kb a k++===,41122nn k b k k+-∴=+(); (3)假设存在正数k 使得数列{}n a 的每一项均为整数,则由(2)可知:2122122222211n n n n n n a a a k a a a k +-+=-⎧⎪+⎨=+-⎪⎩③, 由1a k Z =∈,624Z a k k=++∈,可知1k =,2. 当1k =时,213k k+=为整数,利用123,,a a a Z ∈结合③式可知{}n a 的每一项均为整数; 当2k =时,③变为2122122222512n n n n n n a a a a a a +-+=-⎧⎪⎨=+-⎪⎩④ 用数学归纳法证明21n a -为偶数,2n a 为整数.1n =时结论显然成立,假设n k =时结论成立,这时21n a -为偶数,2n a 为整数,故212212n n n a a a +-=-为偶数,22n a +为整数,1n k ∴=+时,命题成立.故数列{}n a 是整数列.综上所述k 为1,2时数列{}n a 是整数列. 【点睛】本题考查了等差数列的基本性质和数列的递推公式,考查了学生的计算能力和对数列的综合掌握,注意分类讨论思想和转化思想的运用,属于难题. 20.设函数()()ln ,f x x a x x a =--+a R ∈. (1)若0a =求函数()f x 的单调区间;(2)若0a <试判断函数()f x 在区间()22,e e -内的极值点的个数,并说明理由;(3)求证:对任意的正数a 都存在实数t 满足:对任意的(,)x t t a ∈+,()1f x a <-. 【答案】(1) 单调递减区间为(0,1)单调递增区间为(1,)+∞. (2) 见解析 (3)证明见解析【解析】(1)求解()ln f x x '=,利用()0,()0f x f x ''><,解不等式求解单调递增区间,单调递减区间;(2)'()ln af x x x=-,其中0x >, 再次构造函数令()ln g x x x a =-,分析()g x 的零点情况.()ln 1g x x '=+,令1()0,g x x e'==,列表分析得出()g x 单调性,求其最小值, 分类讨论求解①若1a e≤-,②若212a e e -<<-,③若220,()a f x e -≤<的单调性,()f x 最大值,最小值,确定有无零点问题;(3)先猜想(1,1),()1x a f x a ∈+<-恒成立.再运用导数判断证明.令'1()ln 1,1,()10G x x x x G x x=-+≥=-≤,求解最大值,得出()(1)0G x G <=即可. 【详解】(1)当0a =时,()ln f x x x x =-,()ln f x x '=, 令()0f x '=,1x =,列表分析x (0,1)1(1,)+∞()f x '− 0 + ()f x单调递减单调递增故()f x 的单调递减区间为(0,1)单调递增区间为(1,)+∞.(2)()()ln f x x a x x a =--+,()ln f x x ax '=-,其中0x >, 令()ln g x x x a =-,分析()g x 的零点情况.()ln 1g x x '=+ 令()0g x '=,1x e=,列表分析 x(0,1e)1e(1,)e +∞()g x '− 0 +()g x单调递减 单调递增min 11()()g x g a e e ==--,而11()1n 1f ae ae e e'=-=--,222()2(2)f e ae ae -'=--=-+22221()2(2)a f e e a e e '=-=-,①若1a e≤-则()ln 0af x x x '=-≥,故()f x 在22(,)e e -内没有极值点;②若212a e e -<<-,则11()1n 0f ae e e '=-<,22()(2)0f e ae -'=-+> 2221()(2)0f e e a e'=->因此()f x '在22(,)e e -有两个零点,()f x 在22(,)e e -内有两个极值点;③若220a e -≤<则11()10f n ae e e '=-<,22()(2)0f e ae -'=-+≤,2221()(2)0f e e a e'=->, 因此()f x '在22(,)e e -有一个零点,()f x 在22(,)e e -内有一个极值点;综上所述当1(,]a e∈-∞-时,()f x 在22(,)e e -内没有极值点;当212,a e e ⎛⎫∈--⎪⎝⎭时,()f x 在22(,)e e -内有两个极值点; 当22,0a e ⎡⎫∈-⎪⎢⎣⎭时,()f x 在22(,)e e -内有一个极值点. (3)猜想:(1,1)x a ∈+,()1f x a <-恒成立. 证明如下:由(2)得()g x 在1(,)e+∞上单调递增,且(1)0g a =-<,(1)(1)ln(1)g a a a a +=++-. 因为当1x >时,1ln 1(*)x x>-,所以1(1)(1)(1)01g a a a a +>+--=+ 故()g x 在(1,1)a +上存在唯一的零点,设为0x .由x 0(1,)x0x0(,1)x a +()f x '− 0 + ()f x单调递减单调递增知(1,1)x a ∈+,()max{(1),(1)}f x f f a <+.又(1)ln(1)1f a a +=+-,而1x >时,ln 1(**)x x <-, 所以(1)(1)111(1)f a a a f +<+--=-=. 即(1,1)x a ∈+,()1f x a <-.所以对任意的正数a ,都存在实数1t =, 使对任意的(,)x t t ∈+∞, 使()1f x a <-. 补充证明(*): 令1()1n 1F x x x =+-,1x ≥.22111()0x F x x x x-'=-=≥, 所以()F x 在[1,)+∞上单调递增.所以1x >时,()(1)0F x F >=,即1ln 1x x>-. 补充证明(**)令()ln 1G x x x =-+,1x ≥.1()10G x x'=-≤, 所以()G x 在[1,)+∞上单调递减.所以1x >时,()(1)0G x G <=,即ln 1x x <-. 【点睛】本题主要考查导数与函数单调性的关系,会熟练运用导数解决函数的极值与最值问题.求函数的单调区间,应该先求出函数的导函数,令导函数大于0得到函数的递增区间,令导函数小于0得到函数的递减区间,考查了不等式与导数的结合,难度较大. 21.已知二阶矩阵,矩阵属于特征值的一个特征向量为,属于特征值的一个特征向量为.求矩阵.【答案】【解析】运用矩阵定义列出方程组求解矩阵 【详解】由特征值、特征向量定义可知,,即,得 同理可得解得,,,.因此矩阵【点睛】本题考查了由矩阵特征值和特征向量求矩阵,只需运用定义得出方程组即可求出结果,较为简单 22.在极坐标系中,已知1,,9,33A B ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,线段AB 的垂直平分线l 与极轴交于点C ,求l 的极坐标方程及ABC ∆的面积.【答案】l 的极坐标方程及cos 53πρθ⎛⎫-= ⎪⎝⎭,203ABC ∆的面积. 【解析】将1,,9,33A B ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭转化为直角坐标系下的坐标形式,然后求出线段AB 的中点与直线AB 的斜率,进而求出直线l 在直角坐标系下的方程,再转化为极坐标方程;在直角坐标系下,求出点C 到直线AB 的距离、线段AB 的长度,从而得出ABC ∆的面积. 【详解】解:以极点为原点,极轴为x 轴的正半轴,建立平面直角坐标系xoy 在平面直角坐标系xoy 中,1,,9,33A B ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭ 的坐标为13993(),(22A B线段AB 的中点为553(2A ,3AB k =故线段AB 中垂线的斜率为133AB k k --==, 所以AB 的中垂线方程为:5335)2y x --=- 化简得:3100x +-=, 所以极坐标方程为cos 3sin 100ρθρθ+-=, 即cos()53πρθ-=,令0y =,则10x =,故在平面直角坐标系xoy 中,C (10,0)点C 到直线AB :3y x =的距离为1035331d ==+ 线段8AB =,故ABC ∆的面积为15382032S =⨯=【点睛】本题考查了直线的极坐标方程问题,解题时可以将极坐标系下的问题转化为平面直角坐标系下的问题,从而转化为熟悉的问题.23.已知实数,a b 满足2a b +≤,求证:22224(2)a a b b a +-+≤+.【答案】证明见解析【解析】对2222a a b b +-+进行转化,转化为含有2a b +≤形式,然后通过不等关系得证.【详解】 解:因为2a b +≤, 所以2222a a b b +-+ 2222a b a b =-++()()()2a b a b a b =-+++2a b a b=+-+()22a b a a b=+-++22a b a a b≤++++()22222244242a a a a≤++=+=+≤+,得证.【点睛】本题考查了绝对值不等式问题,解决问题的关键是要将要证的形式转化为已知的条件,考查了学生转化与化归的能力.24.如图,在四棱锥P ABCD-中,已知棱AB,AD,AP两两垂直,长度分别为1,2,2.若DC ABλ=u u u r u u u r (Rλ∈),且向量PCuuu r与BDu u u r夹角的余弦值为1515.(1)求λ的值;(2)求直线PB与平面PCD所成角的正弦值.【答案】(1)2λ=;(210.【解析】试题分析:(1)以A为坐标原点,AB、AD、AP分别为x、y、z轴建立空间直角坐标系A xyz-,写出,PCu u u r,BDu u u r的坐标,根据空间向量夹角余弦公式列出关于λ的方程可求;(2)设岀平面PCD的法向量为(),,n x y z=r,根据n PCn DC⎧⊥⎪⎨⊥⎪⎩r u rr u r,进而得到⎧⋅=⎪⎨⋅=⎪⎩r u rr u rn PCn DC,从而求出nr,向量PBu r的坐标可以求出,从而可根据向量夹角余弦的公式求出cos,n PB<>r u r,从而得PB和平面PCD所成角的正弦值.试题解析:(1)依题意,以A为坐标原点,AB、AD、AP分别为x、y、z轴建立空间直角坐标系A xyz-(1,0,0),(0,2,0),(0,0,2)B D P,因为DC ABλ=u u u r u u u r,所以(,2,0)Cλ,从而(,2,2)PCλ=-u u u r,则由15cos,15PC BD=u u u r u u u r,解得10λ=(舍去)或2λ=.(2)易得(2,2,2)PC=-u u u r,(0,2,2)PD=-u u u r,设平面PCD的法向量(,,)n x y z=r,则0⋅=r u u u rn PC,0⋅=r u u u rn PD,即0x y z+-=,且0y z-=,所以0x=,不妨取1y z==,则平面PCD 的一个法向量(0,1,1)n=r,又易得(1,0,2)PB=-u u u r,故10cos,5=⋅=-u u u r rPB n PB n,所以直线PB与平面PCD所成角的正弦值为105.考点: 1、空间两向量夹角余弦公式;2、利用向量求直线和平面说成角的正弦.25.已知数列{}n a的通项公式为1515225n nna⎡⎤⎛⎫⎛⎥=-⎪⎪ ⎥⎝⎭⎝⎭⎦,n N∈,记1212n n nS C a C a=++…nn nC a+.(1)求1,S2S的值;(2)求所有正整数n,使得n S能被8整除.【答案】(1) 11S=;23S=;(2) {}*|3,n n k k N=∈【解析】(1)运用二项式定理,化简整理,再代入计算即可得到所求值;(2)通过化简得到213n n nS S S++=-,再由不完全归纳找规律得到结论,即可得到所求结论.【详解】解:(1)1212n n n n n n S C a C a C a =++⋯+2121515225n n C C ⎡⎛⎛+ =⋅+⋅+ ⎝⎭⎝…212151515n n n n n C C C ⎫⎛+--⎪ +⋅-⋅+⎪ ⎝⎭⎝⎭⎭⎝…15n n n C ⎤⎫-⎥⎪+⋅⎥⎪⎝⎭⎭⎦1515115n n ⎡⎤⎛⎛+-⎥=-+ ⎥⎝⎭⎝⎭⎦ 3535225n n ⎡⎤⎛⎛+⎢⎥=- ⎢⎥⎝⎭⎝⎭⎣⎦, 即有1S 515==; 2S 3535==; (2)35355n n S n ⎡⎤+-⎢⎥=-⎢⎥⎝⎭⎝⎭⎣⎦, 23535225n S n n +⎡⎤+-=+-+⎥⎥⎝⎭⎝⎭⎦ 3535353535352222225n n n n ⎡⎤⎡⎤⎛⎛⎫⎛⎫⎛⎫⎛+⎢⎥⎢⎥-⋅+-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦13n n S S +=-,即213n n n S S S ++=-,*n N ∈,因此2n S +除以8的余数,完全由1,n n S S +除以8的余数确定,因为11,a =21a =,所以11111S C a ==,12221223S C a C a =+=,3213918S S S =-=-=,432324321,S S S =-=-=543363855S S S =-=-=,654316521144,S S S =-=-=7535643255377S S =-=-=,87631131144987,S S S =-=-=987329613772584S S S =-=-= 由以上计算及213n n n S S S ++=-可知,数列{}n S 各项除以8的余数依次是: 1,3,0,5,7,0,1,3,0,5,7,0,…,它是一个以6为周期的数列,从而n S 除以8的余数等价于n 除以3的余数, 所以3,n k =*k N ∈,即所求集合为:{}*|3,n n k k N=∈.【点睛】本题考查数列通项的运用,解决问题的关键是运用二项式定理,本题属于难题.。
2020届江苏省南通市海安高级中学高三下学期5月第二次检测数学试题解析

2020届江苏省南通市海安高级中学高三下学期5月第二次检测数学试题一、填空题1.设集合{}2,0,M x =,集合{}0,1N =,若N M ⊆,则x = . 答案:1试题分析:由题意1M ∈,所以1x =. 【考点】集合间的关系.2.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取_______名学生. 答案:60采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查的. 解:∵该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6, ∴应从一年级本科生中抽取学生人数为:4300604556⨯=+++.故答案为60.3.已知复数z 满足()341(i z i +=为虚数单位),则z 的模为 .答案:15试题分析:()13451341||3425255i i z z z i -+=⇒==⇒==+【考点】复数及模的概念与复数的运算4.根据如图所示的伪代码,最后输出的S 的值为_________.答案:55解:试题分析:由算法伪代码语言所提供的信息可知(110)1001210552S +⨯=+++⋅⋅⋅+==,应填55.【考点】伪代码语言的理解和运用.5.现有5道试题,其中甲类试题2道,乙类试题3道,现从中随机取2道试题,则至少有1道试题是乙类试题的概率为 . 答案:910试题分析:从5道试题中随机取2道试题,共有10种基本事件,其中皆不是乙类试题的包含1中基本事件,因此至少有1道试题是乙类试题的概率为1911010-= 【考点】古典概型概率6.在ABC 中,若1AB =,2BC =,5CA =AB BC BC CA CA AB ⋅+⋅+⋅的值是______. 答案:5-利用勾股定理可得知AB BC ⊥,结合平面向量数量积的运算性质可求得AB BC BC CA CA AB ⋅+⋅+⋅的值.解:在ABC 中,1AB =,2BC =,5CA =222AB BC AC +=,AB BC ∴⊥,则0AB BC ⋅=,因此,()25AB BC BC CA CA AB CA AB BC CA AC AC ⋅+⋅+⋅=⋅+=⋅=-=-. 故答案为:5-. 点评:本题考查平面向量数量积的计算,考查平面向量数量积的运算性质,考查计算能力,属于基础题.7.若实数,x y满足约束条件22,{1,1,x yx yx y-≤-≥-+≥则目标函数2z x y=+的最小值为.答案:1解:试题分析:可行域为一个三角形ABC及其内部,其中(3,4),(1,0),(0,1),A B C直线2z x y=+过点(0,1)C时取最小值1【考点】线性规划求最值8.已知()1sin153α︒-=,则()cos302α︒-的值为______.答案:79由题易得3022(15)αα︒︒-=-,然后结合题中条件由余弦的二倍角公式直接计算即可. 解:()()()227cos302cos21512sin15199ααα︒︒︒⎡⎤-=-=--=-=⎣⎦.故答案为:79.点评:本题考查余弦二倍角公式,侧重考查对基础知识的理解和掌握,考查计算能力,属于基础题.9.已知等比数列的前项和为,若,则的值是.答案:-2试题分析:,【考点】等比数列性质及求和公式10.已知双曲线221y x a-=的一条渐近线与直线230x y -+=平行,则离心率e =______.由双曲线方程写出渐近线方程,由平行求得参数a ,然后离心率. 解:由已知双曲线的渐近线方程为0x y =和0x y +=,显然直线0x y =与直线230x y -+=2=,14a =, 即双曲线方程为22114y x -=,实半轴长为1a '=,虚半轴长为12b '=,半焦距为c ==,所以离心率为c e a =='. 点评:本题考查双曲线的离心率,掌握双曲线的渐近线方程与两直线平行的条件是解题关键. 11.一个圆柱和一个圆锥同底等高,若圆锥的侧面积是其底面积的2倍,则圆柱的侧面积是其底面积的_________倍.答案:试题分析:因为一个圆柱和一个圆锥同底等高,所以设底面半径为r ,高为h ,因为圆锥的侧面积是其底面面积的2倍,所以22,2rl r l r ππ==,h =,所以圆柱的侧面积22S rl r π==,其底面积为2r π,所以圆柱的侧面积是底面积的. 【考点】旋转体的侧面积与表面积.【方法点晴】本题主要考查了旋转体的侧面积与表面积的计算,其中解答中涉及到圆柱侧面积、圆锥的侧面积与表面积的计算,圆锥与圆柱的性质等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及学生的空间想象能力,解答中利用圆柱和圆锥的侧面积公式,准确计算是解答的关键,试题比较基础,属于基础题.12.已知函数()()(),01,0x e x f x x x ⎧≥⎪=⎨+<⎪⎩,则不等式()()22f x f x <-的解集为______.答案:()2,1-先判断函数单调性,再根据单调性化简不等式,解得结果. 解:,1x y e y x ==+都为单调递增函数,且001e =+()f x ∴在R 上单调递增,()()22f x f x <-, 22x x ∴<-,即()()220210x x x x +-<+-<,∴21x -<< 故答案为:()2,1- 点评:本题考查分段函数单调性、利用函数单调性解不等式,考查基本分析求解能力,属基础题.13.已知函数(0)xy a b b =+>的图像经过点(1,3)P ,如下图所示,则411a b+-的最小值为 .答案:92试题分析:由图可知,a >1,点(1,3)在函数(0)xy a b b =+>的图象上,所以 a +b =3.1<a <3,0<b <2.4114114114192()[(1)]()(5)12121212b a a b a b a b a b a b -+=⨯+=⨯-++=⨯++≥----当且仅当72,33a b ==时取等号 【考点】指数函数性质及图象,基本不等式,函数的最值14.已知直线30x y -+=与圆222:O x y r +=()0r >相交于,M N 两点,若3OM ON ⋅=,圆的半径r =______.答案:6求出圆心到弦的距离32=d ,利用余弦二倍角公式与向量的数量积公式化简222(21)d OM ON r r⋅=⋅-可得解:圆心(0,0) 到直线30x y -+=的距离2200+332===221+1d -. ()22222cos cos 2cos 1(21)d OM ON OM ON MON r r MON r MOE r r⋅=∠=⋅⋅∠=∠-=⋅-2222292293662d r r r r r ∴-=⋅-=-=⇒=⇒=.6 点评:本题考查直线与圆相交问题.解题关键是掌握垂径定理及向量的数量积公式二、解答题15.设函数()sin cos 464f x x x πππ⎛⎫=--⎪⎝⎭.(1)求()f x 的单调增区间;(2)若()0,4x ∈,求()y f x =的值域. 答案:(1)单调增区间为:()2108,833k k k Z ⎡⎤-++∈⎢⎥⎣⎦;(2)332⎛- ⎝.(1)由两角差正弦公式化函数为一个角的一个三角函数形式,然后利用正弦函数的单调性得增区间; (2)求出43x ππ-的范围,把它作为一个整体,利用正弦函数性质可得()f x 值域.解:解:(1)()33sin cos sin cos 3sin 46442443f x x x x x x πππππππ⎛⎫⎛⎫=--=-=- ⎪ ⎪⎝⎭⎝⎭∵222432k x k ππππππ-+≤-≤+,∴2108833k x k -+≤≤+,k Z ∈ ∴()f x 的单调增区间为:()2108,833k k k Z ⎡⎤-++∈⎢⎥⎣⎦(2)∵()0,4x ∈,∴23433x ππππ-<-<∴3sin 143x ππ⎛⎫-<-≤ ⎪⎝⎭ ∴()f x 的值域为:3,32⎛⎤- ⎥⎝⎦. 点评:本题考查正弦型三角函数的单调性,值域问题,考查两角和与差的正弦公式,掌握正弦函数的性质是解题关键.16.如图,在多面体ABCDEF 中,四边形ABCD 是菱形,,AC BD 相交于点O ,//EF AB ,2AB EF =,平面BCF ⊥平面ABCD ,BF CF =,点G 为BC 的中点.(1)求证:直线//OG 平面EFCD ; (2)求证:直线AC ⊥平面ODE . 答案:(1)证明见解析;(2)证明见解析. (1)证明OGCD ,再利用线面平行判定定理,即可证明;(2)证明AC ⊥平面ODE 内的两条相交直线EO 、DO ; 解:证明:(1)∵四边形ABCD 是菱形,AC BD O =,∴点O 是BD 的中点,∵点G 为BC 的中点,∴OGCD ,又∵OG ⊄平面EFCD ,CD ⊂平面EFCD ,∴直线OG ∥平面EFCD . (2)∵BF CF =,点G 为BC 的中点,∴FG BC ⊥. ∵平面BCF ⊥平面ABCD ,平面BCF ⋂平面ABCD BC =,FG ⊂平面BCF ,FG BC ⊥,∴FG ⊥平面ABCD ,∵AC ⊂平面ABCD ,∴FG AC ,∵OGAB ,12OG AB=,EF AB ∥,12BF AB =, ∴OG EF ∥,OG EF =, ∴四边形EFGO 为平行四边形, ∴FG EO ∥, ∵FGAC ,FG EO ∥,∴AC EO ⊥,∵四边形ABCD 是菱形,∴AC DO ⊥,∵AC EO ⊥,AC DO ⊥,EO DO O ⋂=,EO 、DO 在平面ODE 内, ∴AC ⊥平面ODE . 点评:本题考查线面平行判定定理、线面垂直判定定理的运用,考查转化与化归思想,考查空间想象能力,求解时注意条件书写的完整性.17.如图,已知椭圆()2222:10x y C a b a b+=>>,离心率为12,过原点的直线与椭圆C交于,A B 两点(,A B 不是椭圆C 的顶点).点D 在椭圆C 上,且AD AB ⊥.(1)若椭圆C 的右准线方程为:4x =,求椭圆C 的方程; (2)设直线BD 、AB 的斜率分别为1k 、2k ,求12k k 的值.答案:(1)22143x y +=;(2)1234k k =. (1)根据右准线以及离心率列方程组解得21a c =⎧⎨=⎩,即得23b =,可得椭圆C 的方程; (2)利用点差法得22110AD BD k k a b +⋅=,结合AD AB ⊥转化为1222111()0k a b k +-⋅=再根据离心率可得12k k 的值. 解:(1)2124c e a a c⎧==⎪⎪⎨⎪=⎪⎩,解得:21a c =⎧⎨=⎩,∴23b =,∴椭圆方程为:22143x y +=.(2)设()11,A x y ,()22,D x y ,则()11,B x y --,∴,A D 在椭圆上∴22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩,∴()()()()1212121222110x x x x y y y y a b +-++-= ∴22110AD BD k k a b +⋅=,∵12c e a ==,∴2234b a =,∴134AD k k =-∵AD AB ⊥,∴21AD k k =-,∴1234314AD ADk k k k -==- 点评:本题考查椭圆标准方程、点差法,考查综合分析求解能力,属中档题.18.如图,某小区有一块矩形地块OABC ,其中2OC =,3OA =,单位:百米.已知OEF 是一个游泳池,计划在地块OABC 内修一条与池边EF 相切于点M 的直路l (宽度不计),交线段OC 于点D ,交线段OA 于点N .现以点O 为坐标原点,以线段OC 所在直线为x 轴,建立平面直角坐标系,若池边EF满足函数(220y x x =-+≤≤的图象,若点M 到y 轴距离记为t .(1)当23t =时,求直路所在的直线方程; (2)当t 为何值时,地块OABC 在直路l 不含泳池那侧的面积取到最大,最大值时多少?答案:(1)42239y x =-+;(2)6t =866. (1)把23t =代入函数22y x =-+,得M 的坐标,再利用导数求切线的斜率,即可得到答案;(2)先求出面积的表达式为31444OND S t t t ⎛⎫=++ ⎪⎝⎭△,再利用导数求函数的最大值,即可得到答案; 解:解:(1)把23t =代入函数22y x =-+,得214,39M ⎛⎫ ⎪⎝⎭,∵2y x '=-,∴43k =-, ∴直线方程为42239y x =-+;(2)由(1)知,直线的方程为222y tx t =-++,令0y =,122x t t ⎛⎫=+ ⎪⎝⎭,令0x =,22y t =+, ∴1222t t ⎛⎫+≤ ⎪⎝⎭,223t +≤. ∴221t ≤≤, ∴()231121424224OND S t t t t t t ⎛⎫⎛⎫=++=++ ⎪ ⎪⎝⎭⎝⎭△,令()31444g t t t t ⎛⎫=++ ⎪⎝⎭,∴()()()2222324t t g t t+-'=当t =()0g t '=,当2t ⎛∈- ⎝⎭时,()0g t '<,当3t ⎛⎫∈ ⎪ ⎪⎝⎭时,()0g t '>,()39g t g ⎛≥= ⎝⎭,所以所求面积的最大值为69-. 点评:本题考查函数模型解决面积问题、导数几何意义的运用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.19.若函数()y f x =在0x x =处取得极大值或极小值,则称x 为函数()y f x =的极值点.已知函数()()3ln 1f x ax x x a R =+-∈. (1)当0a =时,求()f x 的极值;(2)若()f x 在区间1e e ⎛⎫ ⎪⎝⎭,上有且只有一个极值点,求实数a 的取值范围.答案:(1)极小值31e --;(2)22,0e ⎡⎫-⎪⎢⎣⎭. (1)求出()()3ln 1f x x '=+,令()0f x '=求出方程的解,从而探究()(),f x f x '随x 的变化情况,即可求出极值.(2)求出()()23ln 1f x ax x '=++,令()2ln 1g x ax x =++,分0a >,0a =,0a <三种情况进行讨论,结合零点存在定理求出实数a 的取值范围. 解:解:(1)当0a =时,()3ln 1f x x x =-的定义域为()0,∞+,()()3ln 33ln 1f x x x '=+=+,令()0f x '=,解得1x =,则()(),f x f x '随x 的变化如下表,故()f x 在10,e ⎛⎫ ⎪⎝⎭上是减函数,在1,e ⎛⎫+∞ ⎪⎝⎭上是增函数;故()f x 在1x e=时取得极小值131f e e ⎛⎫=-- ⎪⎝⎭;(2)函数()33ln 1f x ax x x =+-的定义域为()0,∞+,()()23ln 1f x ax x '=++,令()2ln 1g x ax x =++,则()21212ax g x ax x x+'=+=,当0a >时,()0g x '>在()0,∞+恒成立,故()f x '在()0,∞+上是增函数,而2211113ln 130f a a e e e e ⎡⎤⎛⎫⎛⎫⎛⎫'=++=>⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,故当1,x e e ⎛⎫∈ ⎪⎝⎭时,()0f x '>恒成立,故()f x 在区间1e e ⎛⎫ ⎪⎝⎭,上单调递增,故()f x 在区间1e e ⎛⎫ ⎪⎝⎭,上没有极值点;当0a =时,由(1)知,()f x 在区间1e e ⎛⎫ ⎪⎝⎭,上没有极值点;当0a <时,令2210ax x+=,解得x =或;故()2ln 1g x ax x =++在⎛ ⎝上是增函数,在⎫+∞⎪⎪⎭上是减函数, ①当()10g e g e ⎛⎫⋅< ⎪⎝⎭,即220a e-<<时, ()g x 在1e e ⎛⎫⎪⎝⎭,上有且只有一个零点,且在该零点两侧异号,②令10g e ⎛⎫= ⎪⎝⎭得20a e=,不符合题意;③令()0g e =得22a e =-1,e e ⎛⎫ ⎪⎝⎭,而1ln 0222e e g g ⎛⎫==+> ⎪⎝⎭,又10g e ⎛⎫< ⎪⎝⎭, 所以()g x 在1e e ⎛⎫ ⎪⎝⎭,上有且只有一个零点,且在该零点两侧异号,综上所述,实数a 的取值范围是22,0e ⎡⎫-⎪⎢⎣⎭. 点评:本题考查了极值的求解,考查了已知极值点的范围求解参数.20.已知数列{}n a 的前n 项和为n S ,且对一切正整数n 都有212n n S n a =+. (1)求证:()*142n n a a n n N ++=+∈;(2)求数列{}n a 的通项公式;(3)是否存在实数a,使不等式21211111...1n a a a ⎛⎫⎛⎫⎛⎫---<⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,对一切正整数n 都成立?若存在,求出a 的取值范围;若不存在,请说明理由. 答案:(1)证明见解析;(2)()*2n a n n N=∈;(3)存在;a的取值范围是()3,2⎛⎫-+∞ ⎪ ⎪⎝⎭.(1)由题得()2*12n n S n a n N =+∈①,()()211112n n S n a n N ++=++∈②,②-①即得142n n a a n ++=+; (2)由题得24n n a a +-=.()*n N ∈,再对n 分奇数和偶数两种情况讨论,求出数列{}n a 的通项公式;(3)令()1211111...1n f n a a a ⎛⎫⎛⎫⎛⎫=---⎪ ⎪⎪⎝⎭⎝⎭⎝⎭()*n N ∈,判断函数的单调性,求出其最大值,解不等式322a a<-即得解. 解:(1)证明:∵()2*12n n S n a n N =+∈①, ∴()()211112n n S n a n N ++=++∈② 由②-①得()()22*11111111212222n n n n n n S S n a n a n a a n N +++⎡⎤⎛⎫-=++-+=++-∈ ⎪⎢⎥⎣⎦⎝⎭,∴()*142n n a a n n N++=+∈.(2)∵()*142n n a a n n N++=+∈③∴()2146n n a a n n N +++=+∈,④ ④-③,得24n na a +-=.()*n N ∈从而数列{}n a 的奇数项依次成等差数列,且首项为12a =,公差为4; 数列{}n a 的偶数项也依次成等差数列,且首项为2a ,公差为4. 在①中令1n =得211112S a =+,又∵11S a =,∴1111122a a a =+⇒=. 在③中令1n =得2242a +=+,∴24a =. ∴当()*21n k k N =-∈时,12n k +=,()21141422nk a a a k k n -==+-=-=;∴当2n k =()*k N∈时,2nk =,()224142n k a a a k k n ==+-==; 综上所述,()*2n a n n N=∈.(3)令()1211111...1n f n a a a ⎛⎫⎛⎫⎛⎫=---⎪ ⎪⎪⎝⎭⎝⎭⎝⎭()*n N ∈,则()0f n > 且()()1121111n f n n f n a +++⎛⎫=-==< ⎪⎝⎭ ∴()()1f n f n +<, ∴()f n 单调递减, ∴()()max []1f n f ==.∴不等式21211111...1n a a a ⎛⎫⎛⎫⎛⎫---<⎪ ⎪⎪⎝⎭⎝⎭⎝⎭对一切正整数n 都成立等价于()32f n a a<-对一切正整数n 都成立, 等价于()max f n a <-⎡⎤⎣⎦32a a <-.0<,即(20a a a->,解之得a >02a -<<. 综上所述,存在实数a 的适合题意,a的取值范围是()3,2⎛⎫-+∞ ⎪ ⎪⎝⎭.点评:本题主要考查数列通项的求法,考查数列的单调性的判定和最值的求法,考查数列不等式的恒成立问题的求解,考查不等式的解法,意在考查学生对这些知识的理解掌握水平和分析推理能力.。
江苏省海安中学2020届高三阶段测试三数学试题含附加题解析版

海安中学2020届高三阶段测试三数 学 试 卷一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.设全集{1U =,2,3,4,5},若{1UA =,2,4},则集合A = .解:全集{1U =,2,3,4,5}, 若{1UA =,2,4},则集合{3A =,5}. 故答案为:{3,5}.2.已知复数z 满足(2)1(z i i i -=+为虚数单位),则z 的模为 . 解:复数z 满足(2)1(z i i i -=+为虚数单位),21()(1)22i i i z i i +-+∴=+=+-213i i =+-=-,||z ∴=,3.已知一组数据123,,,n a a a a 的平均数为a ,极差为d ,方差为2S ,则数据12+1a ,22+1a ,32+1a ,2+1n a 的方差为_____.故答案为:24S4.如图是一个算法的伪代码,其输出的结果为 .解:模拟执行伪代码,可得:111111111100(1)()()11223101122310111111S =+++⋯+=-+-+⋯+-=-=⨯⨯⨯.故答案为:1011. 5.从0、2中选一个数字.从1、3、5中选两个数字,组成无重复数字的三位数.其中无重复的个数为 .解:从0、2中选一个数字0,则0不只能排在百位,从1、3、5中选两个数字之一排在百位,共有122312A A =种; 从0、2中选一个数字2,从1、3、5中选两个数字全排列,共有233318C A =种; 故共有121830+=种. 故答案为:30.6.在平面直角坐标系xoy 中,若双曲线2222:1(0,0)x y C a b a b-=>>线C 的渐近线方程为 .解:因为22()1()10c b a a =+=,所以3ba =,所以渐近线方程为3y x =±.故答案为:3y x =±. 7.将函数()f x 的图象向右平移6π个单位后得到函数4sin(2)3y x π=-的图象,则()4f π的值为 .解:由将函数()f x 的图象向右平移6π个单位后得到函数4sin(2)3y x π=-的图象, 可得把函数4sin(2)3y x π=-的图象向左平移6π个单位后得函数()f x 的图象,故()4sin(2)4sin 233f x x x ππ=+-=,则()4sin 442f ππ==,故答案为:4.8.设定义在R 上的奇函数()f x 在区间[0,)+∞上是单调减函数,且2(3)f x x f -+(2)0>,则实数x 的取值范围是 .解:根据题意,()f x 是在R 上的奇函数()f x ,且在区间[0,)+∞上是单调减函数, 则其在区间(,0])-∞上递减, 则函数()f x 在R 上为减函数,2(3)f x x f -+(2)20(3)f x x f >⇒->-(2)22(3)(2)32f x x f x x ⇒->-⇒-<-,解可得:12x <<;即实数x 的取值范围是(1,2);故答案为:(1,2).9.在锐角三角形ABC中,3sin5A=,1tan()3A B-=-,则3tan C的值为.解:锐角三角形ABC中,3sin5A=,1tan()3A B-=-,A B∴<,4cos5A==,sin3tancos4AAA==.3tan1tan tan4tan()331tan tan1tan4BA BA BA B B---=-==++,13tan9B∴=.则tan tan3tan3tan()3791tan tanA BC A BA B+=-+=-=-,故答案为:79.10.设nS为数列{}na的前n项和,若*3(1)()n nS na n n n N=--∈,且211a=,则20S的值为.解:由2122232(21)S a a a=+=-⨯-,211a=,可得15a=.解法1:当2n时,由1n n na S S-=-,得13(1)[(1)3(1)(2)]n n na na n n n a n n-=-------,1(1)(1)6(1)n nn a n a n-∴---=-,即*16(2,)n na a n n N--=∈,∴数列{}na是首项15a=,公差为6的等差数列,202019205612402S⨯∴=⨯+⨯=.解法2:当2n时,由13(1)()3(1)n n n nS na n n n S S n n-=--=---,可得1(1)3(1)n nn S nS n n---=-,∴131n nS Sn n--=-,∴数列{}nSn是首项151S=,公差为3的等差数列,∴2053196220S=+⨯=,201240S∴=.11.设正实数x,y满足x yxyx y+=-,则实数x的最小值为.解:由正实数x,y满足x yxyx y+=-,化为22(1)0xy x y x+-+=,∴22221212(1)401010x x x y y x y y ⎧=--⎪-⎪+=>⎨⎪=>⎪⎩,化为426101x x x ⎧-+⎨>⎩, 解得21x+.因此实数x1.1.12.如图,正四棱柱1111ABCD A B C D -的体积为27,点E ,F 分别为棱1B B ,1C C 上的点(异于端点),且//EF BC ,则四棱锥1A AEFD -的体积为 .解:连接DE ,正四棱柱1111ABCD A B C D -的体积为27,点E ,F 分别为棱1B B ,1C C 上的点(异于端点),且//EF BC , ∴11A AED A FED V V --=,∴11113A AED E A AD A ADV V SAB --==111111119662A ADD ABCD A C D S AB V -===, ∴四棱锥1A AEFD -的体积19A AEFD V -=.故答案为:9.13.已知向量a ,b ,c 满足0a b c ++=,且a 与b 的夹角的正切为12-,b 与c 的夹角的正切为13-,||2b =,则a c 的值为 .解:可设ABa =,BCb =,CAc =,由题意可得1tan 2B =,1tan 3C =, 则11tan tan 23tan tan()1111tan tan 123B C A B C B C ++=-+=-=-=---⨯, 即为135A =︒,又B ,C 为锐角,22sin cos 1B B +=,sin 1cos 2B B =,可得sin B =同理可得sin C =由正弦定理可得2sin1355==︒ 即有210||5c =,25||5a =, 则2102524||||cos455525a c c a =︒==.故答案为:45.14.已知()(2)(3)f x m x m x m =-++,()22x g x =-,若同时满足条件: ①x R ∀∈,()0f x <或()0g x <; ②(,4)x ∃∈-∞-,()()0f x g x <. 则m 的取值范围是 . 解:对于①()22x g x =-,当1x <时,()0g x <,又①x R ∀∈,()0f x <或()0g x <()(2)(3)0f x m x mx m ∴=-++<在1x 时恒成立则由二次函数的性质可知开口只能向下,且二次函数与x 轴交点都在(1,0)的左面 则03121m m m <⎧⎪--<⎨⎪<⎩40m ∴-<<即①成立的范围为40m -<<又②(,4)x ∈-∞-,()()0f x g x < ∴此时()220x g x =-<恒成立()(2)(3)0f x m x m x m ∴=-++>在(,4)x ∈-∞-有成立的可能,则只要4-比1x ,2x 中的较小的根大即可,()i 当10m -<<时,较小的根为3m --,34m --<-不成立, ()ii 当1m =-时,两个根同为24->-,不成立,()iii 当41m -<<-时,较小的根为2m ,24m <-即2m <-成立.综上可得①②成立时42m -<<-. 故答案为:(4,2)--.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答.解答时应写出文字说明、证明过程或演算步骤 15.(本小题满分14分)已知ABC ∆的面积为,且()18AC AB CB -=,向量(tan tan ,sin 2)m A B C =+和向量(1,cos cos )n A B =是共线向量.(1)求角C ;(2)求ABC ∆的边长c . 解:(1)//m n ,(tan tan )cos cos sin 2A B A B C ∴+=,即sin cos cos sin sin2A B A B C +=,sin()sin 2A B C ∴+=,sin 2sin cos C C C ∴= sin 0C ≠,∴1cos 2C =, (0,)C π∈ ∴3C π=(2)由()18AC AB CB -=得:2()18AC AB BC AC +==,∴113sin 3293222b ab C a ====∴a =2222cos 54c a b ab C ∴=+-=,∴c =16.(本小题满分14分)如图,四棱锥P ABCD -的底面为矩形,且AB =1BC =,E ,F 分别为AB ,PC 中点.(1)求证://EF 平面PAD ;(2)若平面PAC ⊥平面ABCD ,求证:平面PAC ⊥平面PDE .证明:(1)方法一:取线段PD 的中点M ,连接FM ,AM .因为F 为PC 的中点,所以//FM CD ,且12FM CD =.因为四边形ABCD 为矩形,E 为AB 的中点,所以//EA CD ,且12EA CD =.所以//FM EA ,且FM EA =. 所以四边形AEFM 为平行四边形. 所以//EF AM .又AM ⊂平面PAD ,EF ⊂/平面PAD ,所以//EF 平面PAD . 方法二:连接CE 并延长交DA 的延长线于N ,连接PN . 因为四边形ABCD 为矩形,所以//AD BC , 所以BCE ANE ∠=∠,CBE NAE ∠=∠.又AE EB =,所以CEB NEA ∆≅∆.所以CE NE =. 又F 为PC 的中点,所以//EF NP .⋯(5分)又NP ⊂平面PAD ,EF ⊂/平面PAD ,所以//EF 平面PAD . 方法三:取CD 的中点Q ,连接FQ ,EQ .在矩形ABCD 中,E 为AB 的中点,所以AE DQ =,且//AE DQ . 所以四边形AEQD 为平行四边形,所以//EQ AD .又AD ⊂平面PAD ,EQ ⊂/平面PAD ,所以//EQ 平面PAD . 因为Q ,F 分别为CD ,CP 的中点,所以//FQ PD . 又PD ⊂平面PAD ,FQ ⊂/平面PAD ,所以//FQ 平面PAD . 又FQ ,EQ ⊂平面EQF ,FQEQ Q =,所以平面//EQF 平面PAD .因为EF ⊂平面EQF ,所以//EF 平面PAD . (2)设AC ,DE 相交于G .在矩形ABCD 中,因为AB ,E 为AB 的中点.所以DA CDAE DA= 又DAE CDA ∠=∠,所以DAE CDA ∆∆∽,所以ADE DCA ∠=∠. 又90ADE CDE ADC ∠+∠=∠=︒,所以90DCA CDE ∠+∠=︒. 由DGC ∆的内角和为180︒,得90DGC ∠=︒.即DE AC ⊥. 因为平面PAC ⊥平面ABCD因为DE ⊂平面ABCD ,所以DE ⊥平面PAC , 又DE ⊂平面PDE ,所以平面PAC ⊥平面PDE .17.(本小题满分14分)如图,OM ,ON 是两条海岸线,Q 为海中一个小岛,A 为海岸线OM 上的一个码头.已知tan 3MON ∠=-,6OA km =,Q 到海岸线OM ,ON 的距离分别为3km .现要在海岸线ON 上再建一个码头,使得在水上旅游直线AB 经过小岛Q . (1)求水上旅游线AB 的长;(2)若小岛正北方向距离小岛6km 处的海中有一个圆形强水波P ,从水波生成th 时的半径为r a =为大于零的常数).强水波开始生成时,一游轮以/h 的速度自码头A 开往码头B ,问实数a 在什么范围取值时,强水波不会波及游轮的航行.解:(1)以点O 为坐标原点,直线OM 为x 轴,建立直角坐标系如图所示. 则由题设得:(6,0)A ,直线ON 的方程为3y x =-,0(Q x ,03)(0)x >.=00x > 得03x =,(3,3)Q ∴. ∴直线AQ 的方程为(6)y x =--,即60x y +-=,由360y xx y =-⎧⎨+-=⎩ 得39x y =-⎧⎨=⎩ 即(3,9)B -,∴AB ==即水上旅游线AB 的长为. (2)设试验产生的强水波圆P ,由题意可得(3,9)P ,生成t 小时时,游轮在线段AB 上的点C 处,则AC =,102t,(618,18)C t t ∴-. 强水波不会波及游轮的航行即2210,2PC r t ⎡⎤>∈⎢⎥⎣⎦对恒成立.2222(183)(189)9PC t t r at =-+->=,当0t = 时,上式恒成立,当10,0,2t t ⎛⎤≠∈ ⎥⎝⎦时即时,()101017248.7248,0,2a t g t t t t t ⎛⎤<+-=+-∈ ⎥⎝⎦令,10()724824548g t t t=+--,当且仅当1(0,]2t 时等号成立,所以,在048a << 时r PC < 恒成立,亦即强水波不会波及游轮的航行.18.(本小题满分16分)在平面直角坐标系xOy 中,已知椭圆2222:1(0)x y E a b a b+=>>过点,其左、右焦点分别为1F 、2F,离心率为2. (1)求椭圆E 的方程;(2)若A 、B 分别为椭圆E 的左、右顶点,动点M 满足MB AB ⊥,且MA 交椭圆E 于点P .()i 求证:OP OM 为定值;()ii 设PB 与以PM 为直径的圆的另一交点为Q ,问:直线MQ 是否过定点,并说明理由. 解:(1)由题意可得2213122a b c a⎧+=⎪⎪⎨⎪=⎪⎩且222a b c -=,解得2a =,b =,即有椭圆方程为22142x y +=; (2)()i 证明:由(2,0)A -,(2,0)B ,MB AB ⊥, 设0(2,)M y ,1(P x ,1)y , 可得00:42y y MA y x =+, 代入椭圆方程可得,2222000(1)40822y y y x x +++-=,由201204(8)28y x y --=+,可得201202(8)8y x y -=-+,00011208428y y yy x y ==+=+,则200022004(8)8488y y OP OM y y y -=-+=++为定值; ()ii 直线MQ 过定点(0,0)O .理由如下:由题意可得2001222100088282(8)2(8)PBy y y k x y y y +==-+---+02y =-, 由PB 与以PM 为直径的圆的另一交点为Q , 可得MQ PB ⊥,即有02MQ y k =. 则直线0:0(2)2y MQ y y x -=-, 即02y y x =, 故直线MQ 过定点(0,0)O . 19.(本小题满分16分)已知数列{}n a 满足:123a a a k ===(常数0)k >,*112(3,)n n n n k a a a n n N a -+-+=∈.数列{}n b 满足:*21()n n n n a a b n N a +++=∈. (1)求1b ,2b ,3b ,4b 的值; (2)求出数列{}n b 的通项公式;(3)问:数列{}n a 的每一项能否均为整数?若能,求出k 的所有可能值;若不能,请说明理由.解:(1)由已知可知:41a k =+,52a k =+,624a k k=++. 把数列{}n a 的项代入21n n n n a a b a +++=,求得132b b ==,2421k b b k+==;(2)由*112(3,)n n n n k a a a n n N a -+-+=∈,可知:121n n n n a a k a a +--=+.⋯① 则:211n n n n a a k a a +-+=+.⋯② ①-②有:2211n n n nn n a a a a a a +-+-++=,即:2n n b b -= ∴132123122n n a a b b b a --+==⋯===,242222321n n a a k b b b a k-++==⋯===. ∴41(1)22nn k b k k+-=+;(3)假设存在正数k ,使得数列{}n a 的每一项均为整数, 则由(2)可知:2122122212221n n n n n n a a a k a a a k +-++=-⎧⎪+⎨=-⎪⎩,⋯③ 由1a k Z =∈,624a k Z k =++∈,可知1k =,2.当1k =时,213k k+=为整数,利用1a ,2a ,3a Z ∈,结合③式,可知{}n a 的每一项均为整数;当2k =时,③变为2122122212252n n n n n n a a a a a a +-++=-⎧⎪⎨=-⎪⎩,⋯④ 用数学归纳法证明21n a -为偶数,2n a 为整数.1n =时,结论显然成立,假设n k =时结论成立,这时21n a -为偶数,2n a 为整数,故212212n n n a a a +-=-为偶数,22n a +为整数,1n k ∴=+时,命题成立. 故数列{}n a 是整数列.综上所述,k 为1,2时,数列{}n a 是整数列. 20.(本小题满分16分)设函数()()f x x a lnx x a =--+,a R ∈. (1)若0a =,求函数()f x 的单调区间;(2)若0a <,试判断函数()f x 在区间2(e -,2)e 内的极值点的个数,并说明理由; (3)求证:对任意的正数a ,都存在实数t ,满足:对任意的(,)x t t a ∈+,()1f x a <-. 解:(1)当0a =时,()f x xlnx x =-,()f x lnx '=, 令()0f x '=,1x =,列表分析故()f x 的单调递减区间为(0,1),单调递增区间为(1,)+∞. (2)()()f x x a lnx x a =--+,()af x lnx x'=-,其中0x >,令()g x xlnx a =-,分析()g x 的零点情况.()1g x lnx '=+,令()0g x '=,1x e=,列表分析11()()min g x g a e e==--,而11()1f ln ae ae e e '=-=--,222()2(2)f e ae ae -'=--=-+,221()2(2)22a f e e a e e '=-=-,①若1a e -,则()0a f x lnx x '=-,故()f x 在2(e -,2)e 内没有极值点;②若122a e e -<<-,则11()0f ln ae e e '=-<,22()(2)0f e ae -'=-+>,221()(2)02f e e a e '=->,因此()f x '在2(e -,2)e 有两个零点,()f x 在2(e -,2)e 内有两个极值点; ③若202a e -<,则11()0f ln ae e e '=-<,22()(2)0f e ae -'=-+,221()(2)02f e e a e '=->,因此()f x '在2(e -,2)e 有一个零点,()f x 在2(e -,2)e 内有一个极值点;综上所述,当(a ∈-∞,1]e -时,()f x 在2(e -,2)e 内没有极值点;当1(a e ∈-,2)2e -时,()f x 在2(e -,2)e 内有两个极值点;当2[2a e ∈-,0)时,()f x 在2(e -,2)e 内有一个极值点. (3)猜想:(1,1)x a ∈+,()1f x a <-恒成立. 证明如下:由(2)得()g x 在1(e ,)+∞上单调递增,且g (1)0a =-<,(1)(1)(1)g a a ln a a +=++-.因为当1x >时,11(*)lnx x >-,所以1(1)(1)(1)01g a a a a +>+--=+.故()g x 在(1,1)a +上存在唯一的零点,设为0x . 由知,(1,1)x a ∈+,(){f x max f <(1),(1)}f a +. 又(1)(1)1f a ln a +=+-,而1x >时,1(**)lnx x <-, 所以(1)(1)111f a a a f +<+--=-=(1). 即(1,1)x a ∈+,()1f x a <-.所以对任意的正数a ,都存在实数1t =,使对任意的(,)x t t a ∈+,使()1f x a <-. 补充证明(*): 令1()1F x lnx x =+-,1x .111()022x F x x x x -'=-=, 所以()F x 在[1,)+∞上单调递增.所以1x >时,()F x F >(1)0=,即11lnx x>-. 补充证明(**)令()1G x lnx x =-+,1x .1()10G x x'=-, 所以()G x 在[1,)+∞上单调递减.所以1x >时,()G x G <(1)0=,即1lnx x <-.海安中学2020届高三阶段测试三数学附加题21.[选做题,本题包括三小题,请选定其中两题,并在相应区域作答] A.已知二阶矩阵[]a b A c d =,矩阵A 属于特征值11λ=-的一个特征向量为11[]1a =-,属于特征值24λ=的一个特征向量为13[]2a =.求矩阵A .解:由特征值、特征向量定义可知,111A αλα=, 即1111111a b c d ⎡⎤⎡⎤⎡⎤⎡⎤=-⨯⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦⎣⎦,得11a b c d -=-⎧⎨-=⎩ 同理可得3212328a b c d +=⎧⎨+=⎩ 解得2a =,3b =,2c =,1d =.因此矩阵2321A ⎡⎤=⎢⎥⎣⎦. B .在极坐标系中,已知(A 1,3π ),(B 9,3π),线段AB 的垂直平分线l 与极轴交于点C ,求l 的极坐标方程及ABC ∆的面积. 解:由题意,线段AB 的中点坐标为(5,)3π,设点(,)P ρθ为直线l 上任意一点, 在直角三角形OMP 中,cos()53πρθ-=,所以,l 的极坐标方程为cos()53πρθ-=,令0θ=,得10ρ=,即(10,0)C .(8分)所以,ABC ∆的面积为:1(91)10sin 23π⨯-⨯⨯=.22.已知实数a ,b 满足||2a b +,求证:22|22|4(||2)a a b b a +-++. 证明:由||||||2b a a b -+,可得||||2b a +,22|22||()()2()|a a b b a b a b a b +-+=+-++|||2|2|2|a b a b a b =+-+-+,要证22|22|4(||2)a a b b a +-++,即证|2|2(||2)a b a -++, 由于|2|||||2a b a b -+++,即证||||22(||2)a b a +++, 即为||||2b a +,显然成立.故原不等式成立.23.如图,在四棱锥P ABCD -中,已知棱AB ,AD ,AP 两两垂直,长度分别为1,2,2.若DC AB λ=,且向量PC 与BD . (1)求实数λ的值;(2)求直线PB 与平面PCD 所成角的正弦值.解:以A 为坐标原点,分别以AB ,AD ,AP 为x ,y ,z 轴建立如图所示空间直角坐标系; 则:(0A ,0,0),(1B ,0,0),(0D ,2,0),(0P ,0,2);DC AB λ=, 可得(C λ,2,0).(1)(PC λ=,2,2)-,(1BD =-,2,0),向量PC 与BD .4814+=+,解得10λ=(舍去)或2λ=.实数λ的值为2.;(2)(2PC =,2,2)-,(0PD =,2,2)-,平面PCD 的法向量(n x =,y ,)z . 则0n PC =且0n PD =,即:0x y z +-=,0y z -=,0x ∴=,不妨去1y z ==, 平面PCD 的法向量(0n =,1,1).又(1PB =,0,2).故cos ,||||n PB n PB n PB <>==-.直线PB 与平面PCD .24.已知数列{}n a 的通项公式为]n nn a -,*n N ∈.记1212nn n n n n S C a C a C a =++⋯+.(1)求1S ,2S 的值;(2)求所有正整数n ,使得n S 能被8整除.解:(1)1212nn nn n n S C a C a C a =++⋯+ 122151515()())222nn nn n C C C +++=++⋯+- 122151515(()())]222nn nn n C C C ---++⋯+(1]n n=+-+]n n =-, 即有151S ==;2353S ==;(2)]n nn S =-,222]]n n n n n S +++=-=-1]3n nn n S S +--=-, 即213n n n S S S ++=-,*n N ∈,因此2n S +除以8的余数,完全由1n S +,n S 除以8的余数确定, 因为11a =,21a =,所以11111S C a ==,12221223S C a C a =+=,3213918S S S =-=-=, 432324321S S S =-=-=,543363855S S S =-=-=, 654316521144S S S =-=-=,765343255377S S S =-=-=, 87631131144987S S S =-=-=,987329613772584S S S =-=-=,由以上计算及213n n n S S S ++=-可知,数列{}n S 各项除以8的余数依次是: 1,3,0,5,7,0,1,3,0,5,7,0,⋯,它是一个以6为周期的数列,从而n S 除以8的余数等价于n 除以3的余数, 所以3n k =,*k N ∈,即所求集合为:{|3n n k =,*}k N ∈.。
2020届江苏省南通市海安高级中学高三阶段测试三数学试题(解析版)

2020届江苏省南通市海安高级中学高三阶段测试三数学试题一、填空题1 •设全集U {1,2,3,4,5},若e u A {1,2,4},则集合A ______________【答案】{3,5}.【解析】直接求根据Q J A{1,2,4}求出集合A即可.【详解】解:因为全集u {1,2,3,4,5}若Qj A {1,2, 4},则集合A {3,5}.故答案为:{3,5}.【点睛】本题考查补集的运算,是基础题2.已经复数z满足(z 2)i 1 i (i是虚数单位),则复数z的模是【解析】【详解】Q(z 2)i 1 i ,z 口2 口3 i, i iz 10, 故答案为.,10.3•已知一组数据a i,a2,a3,…,a.的平均数为a,极差为d,方差为S2,则数据2a1 1, 2a2 1, 2a3 1,…,2a. 1 的方差为_____________________ .【答案】4S2【解析】根据在一组数据的所有数字上都乘以同一个数字,得到的新数据的方差是原来数据的平方倍,得到结果.【详解】解:T数据a!,a2,a3,…,a n的方差为S2, •••数据2a1 1,2a2 1,2比1,…,2a. 1 的方差是S2 22 4S2, 故答案为:4S2.【点睛】此题主要考查了方差,关键是掌握方差与数据的变化之间的关系.4 •如图是一个算法的伪代码,其输出的结果为__________ .»***-•** ----- ---{ ;I Forj From i T Q IO Stqi!:I ■―—I: 曙H) ;* ):End For :< I'Prints :____ *_________________ —10【答案】101111 1 1 10 【解析】由题设提供的算法流程图可知:S 1 -1 2 2 3 10 11 11 1110应填答案10•115 .从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为______ 。
2020届南通市海安高级中学高三下学期阶段考试数学试题

15 .Q BC
CD
9,
BC 12
2
故答案为 :12.
【点睛】
本题考查了三角恒等变换的应用 .难点在于已知正切值的使用 .有的同学可能由正切值求
出正弦和余弦 ,结合正弦定理和余弦定理列出方程进行求解 .由于本题所给的正切值求出
的正弦余弦值数比较大 ,因此这种思路计算量较大 ,效率不高而且容易做错 .
m
2
kl
x1
m
m
t
2
1
则切线方程为
y
t
1
m 2x t
t1
2
整理得 mx t 1 y 2mt m 0 .则 P 2t, 1 到 l 的距离
2
2
2mt t 1 2mt m
d2
2
4
m t1
4
t1
m2
2m t
2
1
m2
4
t1
1
2m
2
t1
m2
2
t1
2
Qt 1
m2
2
t1
2
2m ,当且仅当 t 1
m2 2即t 1
t1
2,0
p
所以
2
2 ,解得 p 2 2 .
故答案为 : 2 2 .
【点睛】 本题考查了双曲线的标准方程 ,考查了抛物线的方程 .易错点是误把 p 当做了抛物线焦 点的横坐标 .
6.已知一个口袋中有形状、大小都相同的
5 只球,其中 3 只白球, 2 只红球.从
中一次随机摸出 2 只球,则这 2 只球颜色相同的概率为 ____ .
【解析】 (1)求出 | a |,| b | ,由 | a | | b | 可得 | sin x |
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
所以FG∥CD,且FG= CD.……2分
又因为E为AB中点,所以AE//CD,且AE= CD.……4分
所以AE//FG,AE=FG.故四边形AEFG为平行四边形.
所以EF//AG,又EF 平面PAD,AG 平面PAD,
故EF//平面PAD.……6分
(2)设AC∩DE=H,由△AEH∽△CDH及E为AB中点得 = = ,
解:(1)以点O为坐标原点,直线OM为x轴,建立平面直角坐标系,如图所示.
则由题设得:A(6,0),直线ON的方程为 .
由 ,解得 ,所以 .……2分
故直线AQ的方程为 ,
由 得
即 ,故 ,…… 5分
(3)求证:对任意的正数a,都存在实数t,满足:对任意的x∈(t,t+a),f(x)<a-1.
数学Ⅰ参考答案
一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上.
1.【答案】{3,5}2.【答案】33.【答案】84.【答案】
5.【答案】 6.【答案】y=±3x7.【答案】48.【答案】(1,2)
18.(本题满分16分)
在平面直角坐标系xOy中,已知椭圆E: 过点 ,其离心率等于 .
(1)求椭圆E的标准方程;
(2)若A,B分别是椭圆E的左,右顶点,动点M满足 ,且MA交椭圆E于点P.
①求证: 为定值;
②设PB与以PM为直径的圆的另一交点为Q,求证:直线MQ经过定点.
19.(本题满分16分)
已知数列 满足: (常数k>0), 源自n≥3, ).数列 满足: ( ).
9.【答案】7910.【答案】1 24011.【答案】 12.【答案】9
13.【答案】 14.【答案】
二、解答题:本大题共6小题,共90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.
15.(本题满分14分)
解:(1)因为向量 和 是共线向量,
所以 ,……2分
即sinAcosB+cosAsinB-2sinCcosC=0,
(1)求有轨观光直路AB的长;
(2)已知在景点Q的正北方6 百米的P处有一大型组合音乐喷泉,喷泉表演一次的时长为9 分钟.表演时,喷泉喷洒区域以P为圆心,r为半径变化,且t分钟时,
(百米)(0≤t≤9,0<a<1).当喷泉表演开始时,一观光车S(大小忽略不计)正从休息区B沿(1)中的轨道BA以 (百米/分钟)的速度开往休息区A,问:观光车在行驶途中是否会被喷泉喷洒到,并说明理由.
7.将函数f(x)的图象向右平移 个单位后得到函数 的图象,则 的值
为▲.
8.设定义在 上的奇函数 在区间 上是单调减函数,且 ,则实数 的取值范围是▲.
9.在锐角三角形 中,若 , ,则 的值为▲.
10.设Sn为数列 的前n项和.若Sn=nan-3n(n-1)(n∈N*),且 ,则S20的值为▲.
江苏省海安高级中学2020届高三 阶段性测试(三)
数学Ⅰ
参考公式:
样本数据 , ,…, 的方差 ,其中 .
锥体的体积 ,其中S为底面积,h为高.
一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上.
1.设全集 {1,2,3,4,5}.若 {1,2,5},则集合 ▲.
2.已知复数 满足 ( 为虚数单位),则复数 的实部是▲.
3.已知样本数据 的方差为2,则数据 的方差为▲.
4.右图是一个算法的伪代码,其输出的结果为▲.
5.从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,则该三位数为奇数的概率为▲.
6.在平面直角坐标系xOy中,若双曲线C: - =1(a>0,b>0)的离心率为 ,则双曲线C的渐近线方程为▲.
化简得sinC-2sinCcosC=0,即sinC(1-2cosC)=0.……4分
因为 ,所以sinC>0,从而 , ……6分
(2) ,于是AC .……8分
因为△ABC的面积为 ,所以 ,
即 ,解得 …… 11分
在△ABC中,由余弦定理得
所以 …… 14分
16.(本题满分14分)
证明:(1)取PD中点G,连AG,FG,
11.设正实数x,y满足 ,则实数x的最小值为▲.
12.如图,正四棱柱 的体积为27,点 ,
分别为棱 , 上的点(异于端点),且 ,
则四棱锥 的体积为▲.
13.已知向量 , , 满足 ,且 与 的夹角的
正切为 , 与 的夹角的正切为 , ,则 的
值为▲.
14.已知 , ,若同时满足条件:① R, 或 ;② , ,则实数m的取值范围是▲.
AB= ,BC=1,E,F分别是AB,PC的中点,PA⊥DE.
(1)求证:EF∥平面PAD;
(2)求证:平面PAC⊥平面PDE.
17.(本题满分14分)
如图,OM,ON是某景区的两条道路(宽度忽略不计,OM为东西方向),Q为景区内一景点,A为道路OM上一游客休息区.已知tan∠MON=-3,OA=6(百米),Q到直线OM,ON的距离分别为3(百米), (百米).现新修一条自A经过Q的有轨观光直路并延伸至道路ON于点B,并在B处修建一游客休息区.
又因为AB= ,BC=1,所以AC= ,AG= AC= .
所以 = = ,又∠BAD为公共角,所以△GAE∽△BAC.
所以∠AGE=∠ABC=90,即DE⊥AC.……10分
又DE⊥PA,PA∩AC=A,
所以DE⊥平面PAC.……12分
又DE 平面PDE,所以平面PAC⊥平面PDE.……14分
17.(本题满分14分)
(1)求b1,b2的值;
(2)求数列 的通项公式;
(3)是否存在k,使得数列 的每一项均为整数? 若存在,求出k的所有可能值;若不存在,请说明理由.
20.(本题满分16分)
设函数f(x)=(x-a)lnx-x+a,a∈R.
(1)若a=0,求函数f(x)的单调区间;
(2)若a<0,且函数f(x)在区间 内有两个极值点,求实数a的取值范围;
二、解答题:本大题共6小题,共90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.
15.(本题满分14分)
已知△ABC的面积为 ,且 ,向量 和
是共线向量.
(1)求角C的大小;
(2)求△ABC的三边长.
16.(本题满分14分)
如图,在四棱锥P-ABCD中,已知底面 为矩形,且