1高中数学必修4第一章_三角函数的诱导公式
高中人教版数学必修4课件:第1章-1.3-第1课时-公式二、公式三和公式四-

α+cos 2
α2-1=m22-1.]
(2)[解] ∵cos(α-75°)=-13<0,且 α 为第四象限角,
∴sin(α-75°)=- 1-cos2α-75°
=-
1--132=-2 3 2,
∴sin(105°+α)=sin[180°+(α-75°)]
=-sin(α-75°)=2
2 3.
1.例 3(2)条件不变,求 cos(255°-α)的值.
sin2α-75°+cos2α-75°=1,
由csoinsαα--7755°°=-5,
解得sinα-75°=-52626, 或
cosα-75°=
26 26
sinα-75°=5 2626,
(舍)
cosα-75°=-
26 26 .
所以sin(105°+α)=sin[180°+(α-75°)]
=-sin(α-75°)=5
(1)1 [cos-siαntπa-nα7π+α=cos αstainnαπ+α=cossαin·tαan α=ssiinn αα= 1.]
(2)[解] 原式=[-sinα+-1c8o0s°α]·c·soisn1α80°+α =sinα+1s8in0°αccoossα180°+α =-ssininααc-oscαos α=1.
[探究问题] 1.利用诱导公式化简 sin(kπ+α)(其中 k∈Z)时,化简结果与 k 是否有关? 提示:有关.因为k是奇数还是偶数不确定. 当k是奇数时,即k=2n+1(n∈Z),sin(kπ+α)=sin(π+α)=-sin α; 当k是偶数时,即k=2n(n∈Z),sin(kπ+α)=sin α.
明确三角函数式化简的原则和方向 1切化弦,统一名. 2用诱导公式,统一角. 3用因式分解将式子变形,化为最简.
三角函数的诱导公式

三角函数的诱导公式一、知识要点:诱导公式(一)tan )2tan(cos )2(cos sin )2sin(ααπααπααπ=+=+=+k k k诱导公式(三))tan()cos( sin )sin(=+=+-=+απαπααπ诱导公式(二))tan(cos )cos( )sin(=-=-=-αααα诱导公式(四)tan )tan()cos( )sin(ααπαπαπ-=-=-=-诱导公式(五)=-=-)2cos( cos )2sin(απααπ诱导公式(六)=+=+)2cos( cos )2sin(απααπ方法点拨: 把α看作锐角一、前四组诱导公式可以概括为:函数名不变,符号看象限符号。
看成锐角时原函数值的前面加上一个把三角函数值,的同名的三角函数值,等于它ααπαπααπ ,,, ),Z (2-+-∈+k k公式(五)和公式(六)总结为一句话:函数名改变,符号看象限 二、奇变偶不变,符号看象限 将三角函数的角度全部化成απ+⋅2k 或是απ-⋅2k ,符号名该不该变就看k 是奇数还是偶数,是奇数就改变函数名,偶数就不变二、基础自测:1、求下列各三角函数值:①cos225° ②tan (-11π)2、sin1560°的值为( )A 、21-B 、23-C 、21D 、233、cos -780°等于( ) A 、21B 、21- C 、23 D 、23-三、典型例题分析:例1、求值(1)29cos()6π= __________. (2)0tan(855)-= _______ ___.(3)16sin()3π-= __________.变式练习1:求下列函数值:665cos)1(π )431sin()2(π-的值。
求:已知、例)sin(2)4cos()3sin()2cos( ,3)tan( 2απααπαπαπ-+-+--=+变式练习2:若1sin()22πα-=-,则tan(2)πα-=________.变式练习3:已知()()()()29cos sin 4cos sin 3=+---++απαααπ,则αtan = .四、巩固练习:1、对于诱导公式中的角α,下列说法正确的是( ) A .α一定是锐角 B .0≤α<2πC .α一定是正角D .α是使公式有意义的任意角2、若(),2,53cos παππα<≤=+则()πα2sin --的值是 ( ) A . 53 B . 53- C . 54 D . 54-3、sin34π·cos 625π·tan 45π的值是A .-43B .43C .-43D .434、)2cos()2sin(21++-ππ ( ) A .sin2-cos2B .cos2-sin2C .±(sin2-cos2)D .sin2+cos25、已知()21sin -=+πα,则()πα7cos 1+的值为 ( )A .332 B . -2 C . 332- D . 332±6、如果A 为锐角,21)sin(-=+A π,那么=-)cos(A π ( ) A 、21-B 、21C 、23-D 、237、α是第四象限角,1312cos =α,则sinα等于( ) A.135 B.135- C.125 D.125- 二、填空题1、计算:cos (-2640°)+sin1665°= .2、计算:)425tan(325cos 625sinπππ-++= . 3、化简:)(cos )5sin()4sin()3(sin )(cos )4cos(222πθθππθπθπθπθ--+-+++=______ ___.4、若a =αtan ,则()()απαπ+--3cos 5sin = ____ ____.5、已知x x f 3cos )(cos =,则)30(sin οf 的值为 。
高中三角函数诱导公式知识点

⾼中三⾓函数诱导公式知识点三⾓函数是数学中属于初等函数中的超越函数的函数。
它们的本质是任何⾓的集合与⼀个⽐值的集合的变量之间的映射,那么接下来给⼤家分享⼀些关于⾼中三⾓函数诱导公式知识点,希望对⼤家有所帮助。
⾼中三⾓函数诱导公式知识1公式⼀:设α为任意⾓,终边相同的⾓的同⼀三⾓函数的值相等:sin(2kπ+α)=sinα k∈zcos(2kπ+α)=cosα k∈ztan(2kπ+α)=tanα k∈zcot(2kπ+α)=cotα k∈z公式⼆:设α为任意⾓,π+α的三⾓函数值与α的三⾓函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意⾓α与 -α的三⾓函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利⽤公式⼆和公式三可以得到π-α与α的三⾓函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利⽤公式⼀和公式三可以得到2π-α与α的三⾓函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α与α的三⾓函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα⾼中数学三⾓函数的诱导公式学习⽅法⼆推算公式:3π/2±α与α的三⾓函数值之间的关系:sin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα⾼⼀数学学习⽅法总结1.先看专题⼀,整数指数幂的有关概念和运算性质,以及⼀些常⽤公式,这公式不但在初中要求熟练掌握,⾼中的课程也是经常要⽤到的。
高一数学必修4三角函数诱导公式

高一数学必修4三角函数诱导公式诱导公式是高一数学必修四三角函数知识点只必考的公式,我们在考前一定要掌握好这些公式的应用。
下面是店铺为大家整理的高一数学必修4三角函数诱导公式,希望对大家有所帮助!高一数学必修4三角函数诱导公式公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα (k∈Z)cos(2kπ+α)=cosα (k∈Z)tan(2kπ+α)=tanα (k∈Z)cot(2kπ+α)=cotα (k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαco t(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)高一数学函数复习资料一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。
【精品】高中数学 必修4_三角函数的诱导公式_讲义 知识点讲解+巩固练习(含答案)提高

三角函数的诱导公式【学习目标】1.借助单位圆中的三角函数线导出诱导公式(απαπ±±,2的正弦、余弦、正切);2.掌握并运用诱导公式求三角函数值,化简或证明三角函数式. 【要点梳理】 要点一:诱导公式 诱导公式一:sin(2)sin k απα+=, cos(2)cos k απα+=,tan(2)tan k απα+=,其中k Z ∈诱导公式二:sin()sin αα-=-, cos()cos αα-=,tan()tan αα-=-,其中k Z ∈诱导公式三:sin[((21)]sin k απα++=-, cos[(21)]cos k απα++=-, tan[(21)]tan k απα++=,其中k Z ∈诱导公式四:sin cos 2παα⎛⎫+= ⎪⎝⎭, cos sin 2παα⎛⎫+=- ⎪⎝⎭.sin cos 2παα⎛⎫-= ⎪⎝⎭, cos sin 2παα⎛⎫-= ⎪⎝⎭,其中k Z ∈ 要点诠释:(1)要化的角的形式为α±⋅ο90k (k 为常整数); (2)记忆方法:“奇变偶不变,符号看象限”;(3)必须对一些特殊角的三角函数值熟记,做到“见角知值,见值知角”;(4)sin cos cos 444x x x πππ⎛⎫⎛⎫⎛⎫+=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;cos sin 44x x ππ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭.要点二:诱导公式的记忆诱导公式一~三可用口诀“函数名不变,符号看象限”记忆,其中“函数名不变”是指等式两边的三角函数同名,“符号”是指等号右边是正号还是负号,“看象限”是指把α看成锐角时原三角函数值的符号.诱导公式四可用口诀“函数名改变,符号看象限”记忆,“函数名改变”是指正弦变余弦,余弦变正弦,为了记忆方便,我们称之为函数名变为原函数的余名三角函数.“符号看象限”同上.因为任意一个角都可以表示为k ·90°+α(|α|<45°)的形式,所以这六组诱导公式也可以统一用“口诀”: “奇变偶不变,符号看象限”,意思是说角90k α⋅±o(k 为常整数)的三角函数值:当k 为奇数时,正弦变余弦,余弦变正弦;当k 为偶数时,函数名不变,然后α的三角函数值前面加上当视α为锐角时原函数值的符号.要点三:三角函数的三类基本题型(1)求值题型:已知一个角的某个三角函数值,求该角的其他三角函数值. ①已知一个角的一个三角函数值及这个角所在象限,此类情况只有一组解;②已知一个角的一个三角函数值但该角所在象限没有给出,解题时首先要根据已知的三角函数值确定这个角所在的象限,然后分不同情况求解;③一个角的某一个三角函数值是用字母给出的,这时一般有两组解.求值时要注意公式的选取,一般思路是“倒、平、倒、商、倒”的顺序很容易求解,但要注意开方时符号的选取.(2)化简题型:化简三角函数式的一般要求是:能求出值的要求出值;函数种类要尽可能少;化简后的式子项数最少,次数最低,尽可能不含根号.(3)证明题型:证明三角恒等式和条件等式的实质是消除式子两端的差异,就是有目标的化简.化简、证明时要注意观察题目特征,灵活、恰当选取公式. 【典型例题】类型一:利用诱导公式求值【高清课堂:三角函数的诱导公式385952 例2】例1.求下列各三角函数的值: (1)252525sincos tan()634πππ++-; (2)()()cos 585tan 300---o o(3)2222132131sin cos 6tan 10cot 243ππππ-+-⎛⎫⎛⎫⎛⎫⎪⎪⎪⎝⎭⎝⎭⎝⎭【思路点拨】利用诱导公式把所求角化为我们熟悉的锐角去求解. 【答案】(1)0(2)2-(3)16【解析】(1)原式=sin(4)cos(8)tan(6)634ππππππ+++-+sincostan634111022πππ=+-=+-=(2)原式=cos(18045)tan(36060)++-o o o o =cos 45tan 60--o o= (3)原式=2222sin (6)cos (5)6tan 10cot (10)243πππππππ+-++-+=2222sin cos 6tan 0cot 243πππ-+-=111023-+-=16【总结升华】(1)对任意角求三角函数值,一般遵循“化负为正,化大为小”的化归方向,但是在具体的转化过程中如何选用诱导公式,方法并不唯一,这就需要同学们去认真体会,适当选择,找出最好的途径,完成求值.(2)运用诱导公式求任意三角函数值的过程的本质是化任意角的三角函数为锐角三角函数的过程,而诱导公式就是这一转化的工具. 举一反三:【变式】(1)10sin 3π⎛⎫- ⎪⎝⎭;(2)31cos 6π;(3)tan (-855°).【答案】(1)2(2)2-(3)1 【解析】(1)1010sin sin 33ππ⎛⎫-=- ⎪⎝⎭44sin 2sin 33πππ⎛⎫=-+=- ⎪⎝⎭sin sin sin 3332ππππ⎛⎫⎛⎫=-+=--==⎪ ⎪⎝⎭⎝⎭.(2)3177coscos 4cos 666ππππ⎛⎫=+= ⎪⎝⎭cos cos 662πππ⎛⎫=+=-=- ⎪⎝⎭. (3)tan(-855°)=tan(-3×360°+225°)=tan225°=tan(180°+45°)=tan45°=1. 例2.已知函数()sin()cos()f x a x b x παπβ=+++,其中a 、b 、α、β都是非零实数,又知f (2009)=-1,求f (2010).【解析】 (2009)sin(2009)cos(2009)f a b παπβ=+++sin(2008)cos(2008)a b ππαππβ=+++++sin()cos()sin cos (sin cos )a b a b a b παπβαβαβ=+++=--=-+.∵f (2009)=-1 ∴sin cos 1a b αβ+=. ∴(2010)sin(2010)cos(2010)f a b παπβ=+++sin cos 1a b αβ=+=.【总结升华】 求得式子sin cos 1a b αβ+=,它是联系已知和未知的纽带.解决问题的实质就是由未知向已知的转化过程,在这个转化过程中一定要抓住关键之处.举一反三:【变式1】 已知1cos(75)3α︒+=,其中α为第三象限角,求cos(105°―α)+sin(α―105°)的值.【答案】13【解析】 ∵cos(105°-α)=cos[180°-(75°+α)]=-cos(75°+α)=13-,sin(α―105°)=―sin[180°-(75°+α)]=-sin(75°+α), ∵α为第三象限角,∴75°+α为第三、四象限角或终边落在y 轴负半轴上.又cos(75°+α)=13>0,∴75°+α为第四象限,∴sin(75)3α︒+===-.∴11cos(105)sin(105)333αα︒-+-︒=-+=.【总结升华】 解答这类给值求值的问题,关键在于找到已知角与待求角之间的相互关系,从而利用诱导公式去沟通两个角之间的三角函数关系,如:75°+α=180°-(105°-α)或105°-α=180°-(75°+α)等.【变式2】已知3sin()2παπβ⎛⎫-=+ ⎪⎝⎭))απβ-=+,且0<α<π,0<β<π,求α和β的值.【解析】由已知得sin αβ=αβ=. 两式平方相加,消去β,得22sin 3cos 2αα+=, ∴21cos 2α=,而0απ<<,∴cos 2α=±,∴4πα=或34πα=.当4πα=时,cos 2β=,又0βπ<<,∴6πβ=;当34πα=时,cos 2β=-,又0βπ<<,∴56βπ=.故4πα=,6πβ=或34πα=,56βπ=. 类型二:利用诱导公式化简 例3.化简(1)sin(180)sin()tan(360)tan(180)cos()cos(180)αααααα-++--+++-+-o o o o ;(2)sin()sin()()sin()cos()n n n Z n n απαπαπαπ++-∈+-.【思路点拨】化简时,要认真观察“角”,显然利用诱导公式,但要注意公式的合理选用.【答案】(1)-1(2)略 【解析】(1)原式sin sin tan tan 1tan cos cos tan αααααααα--==-=-+-;(2)①当2,n k k Z =∈时,原式sin(2)sin(2)2sin(2)cos(2)cos k k k k απαπαπαπα++-==+-.②当21,n k k Z =+∈时,原式sin[(21)]sin[(21)]2sin[(21)]cos[(21)]cos k k k k απαπαπαπα+++-+==-++-+.【总结升华】(1)诱导公式应用的原则是:负化正,大化小,化到锐角就终了; (2)关键抓住题中的整数n 是表示π的整数倍与公式一中的整数k 有区别,所以必须把n 分成奇数和偶数两种类型,分别加以讨论.举一反三: 【变式1】化简 (1)()()()()cos cot 7tan 8sin 2-⋅--⋅--αππαπααπ;(2)()sin2n n Z π∈; (3)()222121tan tan ,22n n n Z παπα++⎛⎫⎛⎫+--∈ ⎪ ⎪⎝⎭⎝⎭(4)sin()cos[(1)]sin[(1)]cos(]k k k k παπαπαπα---+++,()k z ∈.【解析】(1)原式=[]cos()cot()tan(2)sin(2)παπαπαπα----+=cos cot (tan )(sin )αααα-⋅-=3cot α(2)1,(41)sin1,(43)20,(2)n k n n k n k π=+⎧⎪=-=+⎨⎪=⎩ (3)原式=22cot cot αα-=0(4)由(k π+α)+(k π―α)=2k π,[(k ―1)π―α]+[(k+1)π+α]=2k π,得cos[(1)]cos[(1)]cos()k k k παπαπα--=++=-+,sin[(1)]sin()k k παπα++=-+.故原式sin()[cos()]1sin()cos()k k k k παπαπαπα-+-+==--++.【总结升华】 常见的一些关于参数k 的结论: (1)sin()(1)sin ()k k k Z παα+=-∈; (2)cos()(1)cos ()k k k Z παα+=-∈; (3)1sin()(1)sin ()k k k z παα+-=-∈; (4)cos()(1)cos ()k k k Z παα-=-∈. 类型三:利用诱导公式进行证明例4.设8tan 7m πα⎛⎫+= ⎪⎝⎭,求证:1513sin 3cos 37720221sin cos 77m m ππααππαα⎛⎫⎛⎫++- ⎪ ⎪+⎝⎭⎝⎭=+⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭. 【思路点拨】证明此恒等式可采取从“繁”到“简”,从左边到右边的方法.【证明】 证法一:左边88sin 3cos 37788sin 4cos 277πππααπππαππα⎡⎤⎡⎤⎛⎫⎛⎫++++- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦=⎡⎤⎡⎤⎛⎫⎛⎫-+-++ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦888sin 3cos tan 3777888sin cos tan 1777πππαααπππααα⎛⎫⎛⎫⎛⎫-+-+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=-⎛⎫⎛⎫⎛⎫-+-+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭31m m +=+=右边. ∴等式成立.证法二:由8tan 7m πα⎛⎫+= ⎪⎝⎭,得tan 7m πα⎛⎫+= ⎪⎝⎭,∴左边sin 23cos 277sin 2cos 277πππαπαππππαππα⎡⎤⎡⎤⎛⎫⎛⎫+++++ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦=⎡⎤⎡⎤⎛⎫⎛⎫+-+-+++ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦sin 3cos 77sin cos 77ππααπππαπα⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭=⎡⎤⎡⎤⎛⎫⎛⎫-+-++ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦sin 3cos 77sin cos 77ππααππαα⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭=⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭tan 3371tan 17m m παπα⎛⎫++ ⎪+⎝⎭==+⎛⎫++ ⎪⎝⎭=右边, ∴等式成立. 举一反三:【高清课堂:三角函数的诱导公式385952 例4 】 【变式1】设A 、B 、C 为ABC ∆的三个内角,求证: (1)()sin sin A B C +=;(2)sincos22A B C+=; (3)tan cot 22A B C+=【解析】(1)左边=sin()sin()sin A B c C π+=-==右边,等式得证. (2)左边=sin2A =()sin cos cos 2222B C B C B C ππ-+++⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭=右边,等式得证. (3)左边=tantan cot 2222A B C C π+⎛⎫=-= ⎪⎝⎭=右边,等式得证. 【变式2】求证:232sin cos 1tan(9)12212sin ()tan()1ππθθπθπθπθ⎛⎫⎛⎫-+- ⎪ ⎪++⎝⎭⎝⎭=-++-. 证明:∵左边2232sin sin 12sin (sin )12212sin 12sin πππθθθθθθ⎡⎤⎛⎫⎛⎫+----⋅-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦==-- 22222sin sin 12cos sin 1212sin cos sin 2sin πθθθθθθθθ⎛⎫--- ⎪--⎝⎭==-+-222(sin cos )sin cos sin cos sin cos θθθθθθθθ++==--,右边tan(9)1tan 1sin cos tan()1tan 1sin cos πθθθθπθθθθ++++===+---,∴左边=右边,故原式得证. 类型四:诱导公式的综合应用例5.已知3sin(3)cos(2)sin 2()cos()sin()f παππαααπαπα⎛⎫---+⎪⎝⎭=----.(1)化简()f α;(2)若α是第三象限的角,且31cos 25πα⎛⎫-= ⎪⎝⎭,求()f α的值. (3)若313πα=-,求()f α的值. 【解析】 (1)(sin )cos (cos )()cos (cos )sin f ααααααα-⋅⋅-==--.(2)∵3cos sin 2παα⎛⎫-=- ⎪⎝⎭, ∴1sin 5α=-,∴cos α==()f α=. (3)31315cos cos 62333f ππππ⎛⎫⎛⎫⎛⎫-=--=--⨯+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭51cos cos 332ππ=-=-=-. 【总结升华】这是一个与函数相结合的问题,解决此类问题时,可先用诱导公式化简变形,将三角函数的角度统一后再用同角三角函数关系式,这样可避免公式交错使用时导致的混乱.举一反三: 【变式1】已知α、β均为锐角,cos()sin()αβαβ+=-,若()sin cos 44f ππααα⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,求2f πα⎛⎫- ⎪⎝⎭的值. 【解析】由cos()sin()αβαβ+=-得cos()cos ()2παβαβ⎡⎤+=--⎢⎥⎣⎦,又α、β均为锐角.则()2παβαβ+=--,即4πα=.于是,sin cos 0222f ππα⎛⎫-=+= ⎪⎝⎭.【巩固练习】1.sin585°的值为( )A.2-B.2 C.2- D.2A .13 B . 13- C. D3.已知(cos )cos3f x x =,则(sin 30)f ︒的值等于( )A .―1B .1C .12D .0)A .sin2-cos2B .cos2-sin2C .±(sin2-cos2)D .sin2+cos25.若sin cos 2sin cos αααα+=-,则3sin(5)sin 2παπα⎛⎫-⋅-⎪⎝⎭等于( ) A .34 B .310 C .310± D .310-6.在△ABC 中,若)sin()sin(C B A C B A +-=-+,则△ABC 必是( )A .等腰三角形B .直角三角形C .等腰或直角三角形D .等腰直角三角形7.已知3sin()cos(2)tan 2()cos()f ππαπαααπα⎛⎫---+ ⎪⎝⎭=--,则313f π⎛⎫-⎪⎝⎭的值为( ) A .12 B .12- C.2 D.2-8.已知cos 63πα⎛⎫-= ⎪⎝⎭,则25sin cos 66ππαα⎛⎫⎛⎫--+ ⎪⎪⎝⎭⎝⎭的值是( )A .23+B .23+-C .23- D.23-+9.计算:)425tan(325cos 625sinπππ-++= .10.若()θ+ο75cos 31=,θ为第三象限角,则()()θθ++--οο435sin 255cos 的值是 . 11.已知1sin()43πα-=,则cos()4πα+=__________. 12.(1)cos1°+cos2°+cos3°+…+cos180°的值为________;(2)cos 21°+cos 22°+cos 23°+…+cos 289°的值为________。
高一数学同名三角函数的诱导公式2

sin( ) cos
公式六: 2
cos( ) sin
2
形成结论
所有诱导公式可统一为 k (k Z)
的三角函数与α的三角函数2 之间的关系. 它们之间的关系归纳为:
奇变偶不变,符号看象限.
典例讲解
例1 化简:
sin(2 - )cos( )cos( )cos(11 - )
2
cos( ) sin
2
知识探究
探究1: 与 有什么内在联系?
2
2
( )
2
2
探究2:根据相关诱导公式推导,sin( ),
cos( )分别等于什么? 2
2
形成结论
sin( ) cos
公式六: 2
cos( ) sin
sin( ) sin
公式三:
cos( ) cos
tan( ) tan
sin( ) sin 公式四: cos( ) cos
tan( ) tan
计算:
1. sin 2
(4
)
sin( ) cos( tan(3600
2
的终边与角α的终边有什么对称关系?
y
2
的终边
y=x
α 的终边
O
x
y
2
的终边
P2(y,x)
α 的终边
O
P1(x
,y) x
设角α的终边上有一点P1(x,y),则关
于直线y=x对称的角 的终边上的点P2的
坐标如何?
2
形成结论
高中数学三角函数诱导公式

Trust is good, but monitoring is more important.悉心整理助您一臂(页眉可删)高中数学三角函数诱导公式高中数学三角函数诱导公式1公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα k∈zcos(2kπ+α)=cosα k∈ztan(2kπ+α)=tanα k∈zcot(2kπ+α)=cotα k∈z公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α与α的三角函数值之间的关系:cos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα推算公式:3π/2±α与α的三角函数值之间的关系:sin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotα诱导公式记忆口诀:“奇变偶不变,符号看象限”。
(word完整版)高中数学必修4三角函数常考题型:三角函数的诱导公式(一)

三角函数的诱导公式(一)【知识梳理】1. 诱导公式⑴角n+ a与角a的终边关于原点对称. 如图所示.10丿H(2)公式:sin( n+ a = —sin acos( n+ a) =—cos_ a.tan( n+ a = tan_ a2. 诱导公式三(1)角一a与角a的终边关于X轴对称. 如图所示.彳(2)公式:sin( —a = —sin _aCOs(— a) = COs_ atan(— a = —tan_ a3. 诱导公式四(1)角n— a与角a的终边关于y轴对称.如图所示.(2)公式:sin( n— a = sin __ acos( n— a = 一COS_a tan( n— a = —tan_ a.【常考题型】题型一、给角求值问题【例1】 求下列三角函数值:。
o 119 n⑴sin( — 1 200 °; (2)tan 945 ; (3)cos_^.[解](1)si n( — 1 200 )=— sin 1 200 =—°si n(3 x 360 牛 120 ) =— sin 120 =— sin(180 — 60 )3=—sin 60 =——; 2(2)tan 945 =tan(2 x 360 °+ 225 °= tan 225 = tan( 180 4 45 °)= tan 45 = 1;【类题通法】【对点训练】求 sin 585 cos 1 290 4 cos( — 30°)sin 210 4 tan 135 的值.解:sin 585 °s 1 290 C cos(— 30°)sin 210 ° tan 135 = sin(360 ° 225°)cos(3x 360° 4 210) 4 cos 30 gin 210 半 tan(180 —45 ° = sin 225 c6s 210 半 cos 30 s °n 210 — tan 45 = sin( 180 半 45 °)cos(180 4 30 °)4 cos 30 sin(180 4 30 °— tan 45 =sin 45 cbs 30 — cos 30 s i n 30 — tan 45 = 返 x ©_ ?/3x 1—1 乎-也-42 2 2 2 4题型二、化简求值问题cos — a tan 7 n4 asin n — a(2)化简曲:豊4 " * "—1需°cos — 180 — a sin — a — 180 (3)cos 譽 =cos 20 n — n = cos 6 6n =cos := 6 【例2】 (1)化简:cos — a tan 7 n4 a 解析]sin n— a cos d an n4 asin acos a tan asin a心=1sin a[答案]1•••a+ 125°= 180°+ ( a — 55°),sin 4X 360 °+ a c os 3 x 360 °— a sin a c os — a (2)[解]原式=—— cos 180 + a [ — sin 180 + a ] COS a = =—1. —cos a sin a — COs a 【类题通法】 利用诱导公式一〜四化简应注意的问题(1)利用诱导公式主要是进行角的转化,从而达到统一角的目的;(2)化简时函数名没有改变,但一定要注意函数的符号有没有改变;(3)同时有切(正切)与弦(正弦、余弦)的式子化简,一般采用切化弦,有时也将弦化切. 化简: tan 2 n — 0 sin 2 n — 0 cos 6 n —tan — 0s in — 0cos — 0—cos 0sin n+ 0 tan Osin 0cos 0cos 0sin 0 =tan 0 题型三、给角(或式)求值冋题【例3】 1 (1)已知 sin 3= 3, cos(a+ 3=— 1,贝U sin( a+ 2 3)的值为( ) 3 A . 1 B . — 11 Ci 1D 「11⑵已知cos( a — 55 °)=— 3,且a 为第四象限角,求 sin( a+ 125°)的值.(1)[解析] **cos( a+ 3) = — 1 ,• '•a+ 3= T H- 2k n, k , 1 •'sin( a+ 2 3) = sin [(a+ 3] = sin( n+ 3 = — sin 3= — 3.3[答案]D(2)[解]・.cos( a — 55 °)=— ]0,且a 是第四象限角.• a — 55°是第三象限角.sin( a — 55 °)= — i : 1 — COS ? a — 55 =— 2.23【对点训练】解:原式=••sin( a- 125° = sin[180 — (a — 55°)] = — sin( a — 55°)=警.【类题通法】解决条件求值问题的策略(1)解决条件求值问题,首先要仔细观察条件与所求式之间的角、函数名称及有关运算之间 的差异及联系.(2)可以将已知式进行变形向所求式转化,或将所求式进行变形向已知式转化.【对点训练】1 、sin( n+ a=— 3,求 cos(5n+ a 的值. 3由诱导公式得,sin( n- a = — sin a,当a 是第一象限角时,cos a= - ;1 — Sin 2 a=彳^2 2A /2 此时,cos(5 n — %)= cos( n+ a = —cos a=— 3 . 3当 a 是第二象限角时,cos a=— • :1— sin 2 a=— ^^2 ,2占 此时,cos(5 n — %)= cos( n+ a = — cos a= 3 .3 【练习反馈】1.如图所示,角0的终边与单位圆交于点 P ,晋,则cos(n — 的值为(B . — -5 52*5D. 50-五—5,送•'cos( n — ® = — cos 0= 5 .已知 解: 所以sin a= 3,所以a 是第一象限或第二象限角.解析: 选 C 行=1 ,「.cos答案:2 — 2n5.已知 cos 6"coS a+于的值.n —cos 6— a 2. 4 _ 已知 sin( n+%)= 5,且 a 是第四象限角,贝U COS ( a — 2冗)的值是( ) 3 B.5D.5 4 解析:选 B sin a =-4, 又a 是第四象限角, • 'COS ( a — 2 n )= COS a= \ -1- Sin 2 a= 5. sin a — 3 n + COS n — a 3.设 tan(5 n+ a) = m ,贝U sin — a — COS n+ a 解析: '•ta n(5n+ a = tan a= m , —sin a — cos a — tan a — 1 — m — 1 m + 1 • • •原式= = = = —sin a+ cos a — tan a+ 1 — m + 1 m — 1 答案:cos — 585 ° sin 495 + sin — 570的值是解析: 原式= cos 360 °+ 225 ° sin 360 °+ 135 ° — sin 210 °+ 360 cos 225 cos 180 °+ 45 ° sin 135 — sin 210 °sin 180 °— 45° — sin 180 ° + 30° —cos 45sin 45 + sin 30 —2 .2 1 + _ 2 2 2 — 2.解:cos n+ =— cos n —6 5 n a+E。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数知识点
1、角的定义:
⎧⎪⎪
⎨⎪⎪⎩正角:按逆时针方向旋转形成的角任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角
2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角。
第一象限角的集合为 第二象限角的集合为 第三象限角的集合为 第四象限角的集合为 3、与角α终边相同的角的集合为{
}2,k k ββπα=+∈Z
4、弧度制与角度制的换算公式:180********.3180π
ππ⎛⎫
===≈ ⎪⎝⎭
, 5、若扇形的圆心角为()α
α为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+,2
11
22
S lr r α==。
6、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是(
)
0r r =>,
则sin y
r
α=
,cos x r α=,()tan 0y x x α=≠。
7、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,
第三象限正切为正,第四象限余弦为正。
8、三角函数线:sin α=MP ,cos α=OM ,tan α=AT 。
(如图) 9、同角三角函数的基本关系:
()222222(1)sin cos 1 sin 1cos ,cos 1sin αααααα+==-=-
sin sin tan sin tan cos ,cos cos tan ααααααααα⎛
⎫=== ⎪⎝
⎭(2)
11、三角函数的诱导公式:
一、选择题:
1.若角α的终边与角β的终边关于原点对称,则( )
A .α=β
B .α=180°+β
C .α=k ·360°+β,k ∈Z
D .α=k ·360°+180°+β,k ∈Z 2.若-π
2
<α<0,则点P (tan α,cos α)位于( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
3.已知扇形的面积为2 cm 2,扇形圆心角的弧度数是4,则扇形的周长为( )
A .2
B .4
C .6
D .8
4.若θ为第一象限角,则能确定为正值的是( )
A .sin θ2
B .cos θ2
C .tan θ2
D .cos2θ
5.已知sin(θ+π)<0,cos(θ-π)>0,则下列不等关系中必定成立的是( )
A .sin θ<0,cos θ>0
B .sin θ>0,cos θ<0
C .sin θ>0,cos θ>0
D .sin θ<0,cos θ<0
6.已知tan θ=2,则sin 2θ+sin θcos θ-2cos 2θ=( )
A .-4
3
B.54 C .-3
4
D.4
5
7.已知点P ⎝⎛⎭⎫sin 3π4
,cos 3π
4落在角θ的终边上,且θ∈[0,2π),则θ的值为( ) A.π4 B.3π4 C.5π4 D.7π
4
8.若角α的终边与直线y =3x 重合,且sin α<0,又P (m ,n )是α终边上一点,且|OP |=10,则m -n 等于( )
A .2
B .-2
C .4
D .-4 9.若cos α+2sin α=-5,则tan α=( )
A.12 B .2 C .-1
2 D .-2 10.已知sin α=
2m -5m +1,cos α=-m
m +1
,且α为第二象限角,则m 的允许值为( ) A.52<m <6 B .-6<m <52 C .m =4 D .m =4或m =3
2
11.点P (1,0)沿x 2+y 2=1逆时针转2π
3
弧长到达Q 点,则Q 的坐标为 ( )
A .(-12,32)
B .(-32,-12)
C .(-12,-32)
D .(-32,1
2)
12.(tan x +
1
tan x
)cos 2x =( ) A .tan x B .sin x C .cos x D.1
tan x
二、填空题:
13.若sin θ+cos θsin θ-cos θ=2,则sin(θ-5π)sin(3π2-θ)=________. 14.1-2sin40°cos40°cos40°-1-sin 250°=________.
15.已知α∈(π2,3π2),tan(α-7π)=-3
4,则sin α+cos α的值为________.
16. 若f (cos x )=cos3x ,则f (sin30°)的值为________. 17.已知tan α=2,则
(1)2sin α-3cos α
4sin α-9cos α=________;(2) 4sin 2α-3sin αcos α-5cos 2α=________. 18. 化简cos(-θ)cos(360°-θ)·tan 2(180°-θ)-cos(90°+θ)
cos 2(270°+θ)·sin(-θ)=________.
19. 已知角α的终边经过点P (x ,-6),且tan α=-3
5
,则x 的值为________.
三、解答题:
20.已知3cos 2(π+x )+5cos ⎝⎛⎭⎫
π2-x =1,求6sin x +4tan 2x -3cos 2(π-x )的值.
21. 角α的终边上的点P 与A (a ,b )关于x 轴对称(a ≠0,b ≠0),角β的终边上的点Q 与A 关于直线y =x 对称,求sin αcos β+tan αtan β+
1
cos αsin β的值.
22.已知角θ的终边上有一点P (x ,-1)(x ≠0),且tan θ=-x ,求sin θ,cos θ.
23.已知sin(π-α)·cos(-8π-α)=60169,且α∈(π4,π
2
),试求sin α和cos α的值.
24..已知sin α是方程5x 2
-7x -6=0的根,求cos (2π-α)cos (π+α)tan 2(2π-α)tan 2(π-α)sin (π+α)sin (2π-α)
.
25.已知在△ABC 中,sin A +cos A =1
5
,
(1)求sin A ·cos A ;
(2)判断△ABC 是锐角三角形还是钝角三角形; (3)求tan A 的值.
26.已知f (α)=sin(π-α)cos(2π-α)cos(-α+3
2
π)
cos(π
2
-α)sin(-π-α)
(1)化简f (α);
(2)若α为第三象限角,且cos(α-32π)=1
5,求f (α)的值;
(3)若α=-31
3π,求f (α)的值.
27.已知关于x 的方程2x 2-(3+1)x +m =0的两根sin θ和cos θ,θ∈(0,2π). 求(1)sin 2θsin θ-cos θ+cos θ
1-tan θ的值;
(2)m 的值;
(3)方程的两根及此时θ的值.。