信号与系统复习题之冲击响应
信号与系统复习题(含答案)

试题一一. 选择题(共10题,20分) 1、n j n j een x )34()32(][ππ+=,该序列是 .A 。
非周期序列B 。
周期3=N C.周期8/3=N D 。
周期24=N2、一连续时间系统y(t)= x (sint),该系统是 .A.因果时不变 B 。
因果时变 C 。
非因果时不变 D 。
非因果时变 3、一连续时间LTI 系统的单位冲激响应)2()(4-=-t u e t h t ,该系统是 .A 。
因果稳定B 。
因果不稳定 C.非因果稳定 D 。
非因果不稳定4、若周期信号x[n ]是实信号和奇信号,则其傅立叶级数系数a k 是 .A 。
实且偶 B.实且为奇 C.纯虚且偶 D 。
纯虚且奇 5、一信号x (t )的傅立叶变换⎩⎨⎧><=2||02||1)(ωωω,,j X ,则x(t)为 。
A. t t 22sinB. tt π2sin C 。
t t 44sin D 。
t t π4sin6、一周期信号∑∞-∞=-=n n t t x )5()(δ,其傅立叶变换)(ωj X 为 .A 。
∑∞-∞=-k k )52(52πωδπ B 。
∑∞-∞=-k k )52(25πωδπC. ∑∞-∞=-k k )10(10πωδπD. ∑∞-∞=-k k )10(101πωδπ7、一实信号x[n]的傅立叶变换为)(ωj e X ,则x[n ]奇部的傅立叶变换为 。
A.)}(Re{ωj e X j B 。
)}(Re{ωj e XC. )}(Im{ωj e X jD. )}(Im{ωj e X8、一信号x(t)的最高频率为500Hz ,则利用冲激串采样得到的采样信号x (nT )能唯一表示出原信号的最大采样周期为 。
A. 500 B 。
1000 C 。
0。
05 D. 0。
001 9、一信号x (t)的有理拉普拉斯共有两个极点s=-3和s=-5,若)()(4t x e t g t=,其傅立叶变换)(ωj G 收敛,则x(t)是 .A. 左边B. 右边C. 双边D. 不确定10、一系统函数1}Re{1)(->+=s s e s H s,,该系统是 。
(完整版)信号与系统复习题

信号与系统试题库一、填空题绪论:1。
离散系统的激励与响应都是____离散信号 __。
2.请写出“LTI ”的英文全称___线性非时变系统 ____。
3.单位冲激函数是__阶跃函数_____的导数. 4.题3图所示波形可用单位阶跃函数表示为()(1)(2)3(3)t t t t εεεε+-+---。
5.如果一线性时不变系统的输入为f(t ),零状态响应为y f (t )=2f (t —t 0),则该系统的单位冲激响应h (t )为____02()t t δ-_________。
6。
线性性质包含两个内容:__齐次性和叠加性___。
7。
积分⎰∞∞-ω--δ-δdt )]t t ()t ([e 0t j =___01j t e ω--_______。
8。
已知一线性时不变系统,当激励信号为f (t)时,其完全响应为(3sint-2cost )ε(t );当激励信号为2f (t )时,其完全响应为(5sint+cost )ε(t),则当激励信号为3f(t )时,其完全响应为___7sint+4cost _____。
9。
根据线性时不变系统的微分特性,若:f (t)−−→−系统y f (t)则有:f ′(t)−−→−系统_____ y ′f (t )_______。
10。
信号f (n )=ε(n )·(δ(n)+δ(n-2))可_____δ(n)+δ(n —2)_______信号。
11、图1所示信号的时域表达式()f t =()(1)(1)tu t t u t --- 。
12、图2所示信号的时域表达式()f t =()(5)[(2)(5)]u t t u t u t +----。
13、已知()()()2f t t t t εε=--⎡⎤⎣⎦,则()f t '=()(2)2(2)u t u t t δ----.14、[]2cos32t d ττδτ-∞⎛⎫+ ⎪⎝⎭⎰=8()u t 。
信号与系统复习题(含答案)

试题一一.选择题(共 10 题, 20 分)j ( 2 ) n41、x[n]ej ( ) ne33,该序列是。
A.非周期序列B.周期 N 3C.周期 N 3 / 8D. 周期N 242、一连续时间系统 y(t)= x(sint) ,该系统是。
A. 因果时不变B.因果时变C.非因果时不变D.非因果时变3、一连续时间 LTI 系统的单位冲激响应 h(t) e 4tu(t2),该系统是 。
A.因果稳定B.因果不稳定C.非因果稳定D. 非因果不稳定 4、若周期信号 x[n] 是实信号和奇信号,则其傅立叶级数系数 a k是 。
A. 实且偶B.实且为奇C.纯虚且偶D. 纯虚且奇, | 2 , 则 x(t)5 、 一 信 号 x(t) 的 傅 立 叶 变 换 X ( j ) 1 | ,| 20 |为。
A. sin 2tB. sin 2tC. sin 4tD. sin 4t2tt4tt6 、 一 周 期 信 号 x(t)(t5n) , 其 傅 立 叶 变 换 X ( j)n为。
A. 2(2 k)B.5 ( 2 k552 k)k5C. 10(10 k)D.1(k)k10k107、一实信号 x[n] 的傅立叶变换为 X (e j) ,则 x[n] 奇部的傅立叶变 换为 。
A.j Re{ X (e j )}B. Re{ X (e j)}C. j Im{ X (e j )}D.Im{ X (e j )}8、一信号 x(t) 的最高频率为 500Hz ,则利用冲激串采样得到的采样信号 x(nT) 能唯一表示出原信号的最大采样周期为 。
A. 500B. 1000C. 0.05D. 0.0019、一信号 x(t) 的有理拉普拉斯共有两个极点 s=- 3 和 s=- 5,若 g(t ) e 4t x(t) , 其 傅 立 叶 变 换 G ( j ) 收 敛 , 则 x(t) 是 。
A. 左边B. 右边C. 双边D. 不确定10、一系统函数H (s) e s, 1,该系统是 。
信号与系统复习资料

信 号 与 系 统 复 习 资 料一 填空1.如果一线性时不变系统的单位冲激响应为h(t),则该系统的阶跃响应g(t)为_________。
2.如果一线性时不变系统的输入为f(t),零状态响应为)(2)(0t t f t y f -=,则该系统的单位冲激响应h(t)为_________________。
3.如果一线性时不变系统的单位冲激响应)()(t t h ε=,则当该系统的输入信号)()(t t t f ε=时,其零状态响应为_________________。
4.傅里叶变换的时移性质是:当f(t)↔F(j ω),则f(t ±t 0)↔____________。
5.=--)]([)1(2t edt d t tδ___________6.根据线性时不变系统的微分特性,若:)()(t y t f f −−→−系统则有:f ′(t)−−→−系统______。
7.卷积(1-2t)ε(t)*ε(t)等于________________。
8.信号f(n)=δ(n)+(21)nε(n)的Z 变换等于____________。
9.单位序列响应 h(n) 是指离散系统的激励为δ (n) 时,系统的 ____________。
10.线性性质包含两个内容:________,__________ 。
11.余弦信号)cos(0t ω的傅里叶变换为___________。
12.若)()()(21t f t f t f *=,则=)()1(t f________)(2t f *。
13.已知)()]([ωj F t f F =,则=-)52(t f ________。
14.已知15.011)(--=zZ F ,则=)(k f __________。
15.=⋅-)()3(t t εε________________。
16.离散系统稳定的z 域充要条件是系统函数H (z )的所有极点位于z 平面的__________。
冲击响应

系统并联
f1 (t ) [ f 2 (t ) f3 (t )] f1 (t ) f 2 (t ) f1 (t ) f 3 (t )
系统并联,框图表示:
h(t )
f (t )
f (t ) f (t )
h1 (t )
f (t ) * h1 (t )
g (t )
f (t ) h1 (t ) f (t ) h2 (t )
可表示为:
e(t ) e(t ) (t )
三.利用卷积求系统的零状态响应
当一个信号作用于系统时,响应为
e( ) (t ) d r (t ) H e(t ) H e( ) H (t ) d 当系统为线性时
3. i ( t ) e( ) h(t ) d
e
1 2
i (t )
L 1H
u( ) u( 2) e ( t ) u(t ) d
e t e 2 u( )u( t )d e t e 2 u( 2)u( t )d
卷积积分中积分限的确定是非常关键的。
四.卷积的计算
已知e( t ) e
u(t ) u(t 2),求i(t )的零状态响应。 R 1 d i t 1.列写KVL方程 L Ri t et
t 2
2.冲激响应为
dt h( t ) e t u( t )
u (t )
H
g (t )
系统的输入 e t u t ,其响应为 r t gt 。系统方程的 右端将包含阶跃函数 ut ,t>0时输入不为0,所以其响应除 了齐次解外,还有特解项。
信号与系统冲激响应求解举例

−t −3t 1 2 1 2
(
−t
−3t
1
2
1
2
1
2
将h(t ), h′(t ), h′′(t )代入原方程
(C1 + C2 )δ ′(t) + (3C1 + C2 )δ (t) + 0⋅ε(t) = δ ′(t) + 2δ (t)
代 原 程: 入 方 aδ ′ ( t ) + bδ ( t ) + r ( t ) + 4aδ ( t ) + 4r2 ( t ) + 3r3 ( t ) =δ '(t) +2δ (t) 1 a=1 b+4a=2 即 b=-2
■ 第 2页
d2 h( t ) = δ ′( t ) − 2 ( t ) + r ( t ) δ 1 2 dt d h( t ) =δ (t) + r (t) 2 dt h( t ) = r ( t ) 3
求特征根 冲激响应
λ2 + 4λ + 3 = 0 ⇒λ1 = −1, λ2 = −3
n = 2, m = 1, n > m h(t )中不包含冲激项
带ε(t)
h(t) = (C1e + C2e
−t
−3t
)ε(t)
■ 第 1页
两种求待定系数方法: 两种求待定系数方法: 求0+法 •求
法一:求0+值确定系数
∴ h(0+ ) = 1 , h' (0+ ) = −2
信号与系统复习题(答案全)

1、 若系统的输入f (t)、输出y (t) 满足()3()4t y t e ft -=,则系统为 线性的 (线性的、非线性的)、 时变的 (时变的、时不变)、 稳定的 (稳定的、非稳定的)。
2、 非周期、连续时间信号具有 连续 、非周期频谱;周期、连续时间信号具有离散、非周期 频谱;非周期、离散时间信号具有 连续 、周期频谱;周期、离散时间信号具有离散、 周期 频谱。
3、 信号f(t)的占有频带为0-10KHz,被均匀采样后,能恢复原信号的最大采样周期为 5×10-5 s . 4、 )100()(2t Sa t f =是 能量信号 (功率信号、能量信号、既非功率亦非能量信号)。
5、 ()2cos()f t t =+是 功率信号 (功率信号、能量信号、既非功率亦非能量信号)。
6、 连续信号f(t)=sint 的周期T 0= 2π ,若对f(t)以fs=1Hz 进行取样,所得离散序列f(k)=sin(k) ,该离散序列是周期序列? 否 。
7、 周期信号2sin(/2)()j n tn n f t e n ππ+∞=-∞=∑,此信号的周期为 1s 、直流分量为 2/π 、频率为5Hz 的谐波分量的幅值为 2/5 。
8、 f (t) 的周期为0.1s 、傅立叶级数系数**03355532F F F F F j --=====、其余为0。
试写出此信号的时域表达式f (t) = 5 + 6 cos ( 60 π t ) - 4 sin (100 π t ) 。
9、 f (k) 为周期N=5的实数序列,若其傅立叶级数系数()205=F ()52511,πjeF -+=()54512πjeF -+=、 则F 5 (3 )= ()54512πjeF +=- 、F 5 (4 )= ()52511πj eF +=- 、F 5 (5 )= 2 ;f(k) =())1.7254cos(62.052)9.3552cos(62.152525140525︒-⨯+︒-⨯+=∑=k k e n F n k jn πππ。
信号与系统复习试题(含答案)

电气《信号与系统》复习(fùxí)参考练习题一、单项选择题:14、已知连续(liánxù)时间信号则信号(xìnhào)所占有(zhànyǒu)的频带宽度为()A.400rad/s B。
200 rad/s C。
100 rad/s D。
50 rad/s 15、已知信号(xìnhào)如下图(a)所示,其反转(fǎn zhuǎn)右移的信号(xìnhào)f1(t) 是( d )16、已知信号(xìnhào)如下图所示,其表达式是()A、ε(t)+2ε(t-2)-ε(t-3)B、ε(t-1)+ε(t-2)-2ε(t-3)C、ε(t)+ε(t-2)-ε(t-3)D、ε(t-1)+ε(t-2)-ε(t-3)17、如图所示:f(t)为原始(yuánshǐ)信号,f1(t)为变换信号,则f1(t)的表达式是()A 、f(-t+1)B 、f(t+1)C 、f(-2t+1)D 、f(-t/2+1)18、若系统的冲激响应为h(t),输入信号(xìnhào)为f(t),系统的零状态响应是( c )19。
信号(x ình ào)与冲激函数之积为( )A 、2B 、2)2(-t δC 、3)2(-t δD 、5)2(-t δA 、因果(yīnguǒ)不稳定系统B 、非因果(yīnguǒ)稳定系统C 、因果稳定(wěndìng)系统D 、非因果不稳定系统21、线性时不变系统的冲激响应曲线如图所示,该系统微分方程的特征根是()A、常数B、实数C、复数D、实数+复数22、线性时不变系统零状态响应曲线如图所示,则系统的输入应当是()A、阶跃信号(xìnhào)B、正弦(zhèngxián)信号C、冲激(chōnɡ jī)信号 D、斜升信号(xìnhào)23. 积分(jīfēn)的结果为( )A B)(tf C. D.24. 卷积的结果为( )A. B. C. )(tf D.25. 零输入响应是( )A.全部自由响应B.部分自由响应C.部分零状态响应D.全响应与强迫响应之差2A、 B、 C、 D、127.信号〔ε(t)-ε(t-2)〕的拉氏变换的收敛域为 ( )A.Re[s]>0B.Re[s]>2C.全S平面D.不存在28.已知连续系统二阶微分方程的零输入响应的形式为,则其2个特征根为( )A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、冲激响应
由单位冲激函数δ(t)所引起的零状态响应称为单位冲 激响应,简称冲激响应,记为h(t)。h(t)=T[{0},δ(t)]
例1 描述某系统的微分方程为 y”(t)+5y’(t)+6y(t)=f(t) 求其冲激响应h(t)。
解 根据h(t)的定义 有 h”(t) + 5h’(t) + 6h(t) = δ(t) h’(0-) = h(0-) = 0
对t>0时,有 h”(t) + 5h’(t) + 6h(t) = 0
微分方程的特征根为– 2, – 3。故系统的冲激响应为 h(t)= C1e–2t + C2e–3t , t>0
代入初始条件h(0+) = – 3, h’(0+) =12 求得C1=3,C2= – 6, 所以
h(t)= 3e–2t – 6e–3t , t > 0 结合式(2)得
右端加法器的输出 y(t)=-x(t) 2x(t)
所以,系统的微分方程为 y(t) 3y(t) 2 y(t)=-f (t) 2 f (t)
(2)
(2)求为g1 (t ),则式(2)所 描述的系统的阶跃响应为
g1 (t )满足方程
g(t) g1 (t) 2g1(t)
(4)
h1(0 ) h1 (0 )=0
其特征根1 1, 2 2,其特解为0,于是得 h1(t)=(C3et C4e2t ) (t) (5)
由系数平衡法,(4)式中h1(t)应包含冲激函数,从而h1 (t) 在t 0处将跃变,即h1 (0 ) h1 (0 )。但h1(t)不含冲激函数,否
于是
g(t) g1 (t) 2g1(t) (3et 2e2t 1) (t)
(3)求冲激响应
设式(1)所描述的系统的冲激响应为h1 (t ),则式(2)所 描述的系统的冲激响应为
h(t) h1 (t) 2h1(t)
h1 (t )满足方程
h1(t) 3h1 (t) 2h1(t)= (t)
g1(t) 3g1 (t) 2g1(t)= (t)
(3)
g1(0 ) g1 (0 )=0
其特征根1 1, 2 2,其特解为0.5,于是得 g1(t)=(C1et C2e2t 0.5) (t)
式(3)等号右端只有 (t),故除了g1(t)外,g(t)和g(t)
其一阶导数
h1 (t)=(et e2t ) (t) (et 2e2t ) (t)=(et 2e2t ) (t)
于是
h(t) h1 (t) 2h1(t) (3et 4e2t ) (t)
刚才已经求得:
g(t) (3et 2e2t 1) (t)
aδ”(t) + bδ’(t)+ cδ(t) + p3(t) + 5[aδ’(t) + bδ(t) + p2(t) ]
+ 6[aδ(t) + p1(t) ] = δ”(t)+ 2δ’(t)+3δ(t) 整理得
aδ”(t)+(b+5a)δ’(t)+(c +5b+6a)δ(t) + p3(t)+5 p2(t)+6 p1(t) = δ”(t) + 2δ’(t) + 3δ(t)
h(t)=( e-2t - e-3t)ε(t)
例2 描述某系统的微分方程为
y”(t)+5y’(t)+6y(t)= f”(t) + 2f’(t) + 3f(t) 求其冲激响应h(t)。 解 根据h(t)的定义 有
h”(t) + 5h’(t) + 6h(t) = δ”(t)+ 2δ’(t)+3δ(t) (1)
∑ -
-
x(t)
∫
3
x(t) 2
- y(t)
∫
∑
+
2
解:(1)列写系统的微分方程
设图中右端积分器的输出为x(t),则其输入为x(t),
左端积分器的输入为x(t)。左端加法器的输出 x(t)=-3x(t) 2x(t) f (t)
即
x(t)+3x(t) 2x(t)=f (t) (1)
=1
考虑h(0+)= h(0-),由上式可得 h(0+)=h(0-)=0 , h’(0+) =1 + h’(0-) = 1
对t>0时,有 h”(t) + 5h’(t) + 6h(t) = 0 故系统的冲激响应为一齐次解。
微分方程的特征根为-2,-3。故系统的冲激响应为
h(t)=(C1e-2t + C2e-3t)ε(t) 代入初始条件求得C1=1,C2=-1, 所以
h’(0-) = h(0-) = 0 先求h’(0+)和h(0+)。 由方程可知, h(t) 中含δ(t) 故令 h(t) = aδ(t) + p1(t) [pi(t) 为不含δ(t) 的某函数]
h’(t) = aδ’(t) + bδ(t) + p2(t) h”(t) = aδ”(t) + bδ’(t) + cδ(t)+ p3(t) 代入式(1),有
则h1(t)将含 (t)项。由于h1(t)含有阶跃函数,故h(t)在t 0处
连续。对(4)式等号两端积分(从0-到0 ),得 [h1 (0 ) h1 (0 )] 3[h1(0 ) h1(0 )] 1
考虑到h(t)在t 0处连续。将h1 (0 ),h1(0 )代入上式得 h1 (0 ) h1 (0 )=1 h1(0 ) h1(0 ) 0
利用δ(t) 系数匹配,得 a =1 ,b = - 3,c = 12
所以 h(t) = δ(t) + p1(t)
(2)
h’(t) = δ’(t) - 3δ(t) + p2(t)
(3)
h”(t) = δ”(t) - 3 δ’(t) + 12δ(t)+ p3(t) (4)
对式(3)从0-到0+积分得 h(0+) – h(0-) = – 3 对式(4)从0-到0+积分得 h’(0+) – h’(0-) =12 故 h(0+) = – 3, h’(0+) =12
均连续,即有 g1(0 ) g1 (0 )=0
代入上式,有 g1(0 ) C1 C2 0.5 0 g1 (0 )=-C1 2C2 =0
可解得:C1 1,C2 0.5 于是
g1(t)=(et 0.5e2t 0.5) (t)
其一阶导数
g1 (t)=(et 0.5e2t 0.5) (t) (et e2t ) (t)=(et e2t ) (t)
h(t)= δ(t) + (3e–2t – 6e–3t)ε(t)
二、阶跃响应 由于δ(t) 与ε(t) 为微积分关系,故
g(t)= T [ε(t) ,{0}]
t
g(t) h( ) d
, h(t) d g(t)
dt
例3 如图所示的LTI系统,求其阶跃响应及冲激响应。
1
f (t) + x(t)
先求h’(0+)和h(0+)。
因方程右端有δ(t),故利用系数平衡法。h”(t)中含δ(t),
h’(t)含ε(t),h’(0+)≠h’(0-),h(t)在t=0连续,即
h(0+)=h(0-)。积分得
0
[h’(0+) - h’(0-)] + 5[h(0+) - h(0-)] + 6
h(t)dt 0
即 h1(0 ) h1(0 ) 0 h1 (0 ) h1 (0 )+1 1
代入(5)式,有 h1(0 ) C3 C4 0 h1 (0 ) C3 2C4 =1
可解得:C3 1,C4 1
于是
h1(t)=(et e2t ) (t)
验证结论(解法II):
h(t) d g(t) dt