《函数图象的画法》习题
2019高考数学《函数的图像》题型专题汇编

2019高考数学《函数的图像》题型专题汇编题型一 作函数的图象1、分别画出下列函数的图象:(1)y =|lg(x -1)|; (2)y =2x +1-1; (3)y =x 2-|x |-2; (4)y =2x -1x -1.解 (1)首先作出y =lg x 的图象,然后将其向右平移1个单位,得到y =lg(x -1)的图象,再把所得图象在x 轴下方的部分翻折到x 轴上方,即得所求函数y =|lg(x -1)|的图象,如图①所示(实线部分).(2)将y =2x 的图象向左平移1个单位,得到y =2x +1的图象,再将所得图象向下平移1个单位,得到y =2x+1-1的图象,如图②所示.(3)y =x 2-|x |-2=⎩⎪⎨⎪⎧x 2-x -2,x ≥0,x 2+x -2,x <0,其图象如图③所示.(4)∵y =2+1x -1,故函数的图象可由y =1x 的图象向右平移1个单位,再向上平移2个单位得到,如图④所示.题型二 函数图象的辨识1、函数y =x 2ln|x ||x |的图象大致是( )答案 D解析 从题设解析式中可以看出函数是偶函数,x ≠0,且当x >0时,y =x ln x ,y ′=1+ln x ,可知函数在区间⎝⎛⎭⎫0,1e 上单调递减,在区间⎝⎛⎭⎫1e ,+∞上单调递增.由此可知应选D.2、设函数f (x )=2x ,则如图所示的函数图象对应的函数解析式是( )A .y =f (|x |)B .y =-|f (x )|C .y =-f (-|x |)D .y =f (-|x |) 答案 C解析 题图中是函数y =-2-|x |的图象,即函数y =-f (-|x |)的图象,故选C. 3、函数f (x )=1+log 2x 与g (x )=⎝⎛⎭⎫12x在同一直角坐标系下的图象大致是( )答案 B解析 因为函数g (x )=⎝⎛⎭⎫12x 为减函数,且其图象必过点(0,1),故排除A ,D.因为f (x )=1+log 2x 的图象是由y =log 2x 的图象上移1个单位得到的,所以f (x )为增函数,且图象必过点(1,1),故可排除C ,故选B. 4、函数f (x )=⎝⎛⎭⎫21+e x -1·sin x 的图象的大致形状为( )答案 A解析 ∵f (x )=⎝ ⎛⎭⎪⎫21+e x -1·sin x ,∴f (-x )=⎝ ⎛⎭⎪⎫21+e -x -1·sin(-x ) =-⎝ ⎛⎭⎪⎫2e x1+e x -1sin x =⎝ ⎛⎭⎪⎫21+e x -1·sin x =f (x ),且f (x )的定义域为R , ∴函数f (x )为偶函数,故排除C ,D ;当x =2时,f (2)=⎝ ⎛⎭⎪⎫21+e 2-1·sin 2<0,故排除B , 只有A 符合.5、若函数f (x )=(ax 2+bx )e x 的图象如图所示,则实数a ,b 的值可能为( )A .a =1,b =2B .a =1,b =-2C .a =-1,b =2D .a =-1,b =-2解析:选B.令f (x )=0,则(ax 2+bx )e x =0,解得x =0或x =-b a ,由图象可知,-b a >1,又当x >-ba 时,f (x )>0,故a >0,结合选项知a =1,b =-2满足题意,故选B.6、如图,有四个平面图形分别是三角形、平行四边形、直角梯形、圆.垂直于x 轴的直线l :x =t (0≤t ≤a )经过原点O 向右平行移动,l 在移动过程中扫过平面图形的面积为y (图中阴影部分),若函数y =f (t )的大致图象如图所示,那么平面图形的形状不可能是( )解析:选C.由y =f (t )的图象可知面积递增的速度先快后慢,对于选项C ,后半程是匀速递增,所以平面图形的形状不可能是C.7、函数f (x )=|x |+ax2(其中a ∈R )的图象不可能是( )解析:选C.当a =0时,函数f (x )=|x |+ax 2=|x |,函数的图象可以是B ;当a =1时,函数f (x )=|x |+a x 2=|x |+1x2,函数的图象可以是A ;当a =-1时,函数f (x )=|x |+a x 2 =|x |-1x 2,x >0时,|x |-1x 2=0只有一个实数根x =1,函数的图象可以是D ;所以函数的图象不可能是C.故选C.8、已知f (x )=⎩⎨⎧-2x ,-1≤x ≤0,x ,0<x ≤1,则下列函数的图象错误的是( )解析:选D.在坐标平面内画出函数y =f (x )的图象,将函数y =f (x )的图象向右平移1个单位长度,得到函数y =f (x -1)的图象,因此A 正确;作函数y =f (x )的图象关于y 轴的对称图形,得到y =f (-x )的图象,因此B 正确;y =f (x )在[-1,1]上的值域是[0,2],因此y =|f (x )|的图象与y =f (x )的图象重合,C 正确;y =f (|x |)的定义域是[-1,1],且是偶函数,当0≤x ≤1时,y =f (|x |)=x ,这部分的图象不是一条线段,因此选项D 不正确.故选D.9、如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP =x .将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为( )答案 B解析 当x ∈⎣⎡⎦⎤0,π4时,f (x )=tan x +4+tan 2x ,图象不会是直线段,从而排除A ,C ;当x ∈⎣⎡⎦⎤π4,3π4时,f ⎝⎛⎭⎫π4=f ⎝⎛⎭⎫3π4=1+5,f ⎝⎛⎭⎫π2=2 2.∵22<1+5, ∴f ⎝⎛⎭⎫π2<f ⎝⎛⎭⎫π4=f ⎝⎛⎭⎫3π4,从而排除D ,故选B.10、已知函数f (x )的图象如图所示,则f (x )的解析式可以是( )A .f (x )=ln|x |xB .f (x )=e xx C .f (x )=1x 2-1 D .f (x )=x -1x答案 A解析 由函数图象可知,函数f (x )为奇函数,应排除B ,C.若函数为f (x )=x -1x ,则x →+∞时,f (x )→+∞,排除D ,故选A.11、函数f (x )=e x -e -xx 2的图象大致为( )答案 B解析 ∵y =e x -e -x 是奇函数,y =x 2是偶函数,∴f (x )=e x -e -xx 2是奇函数,图象关于原点对称,排除A 选项.当x =1时,f (1)=e -e -11=e -1e >0,排除D 选项.又e>2,∴1e <12,∴e -1e >32,排除C 选项.故选B.12、已知定义在区间[0,4]上的函数y =f (x )的图象如图所示,则y =-f (2-x )的图象为( )答案 D解析 方法一 先作出函数y =f (x )的图象关于y 轴的对称图象,得到y =f (-x )的图象; 然后将y =f (-x )的图象向右平移2个单位,得到y =f (2-x )的图象;再作y =f (2-x )的图象关于x 轴的对称图象,得到y =-f (2-x )的图象.故选D.方法二 先作出函数y =f (x )的图象关于原点的对称图象,得到y =-f (-x )的图象;然后将y =-f (-x )的图象向右平移2个单位,得到y =-f (2-x )的图象.故选D. 方法三 当x =0时,y =-f (2-0)=-f (2)=-4.故选D.题型三 函数图象的应用命题点1 研究函数的性质1、已知函数f (x )=x |x |-2x ,则下列结论正确的是( ) A .f (x )是偶函数,单调递增区间是(0,+∞) B .f (x )是偶函数,单调递减区间是(-∞,1) C .f (x )是奇函数,单调递减区间是(-1,1) D .f (x )是奇函数,单调递增区间是(-∞,0) 答案 C解析 将函数f (x )=x |x |-2x ,去掉绝对值,得f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,-x 2-2x ,x <0,画出函数f (x )的图象,如图,观察图象可知,函数f (x )的图象关于原点对称,故函数f (x )为奇函数,且在(-1,1)上单调递减.2、已知函数f (x )=|log 3x |,实数m ,n 满足0<m <n ,且f (m )=f (n ),若f (x )在[m 2,n ]上的最大值为2,则nm =________. 答案 9解析 作出函数f (x )=|log 3x |的图象,观察可知0<m <1<n 且mn =1.若f (x )在[m 2,n ]上的最大值为2,从图象分析应有f (m 2)=2, ∴log 3m 2=-2,∴m 2=19.从而m =13,n =3,故nm=9.3、若函数f (x )=⎩⎪⎨⎪⎧ax +b ,x <-1,ln (x +a ),x ≥-1的图象如图所示,则f (-3)等于___解析:由图象可得a (-1)+b =3,ln(-1+a )=0,所以a =2,b =5,所以f (x )=⎩⎪⎨⎪⎧2x +5,x <-1,ln (x +2),x ≥-1,故f (-3)=2×(-3)+5=-1.答案:-14、已知f (x )=2x -1,g (x )=1-x 2,规定:当|f (x )|≥g (x )时,h (x )=|f (x )|;当|f (x )|<g (x )时,h (x )=-g (x ),则h (x )( )A .有最小值-1,最大值1B .有最大值1,无最小值C .有最小值-1,无最大值D .有最大值-1,无最小值答案 C解析 画出y =|f (x )|=|2x -1|与y =g (x )=1-x 2的图象,它们交于A ,B 两点.由“规定”,在A ,B 两侧,|f (x )|≥g (x ),故h (x )=|f (x )|;在A ,B 之间,|f (x )|<g (x ),故h (x )=-g (x ).综上可知,y =h (x )的图象是图中的实线部分,因此h (x )有最小值-1,无最大值.5、已知函数f (x )=⎩⎪⎨⎪⎧|x |,x ≤m ,x 2-2mx +4m ,x >m ,其中m >0.若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是____________. 答案 (3,+∞)解析 在同一坐标系中,作y =f (x )与y =b 的图象.当x >m 时,x 2-2mx +4m =(x -m )2+4m -m 2,所以要使方程f (x )=b 有三个不同的根,则有4m -m 2<m ,即m 2-3m >0.又m >0,解得m >3.6、不等式3sin ⎝⎛⎭⎫π2x -12log x <0的整数解的个数为________.答案 2解析 不等式3sin ⎝⎛⎭⎫π2x -12log x <0,即3sin ⎝⎛⎭⎫π2x <12log x .设f (x )=3sin ⎝⎛⎭⎫π2x ,g (x )=12log x ,在同一坐标系中分别作出函数f (x )与g (x )的图象,由图象可知,当x 为整数3或7时,有f (x )<g (x ),所以不等式3sin ⎝⎛⎭⎫π2x -12log x <0的整数解的个数为2.7、已知函数f (x )=⎩⎪⎨⎪⎧sin πx ,0≤x ≤1,log 2 020x ,x >1,若实数a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则a +b +c 的取值范围是__________. 答案 (2,2 021)解析 函数f (x )=⎩⎪⎨⎪⎧sin πx ,0≤x ≤1,log 2 020x ,x >1的图象如图所示,不妨令a <b <c ,由正弦曲线的对称性可知a +b =1,而1<c <2 020,所以2<a +b +c <2 021.8、已知点A (1,0),点B 在曲线G :y =ln x 上,若线段AB 与曲线M :y =1x 相交且交点恰为线段AB 的中点,则称B 为曲线G 关于曲线M 的一个关联点.那么曲线G 关于曲线M 的关联点的个数为________.解析:设B (x 0,ln x 0),x 0>0,线段AB 的中点为C ,则C ⎝⎛⎭⎪⎫x 0+12,ln x 02,又点C 在曲线M 上,故ln x 02=2x 0+1,即ln x 0=4x 0+1.此方程根的个数可以看作函数y =ln x 与y =4x +1的图象的交点个数.画出图象(如图),可知两个函数的图象只有1个交点. 答案:19、已知y =f (x )是定义在R 上的偶函数,当x ≥0时,f (x )=x 2-2x . (1)求当x <0时,f (x )的解析式;(2)作出函数f (x )的图象,并指出其单调区间; (3)求f (x )在[-2,5]上的最小值,最大值.解:(1)设x <0,则-x >0,因为x >0时,f (x )=x 2-2x .所以f (-x )=(-x )2-2·(-x )=x 2+2x .因为y =f (x )是R 上的偶函数,所以f (x )=f (-x )=x 2+2x . (2)函数f (x )的图象如图所示:由图可得:函数f (x )的单调递增区间为(-1,0)和(1,+∞);单调递减区间为(-∞,-1)和(0,1). (3)由(2)中函数图象可得:在[-2,5]上,当x =±1时,取最小值-1,当x =5时,取最大值15. 10、已知函数f (x )=x |m -x |(x ∈R ),且f (4)=0. (1)求实数m 的值; (2)作出函数f (x )的图象;(3)根据图象指出f (x )的单调递减区间;(4)若方程f (x )=a 只有一个实数根,求a 的取值范围. 解:(1)因为f (4)=0,所以4|m -4|=0,即m =4.(2)f (x )=x |x -4|=⎩⎪⎨⎪⎧x (x -4)=(x -2)2-4,x ≥4,-x (x -4)=-(x -2)2+4,x <4,f (x )的图象如图所示.(3)f (x )的单调递减区间是[2,4].(4)从f (x )的图象可知,当a >4或a <0时,f (x )的图象与直线y =a 只有一个交点,方程f (x )=a 只有一个实数根,即a 的取值范围是(-∞,0)∪(4,+∞). 命题点2 解不等式1、 函数f (x )是定义在[-4,4]上的偶函数,其在[0,4]上的图象如图所示,那么不等式f (x )cos x<0的解集为________________.答案 ⎝⎛⎭⎫-π2,-1∪⎝⎛⎭⎫1,π2 解析 当x ∈⎝⎛⎭⎫0,π2时,y =cos x >0.当x ∈⎝⎛⎭⎫π2,4时,y =cos x <0. 结合y =f (x ),x ∈[0,4]上的图象知,当1<x <π2时,f (x )cos x <0.又函数y =f (x )cos x 为偶函数,所以在[-4,0]上,f (x )cos x <0的解集为⎝⎛⎭⎫-π2,-1, 所以f (x )cos x<0的解集为⎝⎛⎭⎫-π2,-1∪⎝⎛⎭⎫1,π2. 2、定义在R 上的奇函数f (x ),满足f ⎝⎛⎭⎫-12=0,且在(0,+∞)上单调递减,则xf (x )>0的解集为________. 解析:因为函数f (x )是奇函数,在(0,+∞)上单调递减,且f ⎝⎛⎭⎫-12=0,所以f ⎝⎛⎭⎫12=0,且在区间(-∞,0)上单调递减,因为当x <0,若-12<x <0时,f (x )<0,此时xf (x )>0,当x >0,若0<x <12时,f (x )>0,此时xf (x )>0,综上xf (x )>0的解集为⎝⎛⎭⎫-12,0∪⎝⎛⎭⎫0,12. 答案:⎝⎛⎭⎫-12,0∪⎝⎛⎭⎫0,12 命题点3 求参数的取值范围1、已知函数()12log ,020x x x f x x >⎧⎪⎨⎪≤⎩,=,,若关于x 的方程f (x )=k 有两个不等的实数根,则实数k 的取值范围是________. 答案 (0,1]解析 作出函数y =f (x )与y =k 的图象,如图所示,由图可知k ∈(0,1].2、已知函数f (x )=|x -2|+1,g (x )=kx .若方程f (x )=g (x )有两个不相等的实根,则实数k 的取值范围是__________. 答案 ⎝⎛⎭⎫12,1解析 先作出函数f (x )=|x -2|+1的图象,如图所示,当直线g (x )=kx 与直线AB 平行时斜率为1,当直线g (x )=kx 过A 点时斜率为12,故f (x )=g (x )有两个不相等的实根时,k 的取值范围为⎝⎛⎭⎫12,1.3、设函数f (x )=|x +a |,g (x )=x -1,对于任意的x ∈R ,不等式f (x )≥g (x )恒成立,则实数a 的取值范围是__________. 答案 [-1,+∞)解析 如图作出函数f (x )=|x +a |与g (x )=x -1的图象,观察图象可知,当且仅当-a ≤1,即a ≥-1时,不等式f (x )≥g (x )恒成立,因此a 的取值范围是[-1,+∞).4、给定min{a ,b }=⎩⎪⎨⎪⎧a ,a ≤b ,b ,b <a ,已知函数f (x )=min{x ,x 2-4x +4}+4,若动直线y =m 与函数y =f (x )的图象有3个交点,则实数m 的取值范围为________.解析:函数f (x )=min{x ,x 2-4x +4}+4的图象如图所示,由于直线y =m 与函数y =f (x )的图象有3个交点,数形结合可得m 的取值范围为(4,5). 答案:(4,5)5、直线y =k (x +3)+5(k ≠0)与曲线y =5x +17x +3的两个交点坐标分别为A (x 1,y 1),B (x 2,y 2),则x 1+x 2+y 1+y 2=________.解析:因为y =5x +17x +3=2x +3+5,其图象关于点(-3,5)对称.又直线y =k (x +3)+5过点(-3,5),如图所示.所以A ,B 关于点(-3,5)对称,所以x 1+x 2=2×(-3)=-6,y 1+y 2=2×5=10. 所以x 1+x 2+y 1+y 2=4.答案:46、函数f (x )的图象与函数h (x )=x +1x +2的图象关于点A (0,1)对称.(1)求f (x )的解析式;(2)若g (x )=f (x )+ax,且g (x )在区间(0,2]上为减函数,求实数a 的取值范围.解:(1)设f (x )图象上任一点P (x ,y )(x ≠0),则点P 关于(0,1)点的对称点P ′(-x ,2-y )在h (x )的图象上,即2-y =-x -1x +2,即y =f (x )=x +1x(x ≠0).(2)g (x )=f (x )+ax =x +a +1x ,g ′(x )=1-a +1x2.因为g (x )在(0,2]上为减函数,所以1-a +1x 2≤0在(0,2]上恒成立,即a +1≥x 2在(0,2]上恒成立,所以a +1≥4,即a ≥3, 故实数a 的取值范围是[3,+∞).《函数的图像》课后作业1、y =2|x |sin 2x 的图象可能是( )答案 D解析 由y =2|x |sin 2x 知函数的定义域为R ,令f (x )=2|x |sin 2x ,则f (-x )=2|-x |sin(-2x )=-2|x |sin 2x .∵f (x )=-f (-x ),∴f (x )为奇函数.∴f (x )的图象关于原点对称,故排除A ,B. 令f (x )=2|x |sin 2x =0,解得x =k π2(k ∈Z ),∴当k =1时,x =π2,故排除C.故选D.2、如图,不规则四边形ABCD 中,AB 和CD 是线段,AD 和BC 是圆弧,直线l ⊥AB 交AB 于E ,当l 从左至右移动(与线段AB 有公共点)时,把四边形ABCD 分成两部分,设AE =x ,左侧部分的面积为y ,则y 关于x 的图象大致是( )答案 C解析 当l 从左至右移动时,一开始面积的增加速度越来越快,过了D 点后面积保持匀速增加,图象呈直线变化,过了C 点后面积的增加速度又逐渐减慢.故选C.3、已知函数f (x )=log a x (0<a <1),则函数y =f (|x |+1)的图象大致为( )答案 A解析 方法一 先作出函数f (x )=log a x (0<a <1)的图象,当x >0时,y =f (|x |+1)=f (x +1),其图象由函数f (x )的图象向左平移1个单位得到,又函数y =f (|x |+1)为偶函数,所以再将函数y =f (x +1)(x >0)的图象关于y 轴对称翻折到y 轴左边,得到x <0时的图象,故选A. 方法二 因为|x |+1≥1,0<a <1, 所以f (|x |+1)=log a (|x |+1)≤0,故选A.4、函数f (x )=⎩⎪⎨⎪⎧ax +b ,x <-1,ln (x +a ),x ≥-1 的图象如图所示,则f (-3)等于( )A .-12B .-54C .-1D .-2答案 C解析 由图象可得-a +b =3,ln(-1+a )=0,得a =2,b =5,∴f (x )=⎩⎪⎨⎪⎧2x +5,x <-1,ln (x +2),x ≥-1,故f (-3)=2×(-3)+5=-1,故选C.5、函数f (x )的图象向右平移1个单位,所得图象与曲线y =e x 关于y 轴对称,则f (x )的解析式为( ) A .f (x )=e x +1B .f (x )=e x -1C .f (x )=e-x +1D .f (x )=e-x -1答案 D解析与y =e x 的图象关于y 轴对称的函数为y =e -x .依题意,f (x )的图象向右平移一个单位,得y =e -x 的图象.∴f (x )的图象由y =e -x 的图象向左平移一个单位得到. ∴f (x )=e -(x +1)=e -x -1.6、已知函数f (x )的定义域为R ,且f (x )=⎩⎪⎨⎪⎧2-x -1,x ≤0,f (x -1),x >0,若方程f (x )=x +a 有两个不同实根,则实数a的取值范围为( ) A .(-∞,1) B .(-∞,1] C .(0,1) D .(-∞,+∞)答案 A解析 当x ≤0时,f (x )=2-x -1,当0<x ≤1时,-1<x -1≤0,f (x )=f (x -1)=2-(x -1)-1.类推有f (x )=f (x -1)=22-x -1,x ∈(1,2],…,也就是说,x >0的部分是将x ∈(-1,0]的部分周期性向右平移1个单位得到的,其部分图象如图所示.若方程f (x )=x +a 有两个不同的实数根,则函数f (x )的图象与直线y =x +a 有两个不同交点,故a <1,即a 的取值范围是(-∞,1).7、设函数y =f (x +1)是定义在(-∞,0)∪(0,+∞)上的偶函数,在区间(-∞,0)上是减函数,且图象过点(1,0),则不等式(x -1)f (x )≤0的解集为______________. 答案 {x |x ≤0或1<x ≤2}解析 画出f (x )的大致图象如图所示.不等式(x -1)f (x )≤0可化为⎩⎨⎧ x >1,f (x )≤0或⎩⎨⎧x <1,f (x )≥0.由图可知符合条件的解集为{x |x ≤0或1<x ≤2}. 8、设函数y =f (x )的图象与y =2x -a的图象关于直线y =-x 对称,且f (-2)+f (-4)=1,则实数a =________.答案 -2解析 由函数y =f (x )的图象与y =2x -a 的图象关于直线y =-x 对称,可得f (x )=-a -log 2(-x ),由f (-2)+f (-4)=1,可得-a -log 22-a -log 24=1,解得a =-2.9、已知f (x )是以2为周期的偶函数,当x ∈[0,1]时,f (x )=x ,且在[-1,3]内,关于x 的方程f (x )=kx +k +1(k ∈R ,k ≠-1)有四个实数根,则k 的取值范围是__________. 答案 ⎝⎛⎭⎫-13,0 解析 由题意作出f (x )在[-1,3]上的示意图如图所示,记y =k (x +1)+1,∴函数y =k (x +1)+1的图象过定点A (-1,1).记B (2,0),由图象知,方程有四个实数根,即函数f (x )与y =kx +k +1的图象有四个交点, 故k AB <k <0,k AB =0-12-(-1)=-13,∴-13<k <0.10、给定min{a ,b }=⎩⎪⎨⎪⎧a ,a ≤b ,b ,b <a ,已知函数f (x )=min{x ,x 2-4x +4}+4,若动直线y =m 与函数y =f (x )的图象有3个交点,则实数m 的取值范围为__________. 答案 (4,5)解析 作出函数f (x )的图象,函数f (x )=min{x ,x 2-4x +4}+4的图象如图所示,由于直线y =m 与函数y =f (x )的图象有3个交点,数形结合可得m 的取值范围为(4,5).11、数f (x )=⎩⎪⎨⎪⎧log 2(1-x )+1,-1≤x <0,x 3-3x +2,0≤x ≤a 的值域为[0,2],则实数a 的取值范围是_____答案 [1,3]解析 先作出函数f (x )=log 2(1-x )+1,-1≤x <0的图象,再研究f (x )=x 3-3x +2,0≤x ≤a 的图象.令f ′(x )=3x 2-3=0,得x =1(x =-1舍去),由f ′(x )>0,得x >1, 由f ′(x )<0,得0<x <1.又f (0)=f (3)=2,f (1)=0.所以1≤a ≤ 3.12已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x -1,x ≥0,x 2-2x -1,x <0,则对任意x 1,x 2∈R ,若0<|x 1|<|x 2|,下列不等式成立的是( )A .f (x 1)+f (x 2)<0B .f (x 1)+f (x 2)>0C .f (x 1)-f (x 2)>0D .f (x 1)-f (x 2)<0 答案 D解析 函数f (x )的图象如图实线部分所示,且f (-x )=f (x ),从而函数f (x )是偶函数且在[0,+∞)上是增函数, 又0<|x 1|<|x 2|,∴f (x 2)>f (x 1),即f (x 1)-f (x 2)<0.13、函数f (x )=x|x -1|,g (x )=1+x +|x |2,若f (x )<g (x ),则实数x 的取值范围是____________.答案 ⎝ ⎛⎭⎪⎫-∞,-1+52∪⎝ ⎛⎭⎪⎫1+52,+∞解析 f (x )=⎩⎪⎨⎪⎧1+1x -1,x >1,-1+11-x ,x <1,g (x )=⎩⎪⎨⎪⎧1+x ,x ≥0,1,x <0,作出两函数的图象如图所示.当0≤x <1时,由-1+11-x =x +1,解得x =5-12;当x >1时,由1+1x -1=x +1,解得x =5+12.结合图象可知,满足f (x )<g (x )的x 的取值范围是⎝ ⎛⎭⎪⎫-∞,5-12∪⎝ ⎛⎭⎪⎫1+52,+∞. 14、函数f (x )=⎩⎪⎨⎪⎧(x -1)2,0≤x ≤2,14x -12,2<x ≤6.若在该函数的定义域[0,6]上存在互异的3个数x 1,x 2,x 3,使得f (x 1)x 1=f (x 2)x 2=f (x 3)x 3=k ,则实数k 的取值范围是__________. 答案 ⎝⎛⎦⎤0,16解析 由题意知,直线y =kx 与函数y =f (x )的图象至少有3个公共点.函数y =f (x ),x ∈[0,6]的图象如图所示,由图知k 的取值范围是⎝⎛⎦⎤0,16.15、已知函数f (x )=2x ,x ∈R .(1)当实数m 取何值时,方程|f (x )-2|=m 有一个解?两个解? (2)若不等式f 2(x )+f (x )-m >0在R 上恒成立,求实数m 的取值范围. 解 (1)令F (x )=|f (x )-2|=|2x -2|, G (x )=m ,画出F (x )的图象如图所示.由图象可知,当m =0或m ≥2时,函数F (x )与G (x )的图象只有一个交点,原方程有一个实数解; 当0<m <2时,函数F (x )与G (x )的图象有两个交点,原方程有两个实数解.(2)令f (x )=t (t >0),H (t )=t 2+t ,t >0,因为H (t )=⎝⎛⎭⎫t +122-14在区间(0,+∞)上是增函数, 所以H (t )>H (0)=0.因此要使t 2+t >m 在区间(0,+∞)上恒成立,应有m ≤0,即所求m 的取值范围为(-∞,0].16、数()2131log 1,x x x f x x x ⎧≤⎪⎨>⎪⎩-+,,=,g (x )=|x -k |+|x -2|,若对任意的x 1,x 2∈R ,都有f (x 1)≤g (x 2)成立,求实数k 的取值范围.解 对任意的x 1,x 2∈R ,都有f (x 1)≤g (x 2)成立,即f (x )max ≤g (x )min .观察f (x )=2131log 1,x x x x x ⎧≤⎪⎨>⎪⎩-+,,,的图象可知,当x =12时,函数f (x )max =14.因为g (x )=|x -k |+|x -2|≥|x -k -(x -2)|=|k -2|,所以g (x )min =|k -2|,所以|k -2|≥14,解得k ≤74或k ≥94.故实数k 的取值范围是⎝⎛⎦⎤-∞,74∪⎣⎡⎭⎫94,+∞.。
人教版版八年级下册数学习题课件19.1函数19.1.2函数的图象第1课时函数的图象及其画法

二、填空题(每小题6分,共6分) 2.(4分)(株洲中考)爷爷在离家900米的公园锻炼后回家,离开公园20分钟后,爷爷停下来与朋友聊天10分钟,接着又走了15分钟回到家中.下面图形中表示爷爷离家的距离y(米)与 爷爷离开公园的时间x(分)之间的函数关系是( B )
第十九章 一次函数
19.1.2 函数的图象
第1课时 函数的图象及其画法
八年级下册·数学·人教版
12.(12分)某车间的甲、乙两名工人分别同时生产同种零件,他们生产的零件个数y(个)与生产时间t(小时)之间的函数关系如图所示.
1.对于一个函数,如果把自变量与函数的每对对应值分别作为点的__横、纵坐标
(1)体育馆离家的距离为__2.5__千米,书店离家的距离为__1.5__千米;王亮同学在 书店待了__30__分钟. (2)分别求王亮同学从体育馆走到书店的平均速度和从书店出来散步回家的平均速 度.
解:(2)从体育馆到书店的平均速度 v=2.5-1.5= 1 千米/分钟,从书店散步到家的平均 50-35 15
解:(1)由题意可知,乙的函数图象是l2,甲的速度是60=30(km/h),乙的速度是60=
2
3
20(km/h).故答案为l2,30,20
(2)设甲出发x小时两人恰好相距5 km.
由题意30x+20(x-0.5)+5=60或30x+20(x-0.5)-5=60,解得x=1.3或1.5,答:
甲出发1.3小时或1.5小时两人恰好相距5 km
【综合应用】 14.(14分)(青岛中考)A,B两地相距60 km,甲、乙两人从两地出发相向而行,甲先出发,图中l1,l2表示两人离A地的距离s(km)与时间t(h)的关系,请结合图象解答下列问题:
反比例函数及其图像画法

的函数,称y是x的反比例函数.
还可表示为:xy=k 或y=kx-1 想一想:
反比例函数的自变量x能不能是0? 为什么?
练一练 比一比
在下列函数表达式中,哪些是反比例 函数?并指出每一个反比例函数相应的 k值是多少?
1y 5 ;2y 0.4 ;3y x ;4xy 2.
(2)当 S = 0.5 时,求物体承受的压强 p 的值.
解(1)根据题意,设 p k . s
函数图象经过点(0.1,1000),代入上式,得 1000 k . 0.1
解方程,得 k = 100 .
答:p 与 S 之间的函数表达式为 p 100(p>0,S>0).
S
(2)当 S = 0.5 时, p 100 200.
某市距省城248 km,汽车行驶全程所需的时间t h 与平均速度v km/h之间有怎样的函数关系?
t 248 . v
合作探究 获取新知
问 题(三)
在一个电路中,当电压U一定时,通过电路的 电流I的大小与该电路的电阻R的大小之间有怎样的
函数关系?
IU. R
合作探究 获取新知
观察思考:
y 200 . x
随堂练习 巩固提高
6.已知y与x-1成反比例,当x=2时,y=4.求y与x的函 数关系式.
解:设y k ,则 k 4 x 1 21
k 4
y 4 x 1
7.若 y =(a+2)x a2 2a 1为反比例函数关系式,则a=_0 .
解:∵y =(a+2)xa2 2a 1为反比例函数, ∴a+2≠0且a2+2a-1=0, ∴a=0.
2 x2
2、已知函数 y = xm -7 是x -1正= 比1x 例函数,则 m = _8__ ; 已知函数 y = xm -7 是反比例函数,则 m = __6_ 。
函数的图像练习题

函数的图像练习题函数的图像是数学学习中的重要内容之一,通过观察函数的图像可以帮助我们更好地理解函数的性质和特点。
下面给出一些函数的图像练习题,希望能够帮助大家提高对函数图像的理解。
1. 函数 f(x) = x^2 的图像是什么样的?请画出该函数的图像。
解析:函数 f(x) = x^2 是一个二次函数,它的图像是一条抛物线,开口朝上,顶点位于原点(0, 0)处。
我们可以根据函数的性质来确定图像上的几个点,然后连接它们就可以得到整个图像。
2. 函数 g(x) = 1/x 的图像是什么样的?请画出该函数的图像。
解析:函数 g(x) = 1/x 是一个倒数函数,它的图像是一条双曲线,对称于第一象限和第三象限的两个分支。
我们可以取一些不同的 x 值来计算 g(x) 的函数值,然后连接这些点就可以得到函数的图像。
3. 函数 h(x) = sin(x) 的图像是什么样的?请画出该函数的图像。
解析:函数 h(x) = sin(x) 是一个正弦函数,它的图像是一条周期性的波浪线。
我们可以选择一些不同的 x 值来计算 h(x) 的函数值,然后连接这些点就可以得到函数的图像。
4. 函数 k(x) = e^x 的图像是什么样的?请画出该函数的图像。
解析:函数 k(x) = e^x 是一个指数函数,它的图像是一条递增的曲线,图像离 y 轴越近,曲线上的点就越大。
我们可以选择一些不同的 x 值来计算 k(x) 的函数值,然后连接这些点就可以得到函数的图像。
通过以上几个练习题,我们可以更好地理解函数图像的性质和特点。
在学习函数的过程中,我们还可以借助数学软件或者计算器来画出函数的图像,这样可以更直观地观察函数曲线的形状和变化。
同时,我们也可以通过解析函数的性质和变化规律来画出准确的函数图像。
希望以上练习题能够帮助大家提高对函数图像的理解,通过多做类似的练习,我们可以更加熟练地掌握函数图像的画法,并且更深入地理解函数的性质和变化规律。
函数图像的画法.3.3函数图像的画法

❖ ★讨论交流
❖ (1)图14.1-8是一种古代计时器——“漏壶” 的示意图,在壶内盛一定量的水,水从壶下 的小孔漏出,壶壁内画出刻度,人们根据壶 中水面的位置计算时间,用x表示时间,y表 示壶底到水面的高度,下面哪个图象适合表 示一小段时间内y与x的函数关系(暂不考虑 水量变化对压力的影响)?
y
y
6
5 为什么没有 4“0”? 3
2
1
-5 -4 -3 -2 -1 o -1
1 2 3 4 5x
(3)连线 用光滑的曲 线把这些点依次连 接起来.
-2
-3 -4
-5
-6 (1,-6)
画函数的图象的步骤
列表、描点、连线
在连接各点时应注意什么?
根据已描出的点判断图像是直线还是曲线。
❖ ★巩固新知
❖ 1.根据归纳出来的画图步骤,让学生画出 y=x+0.5和y= 1 x2 的图象。
P2
OX
P3
(-a,-b)
考考你:
填空:
(1)点P(4,a)在过点(0,2)且平行于x轴的直
线上,则点P的坐标是 (4,2;)
(2)点P(a,-b)关于x轴对称点的坐标
是 (a,b) ;
(3)点P(2-a,3a+6)到两坐标轴的距离相等,
则点P的坐标是 (3,3)或(;6,-6)
(4)点A(a+2,-1),B(-3 ,b)关于y轴对 称,则a=_1__,b=__-_1_。
标系中先确定什么? ❖ 问(2)怎样确定函数图象的点?
画出函数y= - 6 的图象. x
x … -5 -4 -3 -2 -1 1 2 3 4 5 …
y … 1.2 1.5 2 3 6 -6 -3 -2 -1.5 -1.2 …
(完整版)函数图像练习题

函数图像练习题 1、小华同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿.接到通知后,小华立即在电脑上打字录入这篇文章,录入一段时间后因事暂停,过了一会儿,小华继续录入并加快了录入速度,直至录入完成.设从录入文稿开始所经过的时间为x ,录入字数为y ,下面能反映y 与x 的函数关系的大致图象是( )2、某人匀速跑步到公园,在公园里某处停留了一段时间,再沿原路匀速步行回家,此人离家的距离与时间的关系的大致图象是( )3、如图,扇形OAB 动点P 从点A 出发,沿线段B0、0A 匀速运动到点A ,则0P 的长度y 与运动时间t 之间的函数图象大致是( )4、某人进行登山活动,从山脚到山顶,休息一会儿又沿原路返回。
若用横轴表示时间t ,纵轴表示与山脚距离h ,那么反映全程h 与t 的关系的图是( )5.甲、乙两人在一次赛跑中,路程s (米)与所用时间t (秒)的关系如图所示,则下列说法正确的是( )A .甲比乙先出发 B .乙比甲跑的路程多C .甲先到达终点D .甲、乙两人的速度相同6.“龟兔赛跑”讲述了这样一个故事:“领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉,当醒来时,发现乌龟快到达终点了,于是,急忙追赶,但为时已晚,乌龟还是先到达了终点.……”用s 1,s 2分别表示乌龟和兔子的行程,t 为时间,则下列图象中与故事情节相吻合的图象是( )7. 如图是古代计时器----“漏壶”的示意图在壶内盛一定量的水,水从壶下的小孔漏出,壶壁内画出刻度,人们根据壶中水面的位置计算时间。
用x 表示时间,y 表示壶底到水面的高度,下面的哪个图象适合表示一小段时间内y 与x 的函数关系?8、如图所示的曲线,哪个表示y是x 的函数( )y x y x y xy x9.如图所示,一枝蜡烛上细下粗,设这枝蜡烛点燃后剩下的长度为h,点燃时间为t,则能大致刻画出h与t之间函数关系的图象是()10.柿子熟了,从树上落下来,可以大致刻画出柿子下落过程中的速度变化情况的图象是()11.小明家距学校m千米,一天他从家上学,先以a千米/时的速度跑步,后以b千米/时的速度步行,到达学校共用n小时。
函数图像绘制练习题

函数图像绘制练习题函数图像的绘制是数学学习中的重要内容之一,通过练习绘制各类函数的图像,我们可以更好地理解函数的性质和行为。
下面是几个函数图像绘制的练习题,希望能够帮助大家提高对函数图像的掌握和理解。
练习一:线性函数绘制函数 y = 2x - 1 的图像。
解答:首先,我们需要确定函数图像的定义域和值域。
由于这是一个一次函数,所以其定义域为整个实数集,值域也是整个实数集。
接下来,我们选择一些特殊的点来描绘图像。
由于这是一个线性函数,我们只需要找到两个点即可确定直线。
选择 x = 0 和 x = 1 这两个值进行计算,得到对应的 y 坐标。
当 x = 0 时,y = -1,当 x = 1 时,y = 1。
现在,我们可以在坐标系中标出这两个点,并用直线连接它们。
注意,由于定义域和值域为整个实数集,函数图像是一条无限延伸的直线。
练习二:二次函数绘制函数 y = x^2 的图像。
解答:同样地,首先确定函数图像的定义域和值域。
由于这是一个二次函数,其定义域为整个实数集,值域为非负实数集[0, +∞)。
为了绘制这个图像,我们选择一些特殊的点。
取 x = -1,0 和 1 这三个值进行计算,得到对应的 y 坐标。
当 x = -1 时,y = 1;当 x = 0 时,y = 0;当 x = 1 时,y = 1。
标出这三个点,并通过它们画出一个 U 形曲线。
注意到函数图像关于 y 轴对称,所以我们只需要画出右半部分即可。
练习三:指数函数绘制函数 y = 2^x 的图像。
解答:函数 y = 2^x 是一个指数函数,该函数的定义域为整个实数集,值域为正实数集(0, +∞)。
我们选择一些特殊的点来绘制图像。
取 x = -1,0 和 1 这三个值进行计算,得到对应的 y 坐标。
当 x = -1 时,y = 1/2;当 x = 0 时,y = 1;当 x = 1 时,y = 2。
在坐标系中标出这三个点,并通过它们画出一个逐渐增长的曲线。
函数图像习题与答案(第一课时y=Asin(ωx+φ))-数学高一必修4第一章1.5人教A版

第一章 三角函数1.5 函数y =Asin(ωx +φ)的图像测试题知识点一: 利用图象变换法作y =Asin(ωx +φ)+b 的图象1.已知函数y =A sin(ωx +φ)+B 的一部分图象如图所示,如果A >0,ω>0,|φ|<π2,则( )A.A =4B.ω=1C.φ=π6 D.B =42.(1)利用“五点法”画出函数y =sin ⎝ ⎛⎭⎪⎫12x +π6在长度为一个周期的闭区间的简图列表:作图:图1-3-5(2)并说明该函数图象可由y =sin x (x ∈R )的图象经过怎样变换得到的.知识点二: 正弦型函数的性质3.要得到y =sin ⎝⎛⎭⎫x -π3的图象,只要将y =sin x 的图象( )A .向左平移π3个单位长度B .向右平移π3个单位长度C .向左平移π6个单位长度D .向右平移π6个单位长度4. 为了得到函数y =sin ⎝⎛⎭⎫2x -π6的图象,可以将函数y =cos 2x 的图象 ( )A .向右平移π6个单位长度B .向右平移π3个单位长度C .向左平移π6个单位长度D .向左平移π3个单位长度5. 为得到函数y =cos(x +π3)的图象,只需将函数y =sin x 的图象( )A .向左平移π6个单位长度B .向右平移π6个单位长度C .向左平移5π6个单位长度D .向右平移5π6个单位长度6. 把函数y =sin ⎝⎛⎭⎫2x -π4的图象向右平移π8个单位,所得图象对应的函数是 ( )A .非奇非偶函数B .既是奇函数又是偶函数C .奇函数D .偶函数7. 将函数y =sin 2x 的图象向左平移π4个单位,再向上平移1个单位,所得图象的函数解析式是( )A .y =cos 2xB .y =1+cos 2xC .y =1+sin(2x +π4)D .y =cos 2x -18.(2014·洛阳高一检测)若函数f (x )=3sin(ωx +φ)对任意x 都有f ⎝ ⎛⎭⎪⎫π6+x =f ⎝ ⎛⎭⎪⎫π6-x ,则有f ⎝ ⎛⎭⎪⎫π6=( )A.3或0B.-3或0C.0D.-3或39.(2014·北大附中高一月考)函数y =sin x 的图象向左平移π4个单位长度后,所得图象的一条对称轴是( )A.x =-π4B.x =π4 C.x =π2 D.x =3π410.把函数y =sin x 的图象上所有点的横坐标都缩小到原来的一半,纵坐标不变,再把图象向左平移π4个单位,这时对应于这个图象的解析式为( )A.y =cos 2xB.y =-sin 2xC.y =sin ⎝ ⎛⎭⎪⎫2x -π4D.y =sin ⎝ ⎛⎭⎪⎫2x +π411.(2014·大同高一检测)函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2的部分图象如图所示,为了得到g (x )=sin 3x 的图象,则只要将f (x )的图象( )图1-3-4A.向右平移π4个单位长度 B.向右平移π12个单位长度 C.向左平移π4个单位长度 D.向左平移π12个单位长度12.将函数y =sin 2x 的图象向左平移φ⎝ ⎛⎭⎪⎫0<φ<π2个单位长度后,得到函数y =sin(2x +1)的图象,则φ的值是________.13.把函数y =2sin ⎝ ⎛⎭⎪⎫x +2π3的图象向左平移m 个单位,所得图象关于y 轴对称,则m 的最小正值是________.14.关于函数f (x )=4sin ⎝ ⎛⎭⎪⎫2x +π3(x ∈R ),有下列命题: ①y =f (x )的表达式可改写成y =4cos ⎝ ⎛⎭⎪⎫2x -π6;②y =f (x )是奇函数;③y =f (x )的图象关于点⎝ ⎛⎭⎪⎫-π6,0对称;④y =f (x )的图象关于直线x =-π6对称. 其中正确命题的序号为________.15.(2014·许昌高一检测)函数f (x )=sin(ωx +φ),ω>0,φ∈(0,π),x ∈R ,同时满足:f (x )是偶函数,且关于⎝ ⎛⎭⎪⎫3π4,0对称,在⎣⎢⎡⎦⎥⎤0,π2上是单调函数,求函数f (x ). 11.(2014·合肥高一检测)已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π4,x ∈R .(1)求函数f (x )的最小正周期和单调递增区间.(2)求函数f (x )在区间⎣⎢⎡⎦⎥⎤-π8,π2上的最小值和最大值,并求出取得最值时x 的值.【参考答案】的图象上所有的点向左平移π6个单位长度,得到。