三相桥式全控整流电路仿真..

合集下载

三相桥式全控整流电路Simulink仿真实验

三相桥式全控整流电路Simulink仿真实验

三相桥式全控整流电路Simulink仿真实验背景三相桥式全控整流电路是一种常用的交流调直流电路,可以将交流电源转换为稳定的直流电源,常用于工业生产中的大型电动机驱动系统等。

因此,在电力电子课程中,对于三相桥式全控整流电路的掌握至关重要。

Simulink 是 MATLAB 的拓展模块,可用于系统级模拟和建模,并广泛应用于电力电子学、控制工程、通信和信号处理等领域。

在本文中,我们将介绍三相桥式全控整流电路 Simulink 仿真实验的建模和仿真过程。

实验目的1.了解三相桥式全控整流电路的基本原理和结构;2.掌握 Simulink 的建模方法和使用;3.了解整流电路控制方式,以及开环控制和反馈控制的优缺点;4.通过实验数据分析,验证反馈控制的优势。

实验原理三相桥式全控整流电路三相桥式全控整流电路的基本原理如下图所示:三相桥式全控整流电路原理图三相桥式全控整流电路由三个交流源和六个晶闸管构成,晶闸管分别为 V1、V2、V3、V4、V5 和 V6,其中,V1 和 V6 为两端可控硅,V2 和 V4 为反向可控硅,V3 和 V5 为二极管。

通过对不同晶闸管的控制,可以将交流电源转换为稳定的直流电源。

Simulink 建模在 Simulink 中建立三相桥式全控整流电路模型的过程如下:1.创建模型首先,打开 MATLAB 并创建一个新的模型。

2.添加模块建立三相桥式全控整流电路模型,需要使用到 Simulink 的 SimPowerSystems 模块,因此需要在 Simulink 库中添加此模块。

具体方法为:在主界面上找到“Simulink 库浏览器”,然后在“SimPowerSystems”中选择需要使用的模块,如下图所示。

Simulink 库浏览器添加模块3.建立模型接着,我们开始建立模型。

首先,从 Simulink 库中拖拽“三相 AC Voltage Source”模块,然后拖拽“Three-Phase Controlled Rectifier”模块,连接二者,并设置模块的参数及输入信号。

三相全控桥式整流电路Matlab仿真

三相全控桥式整流电路Matlab仿真

引言................................................ 错误!未定义书签。

1三相桥式全控整流电路工作原理...................... 错误!未定义书签。

三相桥式全控整流电路特性分析.................... 错误!未定义书签。

带电阻负载时的工作情况.......................... 错误!未定义书签。

晶闸管及输出整流电压的情况 (5)三相桥式全控整流电路定量分析................... 错误!未定义书签。

2仿真实验.......................................... 错误!未定义书签。

电阻负载仿真.................................... 错误!未定义书签。

阻感负载仿真.................................... 错误!未定义书签。

带反电动势阻感负载仿真.......................... 错误!未定义书签。

3仿真结果分析...................................... 错误!未定义书签。

@4小结.............................................. 错误!未定义书签。

5参考文献.......................................... 错误!未定义书签。

引言随着社会生产和科学技术的发展,整流电路在自动控制系统、测量系统和发电机励磁系统等领域的应用日益广泛。

常用的三相整流电路有三相桥式不可控整流电路、三相桥式半控整流电路和三相桥式全控整流电路。

三相全控整流电路的整流负载容量较大,输出直流电压脉动较小,是目前应用最为广泛的整流电路。

它是由半波整流电路发展而来的。

由一组共阴极的三相半波可控整流电路和一组共阳极接法的晶闸管串联而成。

三相桥式全控整流电路仿真波形畸变

三相桥式全控整流电路仿真波形畸变

三相桥式全控整流电路仿真波形畸变(最新版)目录1.三相桥式全控整流电路的基本概念和结构2.仿真波形畸变的原因3.解决波形畸变的方法4.结论正文三相桥式全控整流电路是一种基于三相交流电源的整流电路,它可以将交流电转化为直流电,为负载提供稳定的电源。

该电路由六个晶闸管和三相变压器组成,通过控制晶闸管的导通角度,可以实现对输出电压和电流的控制。

在仿真三相桥式全控整流电路时,有时会出现波形畸变的现象。

波形畸变是指输出电压波形与理想波形存在差异,通常表现为波形的脉冲宽度调制、谐波失真等。

这种畸变会对电路的性能产生不良影响,如增加系统的谐波、降低电压的稳定性等。

造成仿真波形畸变的原因有很多,主要包括以下几个方面:1.晶闸管的触发角度不准确:在三相桥式全控整流电路中,晶闸管的触发角度是控制输出电压的关键参数。

如果触发角度设置不准确,会导致输出电压波形畸变。

2.变压器的磁通和电势中的谐波:在三相桥式全控整流电路中,变压器的磁通和电势中存在谐波成分,这些谐波成分会影响输出电压的波形。

3.负载的特性:负载的特性也会影响输出电压的波形。

例如,电感性负载会导致输出电压的波形出现过冲现象。

为了解决波形畸变问题,可以采用以下方法:1.调整晶闸管的触发角度:通过调整触发角度,可以控制输出电压的波形。

通常,需要根据负载的特性和系统的要求,合理设置触发角度。

2.优化变压器的设计:通过优化变压器的设计,可以减小磁通和电势中的谐波成分,从而改善输出电压的波形。

3.选择合适的负载:根据电路的特性,选择合适的负载,可以减小输出电压波形的畸变。

总之,三相桥式全控整流电路仿真波形畸变是一种常见的现象。

三相桥式全控整流电路Simulink仿真实验

三相桥式全控整流电路Simulink仿真实验

基于三相桥式全控整流电路Matlab仿真实验报告13351040 施定邦一、电路仿真原理及仿真电路图:图1图21、带电阻负载时当a≤60°时,电压波形均连续,对于电阻负载,电流波形与电压波形形状相同,也连续。

当a>60°时,电压波形每60°中的后一部分为零,电压波形因为晶闸管不能反向导通而不出现负值。

分析可知α角的移相范围是0°--120°。

2、带阻感负载时a≤60°时,电压波形连续,输出整流电压电压波形和晶闸管承受的电压波形与带电阻负载时十分相似,但得到的负载电流波形却有差异。

电容的容值越大电流波形就越平缓,近于水平直线。

a >60°时,电压波形则出现负值,是因为环流的作用使得电压反向。

分析可知α角的移相范围是0°--90°。

二、仿真过程与结果:设置三个交流电压源Va,Vb,Vc相位差均为120°,得到桥式全控的三相电源。

6个信号发生器产生整流电路的触发脉冲,六个晶闸管的脉冲按VT1-VT2-VT3-VT4-VT5-VT6的顺序依次给出,相位差依次为60°。

设置电源频率为50Hz:三、仿真结果1、带电阻负载:R=100Ω,无电容(1)α=0°时各波形如下:(2)α=30°各波形如下:(3)α=60°各波形如下:(4)α=90°各波形如下:2、带阻感负载:R=100Ω,H=1H (1)α=0°各波形如下:(2)α=30°各波形如下:(3)α=60°各波形如下:(4)α=90°各波形如下:(可以看到,和理论符合得很好,说明各参数设置合理,电路的工作状态接近于理想情况)实验总结:通过此次仿真实验,让自己对相关电路工作原理了解得更加详细和印象深刻,反正就是熟能生巧,然后多动手操作设置各种参数组合观察实验结果以得到比较理想的波形。

三相桥式全控整流电路仿真实验报告

三相桥式全控整流电路仿真实验报告

三相桥式全控整流电路仿真实验报告实验报告书实验项目:三相桥式全控整流及实验所属课程: 电力电子技术基础面向专业: 自动化学院(系): 物理与机电工程学院自动化系实验室: 电机与拖动代号: 4262012年 10 月 20 日一、实验目的:1.熟悉MCL-01, MCL-02组件。

2.熟悉三相桥式全控整流及有源逆变电路的接线及工作原理。

3.了解集成触发器的调整方法及各点波形。

第 2 页二、实验内容:1.三相桥式全控整流电路2.三相桥式有源逆变电路3.观察整流或逆变状态下,模拟电路故障现象时的波形。

三、实验主要仪器设备:1.MCL系列教学实验台主控制屏。

2.MCL—01组件。

3.MCL—02组件。

4.MEL-03可调电阻器。

5.MEL-02芯式变压器6.二踪示波器7.万用表三相桥式全控整流及有源逆变电路实验线路图及接线图五、实验有关原理及原始计算数据,所应用的公式:三相桥式全控整流电路的原理一般变压器一次侧接成三角型,二次侧接成星型,晶闸管分共阴极和共阳极。

一般1、3、5为共阴极,2、4、6为共阳极。

(1)2管同时通形成供电回路,其中共阴极组和共阳极组各1,且不能为同1相器件。

(2)对触发脉冲的要求:1)按VT1-VT2-VT3-VT4-VT5-VT6的顺序,相位依次差60。

2)共阴极组VT1、VT3、VT5的脉冲依次差120,共阳极组VT4、VT6、VT2也依次差120。

3)同一相的上下两个桥臂,即VT1与VT4,VT3与VT6,VT5与VT2,脉冲相差180。

(3)Ud一周期脉动6次,每次脉动的波形都一样,故该电路为6脉波整流电路。

(4)需保证同时导通的2个晶闸管均有脉冲,可采用两种方法:一种是宽脉冲触发一种是双脉冲触发(常用)(5)晶闸管承受的电压波形与三相半波时相同,晶闸管承受最大正、反向电压的关系也相同。

三相桥式全控整流电路实质上是三相半波共阴极组与共阳极组整流电路的串联。

在任何时刻都必须有两个晶闸管导通才能形成导电回路,其中一个晶闸管是共阴极组的,另一个晶闸管是共阳组的。

电力电子技术三相桥式全控整流电路仿真实验

电力电子技术三相桥式全控整流电路仿真实验

电力电子技术三相桥式全控整流电路仿真实验实验目的掌握三相桥式全控整流电路仿真模型的建立及模块参数和仿真参数的设置。

理解三相桥式全控整流电路的工作原理及仿真波形。

实验设备:MA TLAB/Simulink/PSB实验原理三相桥式全控整流电路如图3-1所示。

u2为电源电压,ud为负载电压,id为负载电流,uVT为晶闸管阳极与阴极间电压。

图3-1 三相桥式全控整流电路实验内容启动Matlab,建立如图3-2所示的三相桥式全控整流电路结构模型图。

图3-2 三相桥式全控整流电路模型双击各模块,在出现的对话框内设置相应的模型参数,如图3-3、3-4、3-5、3-6、3-7、3-8、3-9所示。

图3-3 交流电压源V a模块参数图3-4 交流电压源Vb模块参数图3-5 交流电压源Vc模块参数图3-6 同步脉冲发生器模块参数图3-7 触发脉冲控制角常数设置图3-8 触发脉冲封锁常数设置图3-9 负载模块参数系统仿真参数设置如图3-10所示。

图3-10 系统仿真参数运行仿真模型系统即可得到控制角为30º时,电源电压、触发信号、负载电流、负载电压的仿真波形,如图3-11所示。

图3-11 控制角为30º时的仿真波形(带电阻性负载)改变同步脉冲发生器模块的控制角,即可得到不同工作情况下的仿真波形。

例如将晶闸管控制角取为60º,即将触发脉冲控制角常数设置为60,此时的仿真波形如图3-12所示。

图3-12 控制角为60º时的仿真波形(带电阻性负载)改变串联RLC分支模块的参数即可改变负载类型。

例如,设置负载模块的参数R=10Ω,L=0.04H,电容为inf,即为阻感性负载,当晶闸管控制角取为45º(将触发脉冲控制角常数设置为45)时的仿真波形如图3-13所示。

图3-13 控制角为45º时的仿真波形(带阻感性负载)同理,在带阻感性负载的情况下,改变固定时间间隔脉冲发生器模块的初始相位角即可得到不同工作情况下的仿真波形。

(完整word版)三相桥式全控整流电路Simulink仿真实验

(完整word版)三相桥式全控整流电路Simulink仿真实验

基于三相桥式全控整流电路Matlab仿真实验报告 13351040 施定邦一、电路仿真原理及仿真电路图:图1图21、带电阻负载时当a≤60°时,电压波形均连续,对于电阻负载,电流波形与电压波形形状相同,也连续。

当a>60°时,电压波形每60°中的后一部分为零,电压波形因为晶闸管不能反向导通而不出现负值。

分析可知α角的移相范围是0°--120°。

2、带阻感负载时a≤60°时,电压波形连续,输出整流电压电压波形和晶闸管承受的电压波形与带电阻负载时十分相似,但得到的负载电流波形却有差异。

电容的容值越大电流波形就越平缓,近于水平直线。

a >60°时,电压波形则出现负值,是因为环流的作用使得电压反向。

分析可知α角的移相范围是0°--90°。

二、仿真过程与结果:设置三个交流电压源Va,Vb,Vc相位差均为120°,得到桥式全控的三相电源。

6个信号发生器产生整流电路的触发脉冲,六个晶闸管的脉冲按VT1-VT2-VT3-VT4-VT5-VT6的顺序依次给出,相位差依次为60°。

设置电源频率为50Hz:三、仿真结果1、带电阻负载:R=100Ω,无电容(1)α=0°时各波形如下:(2)α=30°各波形如下:(3)α=60°各波形如下:(4)α=90°各波形如下:2、带阻感负载:R=100Ω,H=1H (1)α=0°各波形如下:(2)α=30°各波形如下:(3)α=60°各波形如下:(4)α=90°各波形如下:(可以看到,和理论符合得很好,说明各参数设置合理,电路的工作状态接近于理想情况)实验总结:通过此次仿真实验,让自己对相关电路工作原理了解得更加详细和印象深刻,反正就是熟能生巧,然后多动手操作设置各种参数组合观察实验结果以得到比较理想的波形。

三相桥式全控整流电路的仿真与应用

三相桥式全控整流电路的仿真与应用

: I 二 -l
二l_¨l¨_ ……-·· ·…- ……
… … ……
: 二 i ≥≥ ……· … …· ……-
二 斡: …二 三三三: 三三:: 三三三: 三三三: :塞三: 三三三 三三三 三三三:除三三三 兰三




9.55
9.65
9.70
数 字 频 率/rad
图 1是三 相桥 式 全控 整 流 电路 的原 理 图 ,电 路包 括共 阴极 组 、共 阳极 组 、负 载 和 变压 器 ,共 有 6个 晶闸管 工作 ,它们 均 为 半 控器 件 ,需 要 设 计 触 发 电路才 能 导 通 ,其 中与共 阴极 组 和 阴极 相 连 的 命名 为 VT 、VE 、VT ,与 共 阳极 组 和 阳极 相 连 的 命 名为 VT:、VT 、V1r6 ~ 。电路 在工 作 状态 下共 阴极 组 和 共 阳 极 组 各 有 一 个 晶 闸 管 处 于 导 通 状 态 ,晶 闸管 脉 冲按 VT -VT:一VT3一VT -VT 一VT 一VT 的顺 序依 次 导 通 ,相 位 依 次 相 差 60。。共 阴极 组 VTl、VT3、VT5以 及 共 阳极 组 VT 、VT4、VT6的 脉 冲依 次 相 差 120。。同 一 相 的 上 下 两 个 桥 臂 ,即 VT 与 VT ,VT2与 VL ,V1r3与 VT 的脉 冲 相 差
效 控 制 。
关 键 词 三 相 桥 式 全控 整 流 电路 电路 分 析 电动 挖 掘 机 整 流控 制 电路
中 图 分 类 号 TH89;TM743
文 献 标 识 码 A
文 章 编 号 1000—3932(2018)03—0212 ̄5
整流 电路 的作 用是 将交 流 电能 转换 为直 流 电 能并 供给 直流 用 电设 备 … 。 目前 常见 的 整流 电路 主要 由滤 波器 、变 压器 等 电子元 件组 成 ,在发 电机 励磁 和 电镀 电解 、电 动 机 的调 速 等 领 域 都 有 广泛 应用 “ 。笔 者首 先 分析 三相 桥式 全 控 整流 电路 的工 作原 理 ,并 在 Matlab/Simulink环 境 下 进 行 建 模 和仿真 ,在 理论 和仿 真分 析 的指导 下 ,对 电动挖 掘机 的发 电机组 进 行 技 术 改 造 ,将 三 相 桥 式 全 控 整 流技术 应用 到发 电机供 电系 统 中。 1 工 作 原 理
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三相桥式全控整流电路仿真专业:班级:姓名:学号:指导教师:摘要:三相桥式全控整流电路在现代电力电子技术中具有非常重要的作用。

本文在研究全控整流电路理论基础上,采用Matlab的可视化仿真工具Simulink建立三相桥式全控整流电路的仿真模型,对三相电源电压、电流以及负载特性进行了动态仿真与研究,并且对三相电源电流以及负载电流、电压进行FFT分析。

仿真结果表明建模的正确性,并证明了该模型具有快捷、灵活、方便、直观等一系列特点,从而为电力电子技术课程实验提供了一种较好的辅助工具。

关键词:Matlab;整流电路;动态仿真;建模三相桥式全控整流电路分析(电阻负载)1 主电路结构及工作原理1.1 原理图u d4622图1 三相桥式全控整流电路原理图(电阻负载)1.2工作原理三相桥式全控整流电路原理图如图1所示。

三相桥式全控整流电路是由三相半波可控整流电路演变而来的,它由三相半波共阴极接法(VT1,VT3,VT5)和三相半波共阳极接法(VT4,VT6,VT2)的串联组合。

其工作特点是任何时刻都有不同组别的两只晶闸管同时导通,构成电流通路,因此为保证电路启动或电流断续后能正常导通,必须对不同组别应到导通的一对晶闸管同时加触发脉冲,所以触发脉冲的宽度应大于π/3的宽脉冲。

宽脉冲触发要求触发功率大,易使脉冲变压器饱和,所以可以采用脉冲列代替双窄脉冲;每隔π/3换相一次,换相过程在共阴极组和共阳极组轮流进行,但只在同一组别中换相。

接线图中晶闸管的编号方法使每个周期6个管子的组合导通顺序是VT1-VT2-VT3-VT4-VT5-VT6;共阴极组VT1,VT3,VT5的脉冲依次相差2π/3;同一相的上下两个桥臂,即VT1和VT4,VT3和VT6,VT5和VT2的脉冲相差π,给分析带来了方便;当α=0°时,输出电压Ud一周期的波形是6个线电压的包络线,所以输出脉动直流电压频率是电源频率的6倍,比三相半波电路高1倍,脉动减小,而且每次脉动的波形都一样,故该电路又可称为6脉动整流电路。

α>0°时,Ud 的波形出现缺口,随着α角的增大,缺口增大,输出电压平均值降低。

当α=2π/3时,输出电压为零,所以电阻性负载时, α的移相围是0~2π/3;当0≤α≤π/3时,电流连续,每个晶闸管导通2π/3;当π/3≤α≤2π/3时,电流断续,每个晶闸管导通小于2π/3。

α=π/3是电阻性负载电流连续和断续的分界点。

2 三相桥式全控整流电路建模仿真2.1建模根据三相桥式全控整流电路的原理可以利用Simulink的模块建立仿真模型如下图所示,设置三个交流电压源Va,Vb,Vc相位角依次相差120°,得到整流桥的三相电源。

用6个GTO构成整流桥,实现交流电压到直流电压的转换。

pulse generator产生整流桥的触发脉冲,且从上到下分别给1~6号晶闸管触发脉冲。

图2 三相桥式全控整流电路仿真电路2.2模型参数设置(1)三相电源UA、UB和UC仿真参数设置:电压峰值为380V,频率为50Hz,相位分别为0°、-120°、120°。

(2)三相晶闸管整流器参数使用默认值。

(3)RLC负载仿真参数设置:R=10Ω。

(4)脉冲发生器仿真参数设置:频率50Hz,脉冲宽度取10°,选择双脉冲触发方式。

(5)控制角仿真参数设置:设置为0°、30°、60°、75°、90°。

另外,仿真时间可以按需要设置,是任意的,时间长观察到的波形多,计算花费的时间也多。

一般电阻负载2个电源周期后电路已进入稳态,电感负载因为电流有上升时间,仿真时间也需要长一些,本例设为0.06s。

仿真算法采用ode23tb。

3 仿真结果及其分析a. 触发角α=0°,MATLAB仿真波形如下图3 α=0°三相桥式全控整流电路仿真结果(电阻性负载)b.触发角α=30°,MATLAB仿真波形如下图4 α=30°三相桥式全控整流电路仿真结果(电阻性负载)c.触发角α=60°,MATLAB仿真波形如下图5 α=60°三相桥式全控整流电路仿真结果(电阻性负载)d.触发角α=75°,MATLAB仿真波形如下图6 α=75°三相桥式全控整流电路仿真结果(电阻性负载)e.触发角α=90°,MATLAB仿真波形如下图7 α=90°三相桥式全控整流电路仿真结果(电阻性负载)4 小结本文在对三相桥式全控整流电路理论分析的基础上,利用MATLAB面向对象的设计思想和电气元件的仿真系统,建立了基于Simulink的三相桥式全控整流电路的仿真模型,并对其进行了仿真研究。

在对三相桥式全控整流电路带电阻负载时的工作情况进行仿真分析的基础上,验证了当触发角0°≤α≤60°,负载电流是连续的;当α≥60°时,负载电流不连续;同时也验证了三相桥式全控整流电路触发角α的移相围是0°~ 120°。

通过仿真分析也验证了本文所建模型的正确性。

5 FFT分析5.1 当触发角α=0°时,三相电源电流Ia、Ib、Ic及负载电流Id和负载电压Vd的FFT分析a.触发角α=0°,a相电流FFT分析如下Selected signal: 3 cycles. FFT window (in red): 1 cycles图8 α=0°三相电源电流Ia FFT分析结果(电阻性负载)b.触发角α=0°,b相电流FFT分析如下Selected signal: 3 cycles. FFT window (in red): 1 cycles图9 α=0°三相电源电流Ib FFT分析结果(电阻性负载)c.触发角α=0°,c相电流FFT分析如下Selected signal: 3 cycles. FFT window (in red): 1 cycles Selected signal: 3 cycles. FFT window (in red): 1 cycles Selected signal: 3 cycles. FFT window (in red): 1 cycles图12 α=0°负载电压Vd FFT分析结果(电阻性负载)5.2 当触发角α=75°时,三相电源电流Ia、Ib、Ic及负载电流Id 和负载电压Vd的FFT分析a.触发角α=75°,a相电流FFT分析如下Selected signal: 3 cycles. FFT window (in red): 1 cycles图13 α=75°三相电源电流Ia FFT分析结果(电阻性负载)b.触发角α=75°,b相电流FFT分析如下Selected signal: 3 cycles. FFT window (in red): 1 cycles图14 α=75°三相电源电流Ib FFT分析结果(电阻性负载)c.触发角α=75°,c相电流FFT分析如下Selected signal: 3 cycles. FFT window (in red): 1 cycles图15 α=75°三相电源电流Ic FFT分析结果(电阻性负载)d.触发角α=75°,负载电流Id FFT分析如下Selected signal: 3 cycles. FFT window (in red): 1 cycles图16 α=75°负载电流Id FFT分析结果(电阻性负载)e.触发角α=75°,负载电压Vd FFT分析如下Selected signal: 3 cycles. FFT window (in red): 1 cycles图17 α=75°负载电压Vd FFT分析结果(电阻性负载)三相桥式全控整流电路分析(阻感负载)1 主电路结构及工作原理1.1 原理图VT VT VT dVT VT VT462d2u d图18 三相桥式全控整流电路原理图(阻感负载)1.2工作原理三相桥式全控整流电路原理图如图1所示。

三相桥式全控整流电路是由三相半波可控整流电路演变而来的,它由三相半波共阴极接法(VT1,VT3,VT5)和三相半波共阳极接法(VT4,VT6,VT2)的串联组合。

2 三相桥式全控整流电路建模仿真2.1 建模根据三相桥式全控整流电路的原理可以利用Simulink的模块建立仿真模型如下图所示,设置三个交流电压源Va,Vb,Vc相位角依次相差120°,得到整流桥的三相电源。

用6个GTO构成整流桥,实现交流电压到直流电压的转换。

pulse generator产生整流桥的触发脉冲,且从上到下分别给1~6号晶闸管触发脉冲。

图19 三相桥式全控整流电路仿真电路2.2 模型参数设置(1)三相电源UA、UB和UC仿真参数设置:电压峰值为380V,频率为50Hz,相位分别为0°、-120°、120°(2)三相晶闸管整流器参数使用默认值。

(3)RLC负载仿真参数设置:R=10Ω、L=0.01mH。

(4)脉冲发生器仿真参数设置:频率50Hz,脉冲宽度取10°,选择双脉冲触发方式。

(5)控制角仿真参数设置:设置为0°、30°、45°、60°、75°、90°。

另外,仿真时间可以按需要设置,是任意的,时间长观察到的波形多,计算花费的时间也多。

一般电阻负载2个电源周期后电路已进入稳态,电感负载因为电流有上升时间,仿真时间也需要长一些,本例设为0.06s。

仿真算法采用ode23tb。

3 仿真结果及其分析a. 触发角α=0°,MATLAB仿真波形如下图20 α=0°三相桥式全控整流电路仿真结果(阻感性负载)b. 触发角α=30°,MATLAB仿真波形如下图21 α=30°三相桥式全控整流电路仿真结果(阻感性负载)c. 触发角α=45°,MATLAB仿真波形如下图22 α=45°三相桥式全控整流电路仿真结果(阻感性负载)d. 触发角α=60°,MATLAB仿真波形如下图23 α=60°三相桥式全控整流电路仿真结果(阻感性负载)e. 触发角α=75°,MATLAB仿真波形如下图24 α=75°三相桥式全控整流电路仿真结果(阻感性负载)f. 触发角α=90°,MATLAB仿真波形如下图25 α=90°三相桥式全控整流电路仿真结果(阻感性负载)4小结本文对三相桥式全控整流电路进行了理论分析,利用MATLAB面向对象的设计思想和自带的电力系统工具箱,建立了基于MATLAB-simulink的三相桥式全控整流电路仿真模型,并对其进行比较研究。

相关文档
最新文档