热力学统计物理课后习题答案

合集下载

热力学与统计物理学课后习题及解答

热力学与统计物理学课后习题及解答

第一章 热力学的基本规律1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数T k 。

解:由理想气体的物态方程为 nRT PV = 可得: 体胀系数:TP nR V T V V αp 111==⎪⎭⎫ ⎝⎛∂∂= 压强系数:TV nR P T P P βV 111==⎪⎭⎫ ⎝⎛∂∂=等温压缩系数:P P nRT V P V V κT 1)(112=−⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛∂∂−=1.2 证明任何一种具有两个独立参量P T ,的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数T k ,根据下述积分求得:()⎰−=dP κdT αV T ln 如果PκT αT 11==,,试求物态方程。

解: 体胀系数:p T V V α⎪⎭⎫ ⎝⎛∂∂=1,等温压缩系数:TT P V V κ⎪⎭⎫ ⎝⎛∂∂−=1 以P T ,为自变量,物质的物态方程为:()P T V V ,= 其全微分为:dP κV VdT αdP P V dT T V dV T Tp −=⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=,dP κdT αV dV T −= 这是以P T ,为自变量的全微分,沿任意的路线进行积分得:()⎰−=dP κdT αV T ln 根据题设 ,将P κT αT 1,1==,代入:⎰⎪⎭⎫ ⎝⎛−=dP P dT T V 11ln 得:C pT V +=lnln ,CT PV =,其中常数C 由实验数据可确定。

1.4 描述金属丝的几何参量是长度L ,力学参量是张力£,物态方程是()0£=T L f ,,,实验通常在1n p 下进行,其体积变化可以忽略。

线胀系数定义为:£1⎪⎭⎫ ⎝⎛∂∂=T L L α,等温杨氏模量定义为:TL A L Y ⎪⎭⎫ ⎝⎛∂∂=£,其中A 是金属丝的截面积。

一般来说,α和Y 是T 的函数,对£仅有微弱的依赖关系。

如果温度变化范围不大,可以看作常量。

热力学统计物理课后习题答案33799

热力学统计物理课后习题答案33799

第三章 单元系的相变求证 (1)VT n V n S T ,,⎪⎭⎫⎝⎛∂∂-=⎪⎭⎫⎝⎛∂∂μ (2)PT n T n V P ,,⎪⎭⎫⎝⎛∂∂=⎪⎭⎫⎝⎛∂∂μ 证明:(1)由自由能的全微分方程dF=-SdT-PdV+dn 及偏导数求导次序的可交换性,可以得到VT n V n S T ,,⎪⎭⎫⎝⎛∂∂-=⎪⎭⎫⎝⎛∂∂μ 这是开系的一个麦氏关系。

(2)由吉布斯函数的全微分方程dG=-SdT+VdP+dn 及偏导数求导次序的可交换性,可以得到PT n T n V P ,,⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂μ 这是开系的一个麦氏关系。

求证μ-⎪⎭⎫⎝⎛∂∂V T n U ,nV T T ,⎪⎭⎫⎝⎛∂∂-=μ 解:自由能TS U F -=是以n V T ,,为自变量的特性函数,求F 对n 的偏导数,有VT V T V T n S T n U n F ,,,⎥⎦⎤⎢⎣⎡∂-⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫⎝⎛∂∂ (1) 但自由能的全微分dn pdV Sdt dF μ=--=可得VT n F ,⎪⎭⎫⎝⎛∂∂=μ, V T n S T ,⎥⎦⎤⎢⎣⎡∂=-n V T ,⎪⎭⎫⎝⎛∂∂μ (2) 代入(1),即有V T n U ,⎪⎭⎫⎝⎛∂∂-μ=-T nV T ,⎪⎭⎫⎝⎛∂∂μ 两相共存时,两相系统的定压热容量C P =pT S T ⎪⎭⎫⎝⎛∂∂,体胀系数 P T V V ⎪⎭⎫ ⎝⎛∂∂=1α和等温压缩系数TP V V k T ⎪⎭⎫⎝⎛∂∂-=1均趋于无穷。

试加以说明。

解: 我们知道,两相平衡共存时,两相的温度,压强和化学式必须相等。

如果在平衡压强下,令两相系统准静态地从外界吸取热量,物质将从比熵较低的相准静态地转移到比熵较高的相,过程中温度保持为平衡温度不变。

两相系统吸取热量而温度不变表明他的热容量 C P 趋于无穷。

在上述过程中两相系统的体积也将变化而温度不变,说明两相系统的体胀系数PT V V ⎪⎭⎫ ⎝⎛∂∂=1α也趋于无穷。

热力学统计物理 课后习题 答案

热力学统计物理  课后习题  答案

第一章 热力学的基本规律1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数κT 。

解:已知理想气体的物态方程为nRT pV = 由此得到 体胀系数TpV nR T V V p 11==⎪⎭⎫ ⎝⎛∂∂=α, 压强系数TpV nR T P P V 11==⎪⎭⎫ ⎝⎛∂∂=β 等温压缩系数p p nRT V p V V T 1)(112=-⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛∂∂-=κ 1.2证明任何一种具有两个独立参量T ,P 的物质,其物态方程可由实验测量的体胀系数和等温压缩系数,根据下述积分求得()⎰-=dp dT V T καln ,如果PTT 1,1==κα,试求物态方程。

解: 体胀系数p T V V ⎪⎭⎫ ⎝⎛∂∂=1α 等温压缩系数TT p V V ⎪⎪⎭⎫⎝⎛∂∂-=1κ 以T ,P 为自变量,物质的物态方程为 ()p T V V ,= 其全微分为 dp V dT V dp p V dT T V dV T Tp κα-=⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫⎝⎛∂∂=dp dT VdVT κα-= 这是以T ,P 为自变量的完整微分,沿一任意的积分路线积分,得()⎰-=dp dT V T καln根据题设 , 若 pT T 1,1==κα ⎰⎪⎪⎭⎫⎝⎛-=dp p dT T V 11ln 则有 C pTV +=lnln , PV=CT 要确定常数C ,需要进一步的实验数据。

1.4描述金属丝的几何参量是长度L ,力学参量是张力£,物态方程是(£,L,T)=0,实验通常在大气压下进行,其体积变化可以忽略。

线胀系数定义为FT L L ⎪⎭⎫ ⎝⎛∂∂=1α ,等温杨氏模量定义为TL F A L Y ⎪⎭⎫ ⎝⎛∂∂=,其中A 是金属丝的截面。

一般来说,α和Y 是T 的函数,对£仅有微弱的依赖关系。

如果温度变化范围不大,可以看作常数。

假设金属丝两端固定。

试证明,当温度由T1降至T2时,其张力的增加为)T -(T -Y A £12α=∆。

热力学与统计物理课后习题答案

热力学与统计物理课后习题答案

T
S T
V
;即
T T 0 S V CV
于是: 0>
p 正p数
V T V S
于是:
< 0p
V S
CP
T
S T
P
T
S , T ,
p p
T
S, p S,V
S,V T , p
T
p V
S
S,V T , p
T p V S
S T
,V ,V
T ,V T , p
化简。
解:由式(3.2.7)得:U TS pV ;又由式(3.4.6)得:
dp L dT TV
;L TS
Pa
U L L p dT T dp
L1
p T
dT dp
第四章 多元系的复相平衡和化学平衡
=0。
解: 由式(2.2.7)得:
(
U V
)T
p
=T
( T
)V
-p;
(
U V
)T
=0
;
p
T
( p T
)V
( U V
)T
=
(U ,T ) (V ,T )
(U ,T )
=
( p,T )
( p,T ) (V ,T )
U =0= ( p )T
(
p V
)T

( p V
)T≠0
;
(
U p
)=T 0。
习题2.10 证明范氏气体的定容热容量只是温度的函数,与比容无
)U
>0
证: 由式(2.1.2)得: dH TdS VdP
等H过程: (TdS )H (VdP)H

《热力学与统计物理》第四版(汪志诚)课后题答案

《热力学与统计物理》第四版(汪志诚)课后题答案
根据体胀系数

和等温压缩系数
T
的定义,可将上式改写为
dV dT T dp. V
上式是以
(2)
T, p
为自变量的完整微分,沿一任意的积分路线积分,有
lnV dT T dp .
(3)


1 1 , T T p
,式(3)可表为
1 1 lnV dT dp . p T
根据克劳修斯不等式式1134有是热机从温度为的热源吸取的热量吸热为正放热将热量重新定义可将式1改写为是热机从热源吸取的热量是热机在热源放出的热量假设热机从其中吸取热量的热源中热源的最高温度为在热机向其放出热量的热源中热源的最低温度为必有abcaab定义为热机在过程中吸取的总热量为热机放出的总热量则式4可表为根据热力学第一定律热机在循环过程中所做的功为热机的效率为116理想气体分别经等压过程和等容过程温度由升至假设是常数试证明前者的熵增加值为后者的在等压过程中温度由升到时熵增加值在等容过程中温度由升到时熵增加值117温度为的1kg水与温度为的恒温热源接触后水温达到
pn
,铜块的体积改变多少?
解:(a)根据1.2题式(2),有
dV dT T dp. V
上式给出,在邻近的两个平衡态,系统的体积差 体积不变,
(1)
dV
,温度差
dT
和压强差
dp
之间的关系。如果系统的
dp

dT
的关系为
dp
dT . T



T
(2)
可以看作常量的情形下,将式(2)积分可得
所以
L L2 L 2 L0 dL0 L3 0 b 2 bT 1 2 L0 L2 dT 1 L0 L 1 dL0 1 L3 0 . L L0 dT T L3 1 2 L2 0 2 bT 3 L3 0 L0 L

热力学统计物理 课后习题 答案

热力学统计物理  课后习题  答案

第七章 玻耳兹曼统计7.1试根据公式Va P Lll∂∂-=∑ε证明,对于非相对论粒子 ()222222212zy x n n n L m m P ++⎪⎭⎫ ⎝⎛== πε,( ,2,1,0,,±±=z y x n n n )有V U P 32= 上述结论对于玻尔兹曼分布,玻色分布和费米分布都成立。

证明:处在边长为L 的立方体中,非相对论粒子的能量本征值为()22222,,2212z y x n n nn n n L m m P zy x ++⎪⎭⎫ ⎝⎛== πε ( ,2,1,0,,±±=z y x n n n )-------(1) 为书写简便,我们将上式简记为32-=aVε-----------------------(2)其中V=L 3是系统的体积,常量()22222)2(z y x n n n ma ++= π,并以单一指标l 代表n x ,n y ,n z 三个量子数。

由(2)式可得VaV V l L εε323235-=-=∂∂----------------------(3) 代入压强公式,有VUa VV a P l ll L ll3232==∂∂-=∑∑εε----------------------(4) 式中 lll a U ε∑=是系统的内能。

上述证明未涉及分布的具体表达式,因此上述结论对于玻尔兹曼分布,玻色分布和费米分布都成立。

注:(4)式只适用于粒子仅有平移运动的情形。

如果粒子还有其他的自由度,式(4)中的U 仅指平动内能。

7.2根据公式Va P Lll∂∂-=∑ε证明,对于极端相对论粒子 ()212222z y x n n n Lc cp ++== πε, ,2,1,0,,±±=z y x n n n 有VUP 31=上述结论对于玻尔兹曼分布,玻色分布和费米分布都成立。

证明:处在边长为L 的立方体中,极端相对论粒子的能量本征值为()21222,,2z y x n n nn n n Lczy x ++= πε, ,2,1,0,,±±=z y x n n n -------(1)为书写简便,我们将上式简记为31-=aVε-----------------------(2)其中V=L 3是系统的体积,常量()212222z y x n n n c a ++= π,并以单一指标l 代表n x ,n y ,n z 三个量子数。

热力学与统计物理课后习题答案第一章

热力学与统计物理课后习题答案第一章

试求理想气体的体胀系数,压强系数和等温压缩系数。

解:已知理想气体的物态方程为(1)由此易得(2)(3)(4)证明任何一种具有两个独立参量的物质,其物态方程可由实验测得的体胀系数及等温压缩系数,根据下述积分求得:如果,试求物态方程。

解:以为自变量,物质的物态方程为其全微分为(1)全式除以,有根据体胀系数和等温压缩系数的定义,可将上式改写为(2)上式是以为自变量的完整微分,沿一任意的积分路线积分,有(3)若,式(3)可表为(4)选择图示的积分路线,从积分到,再积分到(),相应地体积由最终变到,有即(常量),或(5)式(5)就是由所给求得的物态方程。

确定常量C需要进一步的实验数据。

在和1下,测得一铜块的体胀系数和等温压缩系数分别为可近似看作常量,今使铜块加热至。

问:(a)压强要增加多少才能使铜块的体积维持不变?(b)若压强增加100,铜块的体积改变多少?解:(a)根据题式(2),有(1)上式给出,在邻近的两个平衡态,系统的体积差,温度差和压强差之间的关系。

如果系统的体积不变,与的关系为(2)在和可以看作常量的情形下,将式(2)积分可得(3)将式(2)积分得到式(3)首先意味着,经准静态等容过程后,系统在初态和终态的压强差和温度差满足式(3)。

但是应当强调,只要初态和终态是平衡态,两态间的压强差和温度差就满足式(3)。

这是因为,平衡状态的状态参量给定后,状态函数就具有确定值,与系统到达该状态的历史无关。

本题讨论的铜块加热的实际过程一般不会是准静态过程。

在加热过程中,铜块各处的温度可以不等,铜块与热源可以存在温差等等,但是只要铜块的初态和终态是平衡态,两态的压强和温度差就满足式(3)。

将所给数据代入,可得因此,将铜块由加热到,要使铜块体积保持不变,压强要增强(b)题式(4)可改写为(4)将所给数据代入,有因此,将铜块由加热至,压强由增加,铜块体积将增加原体积的倍。

简单固体和液体的体胀系数和等温压缩系数数值都很小,在一定温度范围内可以把和看作常量. 试证明简单固体和液体的物态方程可近似为解: 以为状态参量,物质的物态方程为根据习题式(2),有(1)将上式沿习题图所示的路线求线积分,在和可以看作常量的情形下,有(2)或(3)考虑到和的数值很小,将指数函数展开,准确到和的线性项,有(4)如果取,即有(5)描述金属丝的几何参量是长度,力学参量是张力J,物态方程是实验通常在1下进行,其体积变化可以忽略。

热力学与统计物理课后习题答案第一章

热力学与统计物理课后习题答案第一章

1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数κT 。

解:已知理想气体的物态方程为,pV nRT = (1)由此易得11,p V nR V T pV Tα∂⎛⎫=== ⎪∂⎝⎭ (2) 11,V p nR p T pV Tβ∂⎛⎫=== ⎪∂⎝⎭ (3) 2111.T T V nRT V p V p pκ⎛⎫⎛⎫∂⎛⎫=-=--= ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭ (4)1.2 证明任何一种具有两个独立参量,T p 的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数κT ,根据下述积分求得:()ln T V =αdT κdp -⎰如果11,T T pακ==,试求物态方程。

解:以,T p 为自变量,物质的物态方程为(),,V V T p =其全微分为.p TV V dV dT dp T p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ (1) 全式除以V ,有11.p TdV V V dT dp V V T V p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭根据体胀系数α和等温压缩系数T κ的定义,可将上式改写为.T dVdT dp Vακ=- (2) 上式是以,T p 为自变量的完整微分,沿一任意的积分路线积分,有()ln .T V dT dp ακ=-⎰ (3)若11,T T pακ==,式(3)可表为11ln .V dT dp Tp ⎛⎫=- ⎪⎝⎭⎰ (4)选择图示的积分路线,从00(,)T p 积分到()0,T p ,再积分到(,T p ),相应地体积由0V 最终变到V ,有000ln=ln ln ,V T pV T p - 即000p V pV C T T ==(常量), 或.pV CT = (5)式(5)就是由所给11,T T pακ==求得的物态方程。

确定常量C 需要进一步的实验数据。

1.3 在0C 和1n p 下,测得一铜块的体胀系数和等温压缩系数分别为51714.8510K 7.810.n p ακ----=⨯=⨯T 和T ακ和可近似看作常量,今使铜块加热至10C 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章 玻耳兹曼统计7.1试根据公式Va P Lll∂∂-=∑ε证明,对于非相对论粒子 ()222222212z y x n n n L m m P ++⎪⎭⎫ ⎝⎛== πε,( ,2,1,0,,±±=z y x n n n )有V U P 32= 上述结论对于玻尔兹曼分布,玻色分布和费米分布都成立。

证明:处在边长为L 的立方体中,非相对论粒子的能量本征值为()22222,,2212z y x n n nn n n L m m P zy x ++⎪⎭⎫ ⎝⎛== πε ( ,2,1,0,,±±=z y x n n n )-------(1) 为书写简便,我们将上式简记为32-=aVε-----------------------(2)其中V=L 3是系统的体积,常量()22222)2(z y x n n n ma ++=π,并以单一指标l 代表n x ,n y ,n z 三个量子数。

由(2)式可得VaV V l L εε323235-=-=∂∂----------------------(3) 代入压强公式,有VUa VV a P l ll L ll3232==∂∂-=∑∑εε----------------------(4) 式中 lll a U ε∑=是系统的能。

上述证明未涉及分布的具体表达式,因此上述结论对于玻尔兹曼分布,玻色分布和费米分布都成立。

注:(4)式只适用于粒子仅有平移运动的情形。

如果粒子还有其他的自由度,式(4)中的U 仅指平动能。

7.2根据公式Va P Lll∂∂-=∑ε证明,对于极端相对论粒子 ()212222zy x n n n Lc cp ++== πε, ,2,1,0,,±±=z y x n n n 有VUP 31=上述结论对于玻尔兹曼分布,玻色分布和费米分布都成立。

证明:处在边长为L 的立方体中,极端相对论粒子的能量本征值为()21222,,2z y x n nn n n n Lczy x++= πε, ,2,1,0,,±±=z y x n n n -------(1)为书写简便,我们将上式简记为31-=aVε-----------------------(2)其中V=L 3是系统的体积,常量()212222z y x n n n c a ++= π,并以单一指标l 代表n x ,n y ,n z 三个量子数。

由(2)式可得VaV V l L εε313134-=-=∂∂----------------------(3)代入压强公式,有VUa VV a P l ll L ll3131==∂∂-=∑∑εε----------------------(4) 式中 lll a U ε∑=是系统的能。

上述证明未涉及分布的具体表达式,因此上述结论对于玻尔兹曼分布,玻色分布和费米分布都成立。

7.4试证明,对于遵从玻尔兹曼分布的系统,熵函数可以表示为∑-=SS SP PNkS ln ,式中P S 是粒子处在量子态S 的概率, 1Z e N e P ss S βεβεα---== , ∑S对粒子的所有量子态求和。

证明:根据式(6-6-9),处在能量为的量子态S 上的平均粒子数为sef s βεα--=---------(1)以N 表示系统的粒子数,粒子处在量子态S 上的概率为1Z e N e P ss S βεβεα---==---------(2) 显然,P S 满足归一化条件1=∑S sP ---------(3)式中∑s 是对粒子所有可能的量子态求和。

粒子的平均能量可以表示为S S sP E ε∑=----(4)根据式(7-1-13),定域系统的熵为)(ln )ln (ln 111εβββ+=∂∂-=Z Nk Z Z Nk S )(ln 1S SS Z P Nk βε+=∑ ==== ∑-=SS SP PNkS ln ----------------(5)最后一步用了(2)式,即S S Z P βε--=1ln ln ----------------(6)(5)式的熵表达式是具有启发性的。

熵是广延量,具有相加性。

(5)式意味着一个粒子的熵等于 。

它取决于粒子处在各个可能状态的概率P S 。

如果粒子肯定处在某个状态r ,即=δs r ,粒子的熵等于零;反之,当粒子可能处在多个微观状态时,粒子的熵大于零。

这与熵是无序度的量度的理解自然是一致的。

如果换一个角度考虑,粒子的状态完全确定意味着我们对它有完全的信息。

粒子以一定的概率处在各个可能的微观状态意味着我们对它缺乏完全的信息。

所以,也可以将熵理解为信息缺乏的量度。

7.5固体含有A 、B 两种原子.试证明由于原子在晶体格点的随机分布起的混合熵为[]()[]()()[]x x x x Nk x N Nx N k S --+-=-=1ln 1ln !1!!ln其中N 是总原子数,x 是A 原子的百分比,(1一x )是B 原子的百分比.注意x <1.上式给出的熵为正值.证明:A 、B 两种原子在晶体格点的随机分布状态数等于Nx 个A 种原子在N 个格点随即分布的状态数:[]()[]!1!!x N Nx N C NxN-=Ω所以混合熵[]()[]()[]{}!1ln )!ln(!ln !1!!lnln x N Nx N k x N Nx N k k S ---=-=Ω=当N 很大时,利用公式()得,1ln !ln -≈m m m()()()()[]{}()()[]x x x x Nk Nx N x N Nx Nx N N k S --+-=-------≈1ln 1ln 1ln 11ln 1ln证毕7.8气体以恒定的速度沿Z 方向作整体运动。

试证明,在平衡状态下分子动量的最概然分布为Z Y X P P P P mdP dP dP h VeZ Y X 3])([22022-++--βα。

证明:气体是非定域系统,由于满足经典极限条件而遵从玻尔兹曼分布。

与分布{}a 相应的气体的微观状态数为!l la lla l ∏∏=Ωω---------(1)其对数为)1(ln ln !ln ln ln --=-=Ω∑∑∑∑l l ll l ll ll l la a a a a ωω---------(2)在气体沿Z 方向作整体运动的情形下,分布必须满足下述条件:N a l l=∑; E a l l l=∑ε ; Z lZ l lP P a =∑---------(3)其中P Z 是气体在Z 方向的总动量,P LZ 是处在能级l 的分子所具有的Z 方向动量。

气体分子的最概然分布是在限制条件(3)下,使ln Ω为极大的分布。

令各有a l 的变化δ a l , ln Ω将因而有变化l llla a δωδlnln ∑-=Ω限制条件(3)要求N a l lδδ=∑; 0==∑E a l l lδδε ; 0==∑Z l lZ lP a P δδ用拉氏乘子 α1,β 和γ乘这三个式子并从δ ln Ω中减去,得0)(lnln 1=+++-=---Ω∑l lZ l lllZ a P a P E N δγβεαωγδβδδαδ根据拉氏乘子法原理,每个δ a l 的系数都等于零,所以有0ln=+++lZ l llP a γβεαω或lZs P l l ea γβεαω---=1---------(4)可以将式(4)改写成为动量的连续分布:在体积V=L 3,在P X 到P X +dP X ,P Y 到P Y +dP Y ,P Z 到P Z +dP Z ,的动量围的分子数为Z Y X p p p p mdP dP dP h VeZz y x 3)(22221γβα-++---------(5) 或 Z Y X p p p p mdP dP dP hVez y x 3])([220221-++--βα-------(6) 其中βγm P -=0mP m 2220121βαβγαα-=-=-------(7)式中的参量α1,β 和P 0由(3)式确定。

由(3)式中的 得2333])([2)2(20221βπαβαm hV e dP dP dP h V eN Z Y X p p p p mz y x --++--∞+∞-==⎰⎰⎰-------(8) 代入(6)式消去 ,可将气体分子的动量分布表达为Z Y X p p p pm dP dP dP e mN z y x ])([2232022)2(-++-βπβ-------(9)利用(9)式求P Z 的平均值,得0])([2232022)2(P dP dP dP P em P Z Y X Z p p p p mZ z y x ==-++-∞+∞-⎰⎰⎰βπβ所以P 0是P Z 的平均值。

P 0与P Z 的关系为P Z =NP 0在气体具有恒定的整体速度的情形下,气体的平衡状态不受破坏,其物态方程仍由PV=NKT 描述。

根据此容易证明 β=1/KT7.9气体以恒定速度v 0沿Z 方向作整体运动。

求分子的平均平动能量。

解:根据上题,以恒定速度v 0沿Z 方向作整体运动的气体,其分子的速度分布为Z Y X V V V V kT mdv dv dv e kTm N z y x ])([2232022)2(-++-π---------(1) 分子平均动量的平均值为Z Y X V V V V kTmz y x dv dv dv e V V V m kT m z y x ])([2222232022)(21)2(-++-∞+∞-⎰⎰⎰++=πε)212121()2(2022)(22222221Z V V kT mz Y V kT m y X V kT m x dv e V m dv e V m dv e V m kT m z y x --∞+∞--∞+∞--∞+∞-⎰⎰⎰++=π上式头两项积分后分别等于1/2KT ,第三项的积分等于ZV V kT mz Z V V kT m z dv e V V dv e V V m kT m z z 2020)(20)(220212)((21)2(--∞+∞---∞+∞-⎰⎰+-⋅π)20)(220Z V V kTmdv eV z --∞+∞-⎰-20202121mV mV kT -+=因此, 202123mV kT +=ε(2)式表明,气体分子的平均能量等于无规热运动的平均能量3/2KT 及整体运动能量1/2mv o2之和。

7.11试根据麦氏速度分布律导出两分子的相对速度0ZX和相对速率r v =的概率分布,并求相对速率的平均值r v . 解:先求速度分布:两分子的相对速度r v 在dv rx dv ry dv rz 的几率()()()()()r r v v V v V v d v V v V v d v V +==⎰⎰111211()[]z y x v v v v v v v v v kTm dv dv dv ekT m rz z ry y rx x z y x 111)()()(232121212121212⎰⎰⎰∞∞-++++++++-⎪⎭⎫⎝⎛=π其中与v 1x 有关的分量为[]2/1222212221)(2222122121--∞∞---∞∞-⎪⎭⎫ ⎝⎛+--∞∞-++-⎪⎭⎫ ⎝⎛===⎰⎰⎰kT m edx eedv eedv erx rx rx x rx rx x x v kT m x kTm v kT m x v v kT m v kT m x v v v kTm π同理可求得v 1y 、v 1z 分量分别为2/1222--⎪⎭⎫ ⎝⎛kT m e ry v kT m π和2/1222--⎪⎭⎫ ⎝⎛kT m erz v kT m π()222/32/322322812r r v kT m v kT m r ekT m kT m ekT m v V ---⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛=∴πππ引入2m≡μ,则速度分布为: rz ry rx v kTdv dv dv ekT x222/32μπμ-⎪⎭⎫ ⎝⎛把变数换为v r ,θ,φ,并对θ,φ积分,则得到速率分布为r r v kTdv v ekT x222/3224μπμπ-⎪⎭⎫ ⎝⎛相对速率的平均值v mkTkTdv v ev kT v r v kTr r x2828240222/32===⎪⎭⎫⎝⎛=⎰∞-ππμπμπμ7.14分子从器壁的小孔射出,求在射出的分子束中,分子的平均速率和方均根速率。

相关文档
最新文档