八年级上册数学-分式的概念
华师大版八年级上册数学知识点

华师大版八年级上册数学知识点
华师大版八年级上册数学知识点如下:
1. 分式与整式
-整式的概念
-分式的概念
-分式的相等性与消去律
-有理数的加法与减法
2. 比例与比
-比例的定义
-比例恒等式与比例方程
-比例的延长与缩短
-平行线分线段成比例
-利用比例解决实际问题
3. 一次函数
-函数的概念
-一次函数的概念
-一次函数的图象与性质
-一次函数的表示与求解
4. 相似与全等
-相似的概念
-全等的概念
-相似三角形的性质
-利用相似解决实际问题
-全等三角形的性质
5. 图形的认识
-点、直线和线段的概念
-角度的概念与计算
-三角形的概念与分类
-四边形的分类与性质
6. 平面直角坐标系
-平面直角坐标系的引入
-平面直角坐标系中的距离
-平面直角坐标系中的中点
-平面直角坐标系中的斜率
-平面直角坐标系中的一次函数方程
以上是华师大版八年级上册数学的一些重要知识点,可能会根据不同版本和教材的差异存在一些差别,建议以教材为准。
八年级数学上册分式运算基本概念与解题技巧

八年级数学上册分式运算基本概念与解题技巧分式知识点关键词:分式、分式的基本性质、分式的约分、分式的通分、分式的运算、整数指数幂、科学计数法、分式方程、最后结果一定时最简形式必须清晰知道的基本概念:分式:1,定义:一般地,如果A和B为两个整式,并且B中含有字母,那么式子A/B就叫做分式,A为分子,B为分母。
请联系前面讲的分数,基本是一样的2,与分式有关的一些知识点:1>分式有意义,要求分母不为0,隐含分母要有字母;2>分式无意义,分母为0;3>分式值为0,分子为0 ,且分母不为0;4>分式值为负或小于0,分子分母异号;5>分式值为正或大于0,分子分母同号;6>分式值为1,分子分母值相等;7>分式值为-1,分子分母值互为相反数;这些知识点看上去非常简单,甚至给人感觉都是废话。
那是因为没有放在具体的题目中,其实你那些没有拿到的分都是从这些很简单的知识里面来的。
比如,一个很复杂的分式,分子分母都很复杂,但是如果能够知道它的值为1,则表示分子和分母是相等的。
这些东西要有谦虚的心态在以后的学习中才能慢慢体会到的。
这里给大家强调三点!分母中一定要含有字母的式子才叫分式;也就是分式的分母要满足两个条件的,a>不为0,b>必须含有字母;分式与整式的和,也是分式。
判断分式有无意义时,一定要讨论原分式,而不能时化简后的分式!举例:问(x2-1)/x2-x-2何时有意义?答案是x≠2和x≠-1;而如果化简后只能得到x≠2这个答案了。
分式的基本知识:分式的基本性质,分式的分子分母同时乘以或除以一个不等于0的数,分式的值不变;分式的符号,分式的分子分母和分式本身的符号,改变其中任何两个,分式的值不变;分式的约分,就是把一个分式的分子和分母的公因式约去,约至它们再也没有公因式时就是最简分式了。
分子分母均为单项式时可以直接约分,即约去它们系数的最大公约数,然后约去分子分母的相同因式的最低次幂;分子分母为多项式时,要先将它们进行因式分解,再约分。
八年级上册数学笔记知识点归纳

八年级上册数学笔记知识点归纳一、三角形。
1. 三角形的基本概念。
- 三角形就像一个三条边围起来的小院子。
它有三个顶点(就像院子的三个角点),三条边(院子的围墙),还有三个内角(院子里面的三个角)。
三角形的内角和是180°哦,这就好比把这个院子的三个角拼在一起,正好能拼成一个平角。
- 按照边来分,三角形有等边三角形(三条边都一样长,这可是三角形里的“三胞胎”,长得一模一样)、等腰三角形(有两条边一样长,就像有两个兄弟长得一样高)和不等边三角形(三条边都不一样长,各有各的个性)。
- 按角分呢,有锐角三角形(三个角都是锐角,这种三角形比较“温和”,没有特别大的角)、直角三角形(有一个角是直角,就像一个小角落特别方正,这个直角可重要啦,直角所对的边叫斜边,另外两条边叫直角边)和钝角三角形(有一个钝角,这个角比较“霸道”,占的地方大)。
2. 三角形的三边关系。
- 三角形的三条边就像三个小伙伴手拉手。
任意两边之和大于第三边,这就好比两个小伙伴手拉手的长度一定要比第三个小伙伴长,不然就拉不住啦。
比如说,三条边分别是a、b、c,那就得a + b>c,a + c>b,b + c>a。
反过来呢,任意两边之差小于第三边,就像两个小伙伴手拉手的长度比第三个小伙伴长不了太多,不然就脱节了。
3. 三角形的高、中线与角平分线。
- 三角形的高,就像从三角形的一个顶点向对边作的一条垂线。
这个高就像一个小杆子直直地立在对边上,它可以用来计算三角形的面积呢,三角形面积S=(1)/(2)×底×高。
- 中线呢,是连接三角形一个顶点和它对边中点的线段。
中线把三角形分成了两个面积相等的小三角形,就像把一个大蛋糕从中间切成了两块一样大小的小蛋糕。
- 角平分线就是把三角形的一个角平均分成两份的射线。
它就像一把小剪刀,把一个角剪成了两个一样大的小角。
二、全等三角形。
1. 全等三角形的概念和性质。
- 全等三角形就像双胞胎,长得一模一样。
八年级上数学分式知识点

八年级上数学分式知识点一、分式的概念分式也叫有理数,是数的一种表现形式,其中分子和分母都是整数,分母不能为0。
分式可以写成a/b的形式,a为分子,b为分母。
二、分式的化简1.因式分解法将分子和分母进行因式分解,然后将公因式约掉。
例如:(6a^2b)/(9ab^2) = (2a)/(3b)2.通分化简法将两个分母的最小公倍数作为分母,分子分别乘以分母的倍数,然后约掉公因式。
例如:(3/4) + (1/6) = (9/12) + (2/12) = (11/12) 3.除法化简法将除法转换成乘法,分子不变,分母倒过来。
例如:(3/4) ÷ (2/5) = (3/4) × (5/2) = (15/8)三、分式的加减1.通分后合并分子例如:(2/3) + (1/4) = (8/12) + (3/12) = (11/12) (1/2) - (1/3) = (3/6) - (2/6) = (1/6)2.需要先找到一个公因式例如:(1/4x) + (3/5) = (5/20x) + (12/20) = (5+12)/20x = (17/20x) (1/2y) - (2/3x) = (3/6y) - (4/6x) = (3x-4y)/6xy四、分式的乘法将分子相乘,分母相乘,然后约掉公因式。
例如:(3/4) × (2/5) = (6/20) = (3/10)五、分式的除法将除号转为乘号,然后取倒数,分子同分母约掉公因式。
例如:(3/4) ÷ (2/5) = (3/4) × (5/2) = (15/8)六、分式的绝对值分式的绝对值是分子分母的绝对值之商,如果分子分母符号相同,结果为正,如果符号不同,结果为负。
例如:|-2/3| = 2/3|-2/-3| = 2/3七、分式的倒数将分数的分子和分母交换位置,得到一个新的分数,即原分数的倒数。
例如:倒数是 4/5 的分数为 5/4以上就是八年级上数学分式知识点的详细介绍,希望同学们在学习数学的过程中能够掌握这些知识点,并且通过练习提高自己的数学水平。
八年级数学上册《分式》知识点归纳

分 式一、概念:定义1:整式A 除以整式B ,可以表示成BA的形式。
如果除式..B .中含有分母.....,那么称BA为分式。
(对于任何一个分式,分母不为0。
如果除式B 中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。
分式:分母中含有字母。
整式:分母中没有字母。
而代数式则包含分式和整式。
)定义2:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分。
定义3:分子和分母没有公因式的分式称为最简分式。
(化简分式时,通常要使结果成为最简分式或者整式。
)定义4:化异分母分式为同分母分式的过程称为分式的通分。
定义5:分母中含有未知数的方程叫做分式方程 定义6:在将分式方程变形为整式方程时,方程两边同乘一个含有未知数的整式,并约去了分母,有时可能产生不适合原分式方程的解(或根),这种解通常称为增根。
二、基本性质:分式的基本性质:分式的分子与分母都.乘以(或除以)同.一个不等于零....的整式,分式的值不变。
三、运算法则:1、分式的乘法的法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;(用符号语言表示:b a ﹒d c =bdac)2、分式的除法的法则:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.(用符号语言表示:b a ÷dc =b a ﹒cd =bcad) 分式乘除法的运算步骤:当分式的分子与分母都是单项式时: (1)乘法运算步骤是:①用分子的积做积的分子,分母的积做积的分母;②把分式积中的分子与分母分别写成分子与分母的分因式与另一个因式的乘积形式,如果分子(或分母)的符号是负号,应把负号提到分式的前面;③约分。
(2)除法的运算步骤是:把除式中的分子与分母颠倒位置后,与被除式相乘,其它与乘法运算步骤相同。
当分式的分子、分母中有多项式,①先分解因式;②如果分子与分母有公因式,先约分再计算.③如果分式的分子(或分母)的符号是负号时,应把负号提到分式的前面. 最后的计算结果必须是最简分式或整式. 3、同分母分式加减法则是:同分母的分式相加减。
八年级数学上册必背知识点

以下是八年级数学上册的必背知识点:一、整式的概念与运算1.简单的代数式的概念与运算:常数、变量、系数、次数等。
2.同类项的概念与合并:同底数幂相乘的原理、定点方向向量。
3.整式之和与差、积的概念与规律。
二、分式的概念与运算1.简单的分式的概念与约分:通分、求最简分式。
2.分式之和与差、积及商的概念与运算。
三、一元一次方程与不等式1.等式的定义与性质:等式的基本性质、等式的移项与合并、等式的逆运算等。
2.一元一次方程与不等式的定义与解法:有理数的加减乘除、方程、方程与不等式的基本关系。
四、图形的初步认识1.点、线、面的概念。
2.线段、射线、角的概念与性质:直角、余角、补角、平分线。
3.直线与点的位置关系:共线、相交、平行、垂直。
4.三角形、四边形的定义与性质:等腰、等边、直角、等角、对顶角、对边、外角和等角、四边形的分类及性质。
五、比例与图形的相似1.比与比例的概念与运算:比例的基本性质、反比例等。
2.图形的相似与比例:全等、相似的定义与性质、相似三角形的判定与性质、相似多边形的性质等。
六、平面直角坐标系与函数1.平面直角坐标系:横坐标与纵坐标、坐标的性质与应用等。
2.函数及表示方法:函数的概念、自变量与因变量、函数的表示方法等。
3.一次函数的概念:函数的定义域、值域、图象等。
七、数据的收集、整理与处理1.数据的收集与整理:调查方法、表格、直方图、折线图等。
2.概率的初步认识:实验、样本空间、随机事件、概率等。
以上是八年级数学上册的必背知识点,希望能对你的学习有所帮助!。
八年级上册数学分式和分式方程

八年级上册数学分式和分式方程一、分式的概念。
1. 定义。
- 一般地,如果A、B(B≠0)表示两个整式,且B中含有字母,那么式子(A)/(B)就叫做分式。
例如(x + 1)/(x),(2)/(x - 1)等都是分式。
- 整式和分式的区别在于分母是否含有字母,整式的分母不含有字母,而分式的分母含有字母。
2. 分式有意义、无意义和值为零的条件。
- 分式有意义的条件:分母不为零。
例如对于分式(1)/(x - 2),当x-2≠0,即x≠2时,分式有意义。
- 分式无意义的条件:分母为零。
如在分式(3)/(x + 1)中,当x + 1=0,即x=-1时,分式无意义。
- 分式值为零的条件:分子为零且分母不为零。
对于分式(x)/(x - 3),当x = 0且x-3≠0(即x≠3)时,分式的值为零。
二、分式的基本性质。
1. 基本性质。
- 分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变。
即(A)/(B)=(A× C)/(B× C),(A)/(B)=(A÷ C)/(B÷ C)(C≠0)。
例如(2)/(3)=(2×2)/(3×2)=(4)/(6),对于分式(x)/(x + 1),(x)/(x + 1)=(x×2)/((x + 1)×2)=(2x)/(2x + 2)。
2. 约分和通分。
- 约分:把一个分式的分子与分母的公因式约去,叫做分式的约分。
例如对于分式(6x^2y)/(9xy^2),分子分母的公因式是3xy,约分后得到(2x)/(3y)。
- 通分:把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。
例如将(1)/(x)和(1)/(x + 1)通分,先找最简公分母为x(x + 1),则(1)/(x)=(x+1)/(x(x + 1)),(1)/(x + 1)=(x)/(x(x + 1))。
三、分式的运算。
八年级数学上册分式知识点

八年级数学上册分式知识点在八年级数学上册中,学生将开始学习分式的概念和相关知识。
分式在数学中起着重要的作用,并广泛应用于各种实际问题的解决中。
下面将详细介绍八年级数学上册中与分式相关的知识点。
一、分式的定义和表示方式分式是指用横线将两个数连接起来形成的表达式,上面的数被称为分子,下面的数被称为分母。
分式的形式通常表示为a/b,其中a为整数,b为非零整数。
例如,2/3、5/4等都是分式的表示形式。
在分式中,分子和分母之间用分数线表示,分子位于分数线的上方,分母位于分数线的下方。
二、分式的基本性质1. 分式的值:分式所表示的值等于分子除以分母的结果。
例如,对于分式2/3,它的值为2除以3,即2/3。
2. 分式的约分与通分:分子和分母可以同时除以一个相同的非零数,使得分子和分母没有公约数,这个过程称为约分。
通分是指将两个或多个分式的分母变为相同的方式。
例如,分式1/4和1/2的通分结果为1/4和2/4,它们的分母相同。
3. 分式的乘法和除法:两个分式相乘时,分子乘以分子,分母乘以分母,得到的结果为新的分式。
例如,计算1/4乘以2/3,得到的结果为1/6。
当进行两个分式的除法运算时,将除法运算转化为乘法运算,将除法运算转化为乘法运算的倒数。
例如,计算1/4除以2/3,可以转化为1/4乘以3/2,结果为1/8。
4. 分式的加法和减法:两个分式相加时,需要找到它们的通分形式,然后将分子相加,分母保持不变。
例如,计算1/4加上1/2,通分得到2/8加上4/8,结果为6/8,可以约分为3/4。
当进行两个分式的减法运算时,同样需要找到它们的通分形式,然后将分子相减,分母保持不变。
例如,计算1/2减去1/4,通分得到2/4减去1/4,结果为1/4。
三、分式在实际问题中的应用分式在解决实际问题中起着重要的作用,在日常生活和学习中都有广泛的应用。
1. 分享物品:当多个人要平分一件物品时,可以使用分式来表示每个人得到的份额。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1 分式
1.1.1分式的概念
(第1课时)
教学目标
1 了解分式的概念。
2 通过具体情境感受分数的基本性质并类比得出分式的基本性质。
3理解分式有意义的条件。
教学重点、难点:
重点:分式的概念和性质难点:理解分式的性质。
教学过程
一创设情境,导入新课
探究:
1把三个一样的苹果分给4位小朋友,每位小朋友分到多少苹果?你怎么分给他们?(交流讨论)
(1)每位小朋友分3 4
(2)分法:
①每个苹果切成四个相等的小块,共12块,每人分3块,这3块占一个苹果的3
4
②为了每个小朋友吃起来方便,每个苹果切成8块,共24块,每人分6块,这
六块占一个苹果的6
8。
想想这两种分法分得的是否一样多?(36
=
48
,即:
3326
==
4428
⨯
⨯
)由此表明了什
么?
分数的分子和分母都乘以或除以一个不等于零的数,分数的值不变。
分数的分子与分母约去共因数,分数的值不变。
这就是分数的基本性质。
2 (1)把上面问题变为:把3个一样的苹果分给n(m>0)位小朋友,每位小朋友分到多少苹果?
用除法表示:3n
÷,用分数表示为:3
n
,
3
3n
n
÷、相等吗?(
3
3=
n
n
÷)这里的n
可以是实数吗?(n不能为0)
(2) 33
4n
与有什么区别?(后者分母含有字母)我们把前者叫分数,后者叫分
式,什么叫分式呢?分式有没有和分数一样的性质?
这节课我们来学习-----分式的基本性质。
(板书课题)
二合作交流,探究新知
1 分式的概念填空:
(1 )如果小王用a元人民币买了b袋相同的瓜子,那么每袋瓜子的价格是______元。
(2)一个梯形木板的面积是6 2
m,如果梯形上底是am,下底是bm,那么这个梯形的高是________m.
(3) 两块面积分别为a亩,b亩的稻田m kg,n kg,这两块稻田平均每亩产稻谷________kg.
观察多项式:
12
a m n
b a b a b
+
++
、、这些代数式有什么共同点特点?(分子分母都是整
式,分母含有字母)
一般地,如果f、g分别表示两个整式,并且g中含有字母,那么代数式f
g
叫分
式。
说明:分式的分子分母一般是多项式,单项式可以看成是只有一项的多项式。
分母一定含有字母。
2 分式的基本性质
思考:33a
44a
与分式相等吗?
2
2
a b a
ab b
分式与分式相等吗?
如果a≠0, 那么33a
=
44a
,只要
2
2
a b a
ab b
与都意义,那么
2
2
=
a b a
ab b。
你认为分式和分数具有相同的性质吗?
分式的分子和分母都乘以或除以一个不等非零多项式,分式值不变。
分式的分子与分母约去共因式,分式的值不变。
用式子表示为:设h≠0,则f f h
g g h
⋅=
⋅
3 分式的值为零的条件和分式有意义的条件
例1 求分式
5
6
x
x
-
+
的值,(1)x=3, (2)x=
2
5
-
思考:(1)要是分式
5
6
x
x
-
+
的值为零,x应等于多少?要使分式
(5)
(6)(-5)
x
x x
-
+
的值
为零,x应等于多少?
分式值为零的条件是什么?(分子为零,分母不等于零)
例2 当x取什么值时,分式
2
23
x
x
-
-
(1)无意义,(2)有意义。
分式有意义的条件是什么?(分母不等于零)
三课堂练习,巩固提高 P 3
四反思小结,巩固提高这节课你有什么收获?
学习了分式的概念,分式的基本性质,分式值为零的条件分式有意义的条件。
五作业P6 A 1,2 B 1。