(完整)八年级数学上册《分式》知识点归纳,推荐文档
人教版八年级数学上册《分式》知识点复习及典例解析

人教版八年级数学上册《分式》知识点复习及典例解析《分式》知识点复习及典例解析一、复习目标1.理解并记住分式的乘法法则、除法法则,会进行简单的分式乘除法计算.能解决一些与分式的乘除运算有关的简单的实际问题.2.了解同分母分式的加减法法则,会进行同分母分式的加减运算,理解通分的意义,会通过通分把异分母的分式加减转化为同分母的分式加减.3.能熟练地进行分式的加减乘除混合运算,提高类比的能力和代数化归的能力.4.了解分式方程的概念,掌握解一元一次方程的分式方程的方法,了解产生增根的原因,会检捡一个数是不是分式方程的增根.5.能够列出可化为一元一次方程的分式方程解简单实际问题.二、重点难点重点:分式乘除法、加减法法则的应用. 分式方程的概念,分式方程的解法难点:异分母分式加减法. 解分式方程时,去分母可能会出现增根。
三、知识概要1. 分式的乘除乘法法则:分式乘分式时,分子的积作积的分子,分母的积作积的分母. 除法法则:分式除以分式,把除式的分子和分母颠倒位置后与被除式相乘. 式子表示:.;bcad c d b a d c b a bd ac d c b a =?=÷=? 2. 分式的加减(1)分式的通分:把几个异分母的分式化成与原来的分式相等的同分母的分式叫通分.(2)法则:同分母分式相加减,分母不变,分子相加减.异分母分式相加减,先通分,变为同分母的分式,再加减.式子表示:;c b a c b c a ±=±.bdbc ad bd bc bd ad d c b a ±=±=± 3.分式方程的概念分式是一种表示具体情境中数量的模型,分式方程则是表示这些数量关系之间相等关系的模型,分式方程是分母中含有未知数的方程.4.分式方程的解法分式方程是转化为一元一次方程来求解,它是通过去分母实现转化的.主要步骤:去分母,去括号,移项,合并同类项,系数化为1,检验.因为分式方程可能产生增根,所以解分式方程最后一步“检验”,检查所解整式方程的根到底是不是分式方程的根.5.去分母的技巧解分式方程的基本思路是“转化”,即把分式方程化为我们熟悉的整式方程,转化的途径是“去分母”,即方程两边都乘以最简公分母.去分母是解分式方程的第一步,也是关键的一步,当分式方程中分式的分母是一次式时,可直接确定最简公分母,方程两边同乘以最简公分母后实现去分母,当各分式的分母中有二次式时,要先进行因式分解,再确定最简公分母,然后再去分母.6.验根的方法因为解分式方程可能出现增根,所以验根是必要的,验根的方法有两种,一种是把求得的未知数的值代入原方程进行检验,这种方法道理简单,而且可以检查解方程时有无计算错误,另一种是把求得的末知数的值代入最简公分母,看分母的值是否为零,这种方法比较简便,但不能检查解方程过程中出现的计算错误.7.列分式方程解决实际问题的方法步骤(1)、审:分析问题,寻找已知、未知及相相等关系,(2)、设:设恰当的未知数(3)、列:根据相等关系列出分式方程(4)、解:求出所列方程的解(5)、验:首先检验所求的解是不是分式方程的解,然后检验所求的解是否与实际符合(6)、答:写出答案.四、典例解析考点一、分式概念的运用例1.若分式||33x x --的值为零,则x 的值等于。
(完整版)八年级上册《分式》知识点归纳与总结,推荐文档

八年级上册《分式》知识点归纳与总结主讲 王老师一、分式的定义:一般地,如果A ,B 表示两个整数,并且B 中含有字母,那么式子B A 叫做分式,A 为分子,B 为分母。
二、与分式有关的条件①分式有意义:分母不为0(0B ≠)②分式无意义:分母为0(0B =)③分式值为0:分子为0且分母不为0(⎩⎨⎧≠=00B A ) ④分式值为正或大于0:分子分母同号(⎩⎨⎧>>00B A 或⎩⎨⎧<<00B A )⑤分式值为负或小于0:分子分母异号(⎩⎨⎧<>00B A 或⎩⎨⎧><00B A ) ⑥分式值为1:分子分母值相等(A=B 0≠)⑦分式值为-1:分子分母值互为相反数(A+B=0,0B ≠)三、分式的基本性质分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。
字母表示:C B C ••=A B A ,CB C ÷÷=A B A ,其中A 、B 、C 是整式,C ≠0。
拓展:分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变, 即:BB A B B --=--=--=A A A 注意:在应用分式的基本性质时,要注意C ≠0这个限制条件和隐含条件B ≠0。
四、分式的约分1.定义:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。
2.步骤:把分式分子分母因式分解,然后约去分子与分母的公因式。
3.注意:①分式的分子与分母均为单项式时可直接约分,约去分子、分母系数的最大公约数,然后约去分子分母相同因式的最低次幂。
②分子分母若为多项式,先对分子分母进行因式分解,再约分。
4.最简分式的定义:一个分式的分子与分母没有公因式时,叫做最简分式。
◆约分时。
分子分母公因式的确定方法:1)系数取分子、分母系数的最大公约数作为公因式的系数.2)取各个公因式的最低次幂作为公因式的因式.3)如果分子、分母是多项式,则应先把分子、分母分解因式,然后判断公因式.五、分式的通分1.定义:把几个异分母的分式分别化成与原来的分式相等的同分母分式,叫做分式的通分。
八年级数学分式知识点

八年级数学分式知识点八年级数学分式知识点概述一、分式的定义分式(Fraction)是指一个表达式,其中包含一个分子(Numerator)和一个分母(Denominator),形式为 a/b,其中 a 是分子,b 是分母,b 不等于零。
二、分式的基本性质1. 等值变换:分式的分子和分母同时乘以或除以一个非零的数或式子,分式的值不变。
2. 约分:通过找出分子和分母的公因数并约去,使分式化为最简分式。
3. 通分:将两个或多个分式,使其具有相同的分母,这样的操作称为通分。
三、分式的运算1. 分式的加减法:- 同分母分式相加减:分母不变,分子相加减。
- 异分母分式相加减:先通分,再按照同分母分式进行加减。
2. 分式的乘法:- 分子乘分子,分母乘分母。
3. 分式的除法:- 除以一个分式等于乘以它的倒数。
4. 分式的混合运算:- 先乘方,再乘除,最后加减。
- 遇到括号,先计算括号内的运算。
四、分式的条件应用1. 分式方程:- 解分式方程时,通常需要去分母转化为整式方程求解。
2. 分式不等式:- 解分式不等式时,需要注意不等号的性质,通常也需要去分母处理。
3. 分式函数:- 分式可以作为函数的表达式,如 y = f(x) = (ax + b) / (cx + d),其中 a, b, c, d 为常数,且cx + d ≠ 0。
五、分式的化简与求值1. 化简:- 通过约分和通分,将复杂的分式化为最简形式。
2. 求值:- 在已知分式中某些字母的值的情况下,可以通过代入法求出分式的数值。
六、分式的实际应用1. 比例问题:- 分式常用于解决比例问题,如速度、时间和距离的关系。
2. 利率问题:- 分式在计算利息、本金和本息和等问题中有广泛应用。
七、分式的图形表示1. 函数图像:- 分式函数的图像可以通过描点法绘制,注意分母不能为零的点。
2. 几何应用:- 分式在计算几何图形的面积、周长等方面也有应用。
八、分式的综合练习1. 练习题:- 通过解决各种分式相关的数学问题,加深对分式知识点的理解和应用。
八年级数学上册第十五章分式基础知识点归纳总结(带答案)

八年级数学上册第十五章分式基础知识点归纳总结单选题1、若数a使关于x的分式方程2x−1+a1−x=4的解为正数,则a的取值正确的是()A.a<6且a≠2B.a>6且a≠1C.a<6D.a>6答案:A分析:表示出分式方程的解,由解为正数确定出a的范围即可.解:分式方程整理得:2x−1−ax−1=4,去分母得:2−a=4x−4,解得:x=6−a4,由分式方程的解为正数,得到6−a4>0,且6−a4≠1,解得:a<6且a≠2.故选:A.小提示:此题考查了分式方程的解,始终注意分母不为0这个条件.2、若关于x的分式方程m+4x−3=3xx−3+2有增根,则m的值为()A.2B.3C.4D.5答案:D分析:根据分式方程有增根可求出x=3,方程去分母后将x=3代入求解即可.解:∵分式方程m+4x−3=3xx−3+2有增根,∴x=3,去分母,得m+4=3x+2(x−3),将x=3代入,得m+4=9,解得m=5.故选:D.小提示:本题考查了分式方程的无解问题,掌握分式方程中增根的定义及增根产生的原因是解题的关键.3、若把分式2x x+y 中的x 和y 同时扩大为原来的3倍,则分式的值( )A .扩大到原来的3倍B .扩大到原来的6倍C .缩小为原来的13D .不变 答案:D分析:根据分式的基本性质即可求出答案.解:∵2×3x 3x+3y =2×3x 3(x+y )=2xy x+y ,∴把分式2x x+y 中的x 和y 同时扩大为原来的3倍,则分式的值不变,故选:D .小提示:本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型.4、计算x x+1+1x+1的结果是( )A .x x+1B .1x+1C .1D .−1答案:C分析:根据同分母分式的加法法则,即可求解.解:原式=x+1x+1=1, 故选C .小提示:本题主要考查同分母分式的加法法则,掌握”同分母分式相加,分母不变,分子相加“是解题的关键.5、若a +b =5,则代数式(b 2a ﹣a )÷(a−b a )的值为( )A .5B .﹣5C .﹣15D .15 答案:B分析:原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把已知等式代入计算即可求出值.∵a +b =5,∴原式=b 2−a 2a ⋅a a−b =−(a+b )(a−b )a ⋅a a−b =−(a +b )=−5, 故选:B .小提示:考查分式的化简求值,掌握减法法则以及除法法师是解题的关键,注意整体代入法在解题中的应用.6、某工厂新引进一批电子产品,甲工人比乙工人每小时多搬运30件电子产品,已知甲工人搬运300件电子产品所用的时间与乙工人搬运200件电子产品所用的时间相同.若设乙工人每小时搬运x件电子产品,可列方程为()A.300x =200x+30B.300x−30=200xC.300x+30=200xD.300x=200x−30答案:C分析:乙工人每小时搬运x件电子产品,则甲工人每小时搬运(x+30)件电子产品,根据300÷甲的工效= 200÷乙的工效,列出方程即可.乙工人每小时搬运x件电子产品,则甲工人每小时搬运(x+30)件电子产品,依题意得:300x+30=200x,故选C.小提示:本题考查了分式方程的应用,弄清题意,根据关键描述语句找到合适的等量关系是解决问题的关键..7、若关于x的分式方程2x−a −3x=0的解为x=3,则常数a的值为()A.a=2B.a=−2C.a=−1D.a=1答案:D分析:根据题意将原分式方程的解x=3代入原方程求出a的值即可.解:∵关于x的分式方程2x−a −3x=0解为x=3,∴23−a−1=0,∴2=3−a,∴a=1,经检验,a=1是方程23−a−1=0的解,故选:D.小提示:本题主要考查了利用分式方程的解求参数,熟练掌握相关方法是解题关键.8、解方程2x−13=x+a2−1时,小刚在去分母的过程中,右边的“-1”漏乘了公分母6,因而求得方程的解为x=2,则方程正确的解是( )A .x =−3B .x =−2C .x =13D .x =−13答案:A分析:先按此方法去分母,再将x=-2代入方程,求得a 的值,然后把a 的值代入原方程并解方程.解:把x =2代入方程2(2x -1)=3(x +a )-1中得:6=6+3a -1,解得:a =13,正确去分母结果为2(2x -1)=3(x +13)-6, 去括号得:4x -2=3x +1-6,解得:x =-3.故选:A小提示:本题考查了一元一次方程的解的定义以及解一元一次方程.使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.把方程的解代入原方程,等式左右两边相等.9、下列运算正确的是( )A .2a +3b =5abB .(−ab)2=a 2bC .a 2⋅a 4=a 8D .2a 6a 3=2a 3答案:D分析:根据合并同类项法则,同底数幂的乘法、幂的乘方与积的乘方以及单项式除以单项式法则解答. 解:A 、2a 与3b 不是同类项,不能合并,故本选项错误;B 、原式=a 2b 2,故本选项错误;C 、原式=a 6,故本选项错误;D 、原式=2a 3,故本选项正确.故选D .小提示:本题考查了同底数幂的乘法的性质与同类项合并同类项法则,熟练掌握性质和法则是解题的关键.10、下列分式中是最简分式的是( )A .2x 2B .42xC .x−1x 2−1D .x−1(x−1)2答案:A分析:一个分式的分子分母无公因式或公因数叫最简分式,四个选项逐个分析排除,只有选项A是最简分式,选项B、C、D中分子分母分别有公因数2、公因式x−1、公因式x−1,都不是最简分式.选项A不能约分,是最简分式;选项B中分子分母有公因数2,可约分,不是最简分式;选项C中x−1x2−1=x−1(x+1)(x−1),分子分母有公因式x−1,可约分,不是最简分式;选项D中分子分母有公因式x−1,可约分,不是最简分式;故选:A.小提示:本题主要考查了最简分式的概念,最简分式指的是分子分母无无公因式或公因数的分式,有时需要将分子分母进行因式分解再判断.填空题11、计算2m−2−mm−2的结果是 ____.答案:−1分析:根据分式的减法法则即可得.解:原式=2−mm−2=−(m−2) m−2=−1,所以答案是:−1.小提示:本题考查了分式的减法,熟练掌握运算法则是解题关键.12、若实数m使得关于x的不等式组{2x>23x<m+1无解,则关于y的分式方程yy−1=4−m2y−2的最小整数解是_________.答案:2分析:先求出每个不等式的解集,然后根据不等式组无解求出m的取值范围,再解分式方程从而确定y的取值范围即可得到答案.解:解不等式2x>2得:x>1,解不等式3x <m +1得:x <m+13, ∵不等式组无解,∴m+13≤1,∴m ≤2;y y −1=4−m 2y −2去分母得2y =4−m ,解得y =4−m 2,∵m ≤2,∴4−m ≥2∴y =4−m 2≥1,又∵y −1≠0,∴y >1,∴y 的最小整数解为2,所以答案是:2小提示:本题主要考查了根据不等式组的解集情况求参数,解分式方程,熟知相关计算法则是解题的关键.13、方程22x−1+x 1−2x =1的解是________.答案:x =1分析:原方程去分母得到整式方程,求解整式方程,最后检验即可.解:22x−1+x 1−2x =1, 22x−1﹣x 2x−1=1, 方程两边都乘2x ﹣1,得2﹣x =2x ﹣1,解得:x =1,检验:当x =1时,2x ﹣1≠0,所以x =1是原方程的解,即原方程的解是x=1,所以答案是:x=1.小提示:本题考查了解分式方程,把分式方程转化为整式方程是解答本题的关键,注意解分式方程不一定要检验.14、若|a|=2,且(a−2)0=1,则2a的值为_______.##0.25答案:14分析:根据绝对值的意义得出a=±2,根据(a−2)0=1,得出a−2≠0,求出a的值,即可得出答案.解:∵|a|=2,∴a=±2,∵(a−2)0=1,∴a−2≠0,即a≠2,∴a=−2,∴2a=2−2=1.4所以答案是:1.4小提示:本题主要考查了绝对值的意义,零指数幂有意义的条件,根据题意求出a=−2,是解题的关键.15、用科学记数法将﹣0.03896保留两位有效数字为____.答案:﹣3.9×10﹣2分析:先根据科学记数法表示该数,再保留两个有效数字即可.解:﹣0.03896=﹣3.896×10﹣2≈﹣3.9×10﹣2,所以答案是:﹣3.9×10﹣2.小提示:此题考查了科学记数法的表示方法,有效数字的概念,正确理解各知识点是解题的关键.解答题16、为推动家乡学校篮球运动的发展,某公司计划出资12000元购买一批篮球赠送给家乡的学校.实际购买时,每个篮球的价格比原价降低了20元,结果该公司出资10000元就购买了和原计划一样多的篮球,每个篮球的原价是多少元?答案:每个篮球的原价是120元.分析:设每个篮球的原价是x 元,则每个篮球的实际价格是(x ﹣20)元,根据“该公司出资10000元就购买了和原计划一样多的篮球”列出方程并解答.解:设每个篮球的原价是x 元,则每个篮球的实际价格是(x ﹣20)元,根据题意,得12000x =10000x−20.解得x =120.经检验x =120是原方程的解.答:每个篮球的原价是120元.小提示:本题考查了分式方程的应用,根据题意列出方程是解题的关键.17、若a ,b 为实数,且(a−2)2+|b 2−16|b+4=0,求3a ﹣b 的值. 答案:2分析:根据题意可得{a −2=0b 2−16=0b +4≠0,解方程组可得a,b,再代入求值.解:∵(a−2)2+|b 2−16|b+4=0,∴{a −2=0b 2−16=0b +4≠0,解得{a =2b =4, ∴3a ﹣b=6﹣4=2.故3a ﹣b 的值是2.小提示:本题考核知识点:分式性质,非负数性质.解题关键点:理解分式性质和非负数性质.18、阅读材料:对于非零实数a ,b ,若关于x 的分式(x−a)(x−b)x 的值为零,则解得x 1=a ,x 2=b .又因为(x−a)(x−b)x =x 2−(a+b)x+ab x=x +ab x ﹣(a +b ),所以关于x 的方程x +ab x =a +b 的解为x 1=a ,x 2=b . (1)理解应用:方程x 2+2x =3+23的解为:x 1= ,x 2= ;(2)知识迁移:若关于x 的方程x +3x =5的解为x 1=a ,x 2=b ,求a 2+b 2的值;(3)拓展提升:若关于x 的方程4x−1=k ﹣x 的解为x 1=t +1,x 2=t 2+2,求k 2﹣4k +2t 3的值. 答案:(1)3,23;(2)19;(3)12. 分析:(1)根据题意可得x =3或x =23;(2)由题意可得a +b =5,ab =3,再由完全平方公式可得a 2+b 2=(a +b )2-2ab =19;(3)方程变形为x -1+4x−1=k -1,则方程的解为x -1=t 或x -1=t 2+1,则有t (t 2+1)=4,t +t 2+1=k -1,整理得k =t +t 2+2,t 3+t =4,再将所求代数式化为k 2-4k +2t 3=t (t 3+t )+4t 3-4=4(t 3+t )-4=12.(1)解:∵x +ab x =a +b 的解为x 1=a ,x 2=b ,∴x 2+2x =x +2x =3+23的解为x =3或x =23,所以答案是:3,23;(2)解:∵x +3x =5,∴a +b =5,ab =3,∴a 2+b 2=(a +b )2-2ab =25-6=19; (3)解:4x−1=k -x 可化为x -1+4x−1=k -1,∵方程4x−1=k -x 的解为x 1=t +1,x 2=t 2+2,则有x -1=t 或x -1=t 2+1,∴t (t 2+1)=4,t +t 2+1=k -1, ∴k =t +t 2+2,t 3+t =4, k 2-4k +2t 3=k (k -4)+2t 3=(t+t2+2)(t+t2-2)+2t3=t4+4t3+t2-4=t(t3+t)+4t3-4=4t+4t3-4=4(t3+t)-4=4×4-4=12.小提示:本题考查了分式方程的解,理解题意,灵活求分式方程的解,并结合完全平方公式对代数式求值是解题的关键.。
数学八年级上册【分式方程】知识点梳理

数学八年级上册【分式方程】知识点梳理知识点汇总一、分式方程的概念分母中含有未知数的方程叫分式方程.要点诠释:(1)分式方程的重要特征:①是等式;②方程里含有分母;③分母中含有未知数.(2)分式方程和整式方程的区别就在于分母中是否有未知数(不是一般的字母系数).分母中含有未知数的方程是分式方程,分母中不含有未知数的方程是整式方程.(3)分式方程和整式方程的联系:分式方程可以转化为整式方程.二、分式方程的解法解分式方程的基本思想:将分式方程转化为整式方程,转化方法是方程两边都乘以最简公分母,去掉分母。
在去分母这一步变形时,有时可能产生使最简公分母为零的根,这种根叫做原方程的增根。
因为解分式方程时可能产生增根,所以解分式方程时必须验根。
三、解分式方程的一般步骤:(1)方程两边都乘以最简公分母,去掉分母,化成整式方程(注意:当分母是多项式时,先分解因式,再找出最简公分母);(2)解这个整式方程,求出整式方程的解;(3)检验:将求得的解代入最简公分母,若最简公分母不等于0,则这个解是原分式方程的解,若最简公分母等于0,则这个解不是原分式方程的解,原分式方程无解.今日练习1.校运动会上,初二(3)班啦啦队买了两种价格的雪糕,其中甲种雪糕共花费40元,乙种雪糕共花费30元,甲种雪糕比乙种雪糕多20根.乙种雪糕价格是甲种雪糕价格的1.5倍,若设甲种雪糕的价格为x元,根据题意可列方程为:A.B.C. D .2.以下是解分式方程,去分母后的结果,其中正确的是:A.B.C. D .【参考答案】1.B若设甲种雪糕的价格为x元,根据等量关系“甲种雪糕比乙种雪糕多20根”可列方程求解解:设甲种雪糕的价格为x元,则甲种雪糕的根数:;乙种雪糕的根数:.可得方程:故选B考点:由实际问题抽象出分式方程2.B。
八年级数学上册《分式》知识点归纳

分 式一、概念:定义1:整式A 除以整式B ,可以表示成BA的形式。
如果除式..B .中含有分母.....,那么称BA为分式。
(对于任何一个分式,分母不为0。
如果除式B 中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。
分式:分母中含有字母。
整式:分母中没有字母。
而代数式则包含分式和整式。
)定义2:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分。
定义3:分子和分母没有公因式的分式称为最简分式。
(化简分式时,通常要使结果成为最简分式或者整式。
)定义4:化异分母分式为同分母分式的过程称为分式的通分。
定义5:分母中含有未知数的方程叫做分式方程 定义6:在将分式方程变形为整式方程时,方程两边同乘一个含有未知数的整式,并约去了分母,有时可能产生不适合原分式方程的解(或根),这种解通常称为增根。
二、基本性质:分式的基本性质:分式的分子与分母都.乘以(或除以)同.一个不等于零....的整式,分式的值不变。
三、运算法则:1、分式的乘法的法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;(用符号语言表示:b a ﹒d c =bdac)2、分式的除法的法则:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.(用符号语言表示:b a ÷dc =b a ﹒cd =bcad) 分式乘除法的运算步骤:当分式的分子与分母都是单项式时: (1)乘法运算步骤是:①用分子的积做积的分子,分母的积做积的分母;②把分式积中的分子与分母分别写成分子与分母的分因式与另一个因式的乘积形式,如果分子(或分母)的符号是负号,应把负号提到分式的前面;③约分。
(2)除法的运算步骤是:把除式中的分子与分母颠倒位置后,与被除式相乘,其它与乘法运算步骤相同。
当分式的分子、分母中有多项式,①先分解因式;②如果分子与分母有公因式,先约分再计算.③如果分式的分子(或分母)的符号是负号时,应把负号提到分式的前面. 最后的计算结果必须是最简分式或整式. 3、同分母分式加减法则是:同分母的分式相加减。
八年级上册分式的知识点总结

八年级上册分式的知识点总结分式是数学中的一种重要的数学概念,也是初中数学中必须掌握的知识之一。
下面是八年级上册分式的知识点总结。
一、分式的定义分式指的是一个数与一个分数形式的形式化量构成的有理数,其中被除数称为分子,除数称为分母,且分母不能为0。
二、分式的化简分式的化简是分式的重要知识点之一。
下面我们来学习两种分式化简方法。
1.通分:对于两个分式,如果它们的分母不同,需要通过通分的方法,将它们化为相同的分母,通分的方法有多种,如最小公倍数法、乘法法和因式分解法等。
2.分子、分母的约分:约分是指将分数的分子与分母同时除以一个相同的因子,使其变为最简形式。
约分前要先将分式化简。
三、分式的运算分式的运算包括加减乘除四种运算。
1.加减法:相同分母,则分子相加或相减。
不同分母,需要先将分数化为相同的分母,然后进行加减。
2.乘法:分子与分子相乘,分母与分母相乘。
3.除法:将除数分子与被除数的倒数相乘,即被除数分子与除数分母相乘,除数分子与被除数分母相乘。
需要特别注意的是,除数不可为0。
四、分式方程分式方程是一种含有分式的等式,其求解的过程与线性方程非常类似。
可以通过变形的方式将方程转化为整式方程求解。
需要注意的是,对于分母含有未知量的分式方程,在进行变形的时候要考虑未知量不能取使分母为0的值。
分式方程解法还有分离变量法、通分法和案例法。
五、实例分析分式知识点的学习需要通过实例进行深入的理解和运用,下面给出一个实例分析。
例:化简分式 $ \frac{3a}{2c} + \frac{2b}{c} - \frac{a}{c}$解:首先将分式的分母化为相同的c,得到:$ \frac{3a}{2c} + \frac{4b}{2c} - \frac{2a}{2c} = \frac{3a + 4b -2a}{2c} = \frac{b + a}{2c}$因此,原式化简后为 $ \frac{b + a}{2c}$。
六、注意事项在分式运算中,我们需要特别注意以下几点:1.分母不可为0。
八上分式知识点总结

八上分式知识点总结一、分式的定义1. 分式的基本概念分式是由分子和分母组成的数学式,通常表示为a/b的形式,其中a为分子,b为分母,a和b都是整数且b不等于0。
2. 分式的类型在分式中,分母不为1的分式称为真分式;分子大于或等于分母的分式称为假分式;分母为1的分式称为整式。
二、分式的化简分式的化简是指将分式的分子和分母约分为最简形式的过程。
分式化简的方法包括约分、通分、提公因式等。
1. 约分当分子和分母有公约数时,可以将其约去最大公约数,使分式化简为最简形式。
2. 通分对于两个分式,如果它们的分母不同,可以通过通分的方法将它们的分母变为相同的数,然后进行运算。
3. 提公因式当分式的分子和分母都是多项式时,可以通过提取公因式的方法将分式化简为最简形式。
三、分式的加减乘除1. 分式的加减分式的加减可以通过通分后合并分子的方法,先将分母变为相同的数,再将分子相加或相减得到最终结果。
2. 分式的乘法分式的乘法可以通过分子相乘、分母相乘的方法,将两个分式相乘得到最终结果。
3. 分式的除法分式的除法可以通过分子乘除、分母乘除的方法,将两个分式相除得到最终结果。
四、分式的应用1. 分式在数轴上的表示分式可以表示在数轴上的一个点或一个数值,例如1/2表示在数轴上的0点和1点之间的1/2处。
2. 分式的应用分式在代数方程中有着广泛的应用,可以表示未知数的比例关系或者部分和总和的关系,解决实际问题。
以上就是八年级分式的知识点总结,分式是数学中的一个重要概念,掌握分式的知识对于学习代数和解决实际问题具有重要的意义。
希望同学们能够认真学习和掌握分式的相关知识,提高数学应用能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
怎样确定最简公分母:我们在进行异分母的分式加
减时,最先要考虑的是找到几个异分母的最简公分
母,然后进行通分。怎样确定最简公分母呢?
(1)、算式中只有一项是分式,最简公分母就是这
的分子和分母颠倒位置后再与被除式相乘.
页脚内容
页眉内容
个分式的分母。如算式 a 1 1 的最简公分母就 a 1
可以先把这个分式约分,再根据情况确定最简公分
母。如计算 x 2 x 2 2x 时,如果直接通分,则显 x2 x2 4
得有点繁;若把 x 2 2x 的分子分母分解因式成为 x2 4
x(x 2) ,再化简为 x 进行计算就简单得多,
(x 2)(x 2)
x2
其最简公分母是 x–2。
解方程过程中易犯的错误:1、解方程时忘记检验;
定义 5:分母中含有未知数的方程叫做分式方程 最后的计算结果必须是最简分式或整式.
定义 6:在将分式方程变形为整式方程时,方程两边 同乘一个含有未知数的整式,并约去了分母,有时可 能产生不适合原分式方程的解(或根),这种解通常 称为增根。 二、基本性质:
3、同分母分式加减法则是:同分母的分式相
加减。分母不变,把分子相加减。(表达式为: a±b =ab) cc c 4、异分母的分式相加减法则是:先通分,化
5、分式的符号法则: A = A = A = A B B B B
6、解分式方程的一般步骤是:(1)化分式方程为整 式方程;(2)解整式方程;(3)验根; 7、注意:约分和运算的结果必须是最简分式或整式。
测 试题 一、填空题(每小题 3 分,共 30 分)
x3 1.若要使分式 x 2 6x 9 有意义,则 x 的值应为
种变形称为分式的约分。
除式相乘,其它与乘法运算步骤相同。
定义 3:分子和分母没有公因式的分式称为最简分式。 (化简分式时,通常要使结果成为最简分式或者整式。 ) 定义 4:化异分母分式为同分母分式的过程称为分式 的通分。
当分式的分子、分母中有多项式,①先分 解因式;②如果分子与分母有公因式,先约分 再计算.③如果分式的分子(或分母)的符号是 负号时,应把负号提到分式的前面.
1
1 m 1
的值等于
0,则
m
的
页眉内容
值是
.
8.请写出一个根为 1 的分式方程:
.
9.若
1 a
1 b
a
1
b
,则
b a
a b
=
. 10. 数与数之间的关系非常奇妙.如:
①1
1 2
1 2
,② 2
2 3
4 3
,③ 3
3 4
9 4
,……
根据式中所蕴含的规律可知第 n
个式子是
.
二、选择题(每小题 4 分,共 20 分)
.
6x2 y3
2.化简: 9xy 2 z =
.
3.分式方程
x x 1
2 3
的解是
.
3x 2 xy
4.化简: 9x 2 6xy y 2 =
.
5.已知
a+b=2,ab=3,则
1 a
1 b
=
.
2y
1
x 2y
6. x y , x y , x 2 y 2 的最简公分母是
.
7.已知
m
1 2 1
2 m
那么这个就是分式,对于任何一个分式,分母不为
因式与另一个因式的乘积形式,如果分子
(或分母)的符号是负号,应把负号提到分
0。分式:分母中含有字母。整式:分母中没有字母。
而代数式则包含分式和整式。)
式的前面;③约分。(2)除法的运算步骤是:
定义 2:把一个分式的分子和分母的公因式约去,这
把除式中的分子与分母颠倒位置后,与被
2、去分母时忘记加括号;3、去分母时漏乘不含分母
的项.
四、相关知识归纳:
1、分式有意义和无意义的条件:
A
A
分式 有意义的条件是:B≠0;分式 无意义的条
B
B
件是:B=0;
页脚内容
A
2、分式的 =0 的条件:A=0,并且 B≠0,两者必须
B
同时满足。 3、分式的加减运算的关键是通分,通分的关键是确 定几个分式的公分母。 4、分式的乘方:分式乘方,把分子、分母各自乘方。
是a 1。
(2)、算式中有几个分式相加减,分母互为相反数,
最简公分母可取其中任何一个分母。如算式 a b 3b 的最简公分母可以是 a–2b,
a 2b 2b a a 2b
也可以是 2b–a 。
(3)、当算式中的几个分母都是单项式时,最简公
分母则取系数的最小公倍数与所有字母的最高次幂 的乘积。如算式 1 2 3 的最简公分母就
的 2 倍,则这个分式的值将【
】
A.扩大为原来的 2 倍
B. 分式的值不变
C. 缩小为原来的 1 2
分式的基本性质:分式的分子与分母都乘以(或除以) 同一个不等于零的整式,分式的值不变。 三、运算法则:
1、分式的乘法的法则:两个分式相乘,把分子 相乘的积作为积的分子,把分母相乘的积作为 积的分母;(用符号语言表示: a ﹒ c = ac )
b d bd 2、分式的除法的法则:两个分式相除,把除式
为同分母的分式,然后再按同分母分式的加减 法法则进行计算。(表达式为: a ± c = ad ±
页眉内容
分式
(用符号语言表示: a ÷ c = a ﹒ d = ad ) b d b c bc
分式乘除法的运算步骤:
一、概念:
A
定义 1:整式 A 除以整式 B,可以表示成 的形式。
B A
如果除式 B 中含有分母,那么称 为分式。(对于任
B
何一个分式,分母不为 0。如果除式 B 中含有分母,
当分式的分子与分母都是单项式时: (1)乘法运算步骤是:①用分子的积做积的 分子,分母的积做积的分母;②把分式积 中的分子与分母分别写成分子与分母的分
2axy 3bx 2 4xy 2
是 12abx2y2。
(4)、当算式中分式的几个分母都是多项式时,则
先把所有分母进行因式分解,最简公分母则是每个
因式的最高次幂的乘积。如算式
1
3x
的最简公分母是
4x 2 4 y 2 2x 2 4xy 2 y 2
4(x+y)(x–y)2
(5)、当算式中分式的分子与分母都有公因式时,
11.下列四个分式的运算中,其中运算结果正确的
有
【
】
① 1 1 2 ; ② a 2 3 a3 ;
a b ab
a2
③ a2 b2 ab
a 3 B.1 个 C.2 个 D. 3 个
ab 12.若将分式 4a 2 中的 a 与 b 的值都扩大为原来