新课标人教版八年级数学第十六章分式知识点总结

合集下载

2020-2021学年人教版八年级数学第十六章《分式》考点提要+精练精析

2020-2021学年人教版八年级数学第十六章《分式》考点提要+精练精析

2020-2021学年第十六章《分式》提要:分式的四则运算是整式四则运算的进一步发展,是有理式恒等变形的重要内容之一,所以,分式的四则运算是本章的重点.分式的四则混合运算,是整式运算、因式分解和分式运算的综合运用,由于运用了较多的基础知识,运算步骤增多,解题方法多样灵活,又容易产生符号和运算方面的错误,所以是分式的难点.同时列分式方程解应用题和列整式方程解应用题相比较,虽然涉及到的基本数量关系有时是相同的,但由于含有未知数的式子不受整式的限制,所以更为多样而灵活.习题:一、填空题1.使分式234x a x +-的值等于零的条件是_________. 2.在分式2242x x x ---中,当x _____________时有意义,当x _________时分式值为零. 3.在括号内填入适当的代数式,使下列等式成立:2xy =22()2ax y ; 322()x xy x y --=()x x y-. 4.某农场原计划用m 天完成A 公顷的播种任务,如果要提前a 天结束,那么平均每天比原计划要多播种_________公顷.5.函数y =221(3)x x -++-中,自变量x 的取值范围是___________. 6.计算1201(1)5(2004)2π-⎛⎫-+-÷- ⎪⎝⎭的结果是_________. 7.已知u=121s s t -- (u≠0),则t=___________. 8.当m =______时,方程233x m x x =---会产生增根. 9.用科学记数法表示:12.5毫克=________吨.10.用换元法解方程222026133x x x x+-=+ ,若设x 2+3x =y ,,则原方程可化为关于y 的整式方程为____________.11.计算(x +y )·2222x y x y y x +-- =____________. 12.若a ≠b ,则方程a b +x a =x b -b a的解是x = ____________; 13.当x _____________时,||3x x -与3x x -互为倒数. 14.约分:34522748a bx a b x =____________;22923a a a ---=_____________. 15.当 x __________________时,分式325x --12x +有意义. 16.若分式123x -- 的值为正,则x 的取值范围是_______________. 17.如果方程5422436x x k x x -+=--有增根,则增根是_______________. 18.已知x y =32;则x y x y -+= __________. 19.m ≠±1时,方程m (mx -m +1)=x 的解是x =_____________.20.一个工人生产零件,计划30天完成,若每天多生产5个,则在26 天完成且多生产15个.求这个工人原计划每天生产多少个零件?若设原计划每天生产x 个,由题意可列方程为____________.二、选择题21.下列运算正确的是( )A .x 10÷x 5=x 2;B .x -4·x =x -3;C .x 3·x 2=x 6;D .(2x -2)-3=-8x 622.如果m 个人完成一项工作需要d 天,则(m +n )个人完成这项工作需要的天数为( )A .d +nB .d -nC .md m n + D .d m n + 23.化简a b a b a b--+等于( ) A .2222a b a b +- B .222()a b a b +- C .2222a b a b -+ D .222()a b a b+- 24.若分式2242x x x ---的值为零,则x 的值是( ) A .2或-2 B .2 C .-2 D .425.不改变分式52223x y x y -+的值,把分子、分母中各项系数化为整数,结果是( )A .2154x y x y -+B .4523x y x y -+C .61542x y x y-+ D .121546x y x y -+ 26.分式:①223a a ++,②22a b a b --,③412()a a b -,④12x -中,最简分式有( ) A .1个 B .2个 C .3个 D .4个27.计算4222x x x x x x ⎛⎫-÷⎪-+-⎝⎭的结果是( ) A .12x + B .-12x + C .-1 D .1 28.若关于x 的方程x a c b x d-=- 有解,则必须满足条件( ) A .c ≠d B .c ≠-d C .bc ≠-ad D .a ≠b29.若关于x 的方程ax =3x -5有负数解,则a 的取值范围是( )A .a <3B .a >3C .a ≥3D .a ≤330.一件工作,甲独做a 小时完成,乙独做b 小时完成,则甲、乙两人合作完成需要( )小时.A .11a b +B .1abC .1a b +D .ab a b+ 三、解答题31.23651x x x x x+----; 32.2424422x y x y x x y x y x y x y ⋅-÷-+-+.33.11322x x x--=---.34.先化简,再求值:)12(122+-÷++x x x x x ,其中,2=x .35.已知:b ab a b ab a b a -+--=-22,211求的值.。

(完整版)八年级上册《分式》知识点归纳与总结,推荐文档

(完整版)八年级上册《分式》知识点归纳与总结,推荐文档

八年级上册《分式》知识点归纳与总结主讲 王老师一、分式的定义:一般地,如果A ,B 表示两个整数,并且B 中含有字母,那么式子B A 叫做分式,A 为分子,B 为分母。

二、与分式有关的条件①分式有意义:分母不为0(0B ≠)②分式无意义:分母为0(0B =)③分式值为0:分子为0且分母不为0(⎩⎨⎧≠=00B A ) ④分式值为正或大于0:分子分母同号(⎩⎨⎧>>00B A 或⎩⎨⎧<<00B A )⑤分式值为负或小于0:分子分母异号(⎩⎨⎧<>00B A 或⎩⎨⎧><00B A ) ⑥分式值为1:分子分母值相等(A=B 0≠)⑦分式值为-1:分子分母值互为相反数(A+B=0,0B ≠)三、分式的基本性质分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。

字母表示:C B C ••=A B A ,CB C ÷÷=A B A ,其中A 、B 、C 是整式,C ≠0。

拓展:分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变, 即:BB A B B --=--=--=A A A 注意:在应用分式的基本性质时,要注意C ≠0这个限制条件和隐含条件B ≠0。

四、分式的约分1.定义:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。

2.步骤:把分式分子分母因式分解,然后约去分子与分母的公因式。

3.注意:①分式的分子与分母均为单项式时可直接约分,约去分子、分母系数的最大公约数,然后约去分子分母相同因式的最低次幂。

②分子分母若为多项式,先对分子分母进行因式分解,再约分。

4.最简分式的定义:一个分式的分子与分母没有公因式时,叫做最简分式。

◆约分时。

分子分母公因式的确定方法:1)系数取分子、分母系数的最大公约数作为公因式的系数.2)取各个公因式的最低次幂作为公因式的因式.3)如果分子、分母是多项式,则应先把分子、分母分解因式,然后判断公因式.五、分式的通分1.定义:把几个异分母的分式分别化成与原来的分式相等的同分母分式,叫做分式的通分。

八年级数学下册第十六章分式知识点总结

八年级数学下册第十六章分式知识点总结

分式的知识点解析与培优一、分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子BA叫做分式。

二、判断分式的依据:例:下列式子中,y x +15、8a 2b 、-239a、y x b a --25、4322b a -、2-a 2、m1、65xy x 1、21、212+x 、πxy 3、yx +3、m a 1+中分式的个数为( )A 、 2B 、 3C 、 4D 、 5练习题:(1)下列式子中,是分式的有 .(1)275x x -+; ⑵ 123x -;⑶25a a -;⑷22x x π--; ⑸22b b -;⑹. (7)78x π+(8)3y y (9)234x + 二、 分式有意义的条件是分母不为零;【B ≠0】 分式没有意义的条件是分母等于零;【B=0】分式值为零的条件分子为零且分母不为零。

【B ≠0且A=0 即子零母不零】例2.注意:(12+x ≠0)例1:当x 时,分式51-x 有意义;例2:分式xx -+212中,当____=x 时,分式没有意义例3:当x 时,分式112-x 有意义。

例4:当x 时,分式12+x x有意义例5:x ,y 满足关系 时,分式x yx y-+无意义; 例6:无论x 取什么数时,总是有意义的分式是( ) A .122+x x B.12+x x C.133+x x D.25x x -例7:使分式2+x x有意义的x 的取值范围为( )A .2≠x B .2-≠x C .2->x D .2<x 例8:分式)3)(1(2-+-x x x 无意义,则x 的值为( )A. 2B.-1或-3C. -1D.3 三、分式的值为零:使分式值为零:令分子=0且分母≠0,注意:当分子等于0时,看看是否使分母=0了,如果使分母=0了,那么要舍去。

例1:当x 时,分式121+-a a的值为0. 例2:当x 时,分式112+-x x 的值为0.例3:如果分式22+-a a 的值为零,则a 的值为( )A. 2±B.2C.-2D..以上全不对例4:能使分式122--x xx 的值为零的所有x 的值是 ( )A. x=0B.x-1C.x=0 或x=1D.0=x 或1±=x 例5:要使分式65922+--x x x 的值为0,则x 的值为( )A.3或-3B.3C.-3 D 2 例6:若01=+aa,则a 是( ) A.正数 B.负数 C.零 D.任意有理数例9:当X= 时,分式2212x x x -+-的值为零。

八年级下册数学知识点归纳笔记

八年级下册数学知识点归纳笔记

人教版八年级下册数学知识点总结第十六章分式1.分式的概念:若A、B表示两个整式,且分母B中含有字母,A称为分式。

分式有意义的条件是分母B≠0;分式值为则式子B0的条件是分子A=0且分母B≠0。

2.分式的基本性质:分式的分子与分母同乘(或除以)同一个不为0的整式,分式的值不变。

3.分式的运算:1.乘除运算:分式乘分式,分子相乘的积作积的分子,分母相乘的积作积的分母;分式除以分式,等于把除式的分子、分母颠倒后与被除式相乘。

2.加减运算:同分母分式相加减,分母不变,分子相加减;异分母分式相加减,先通分变为同分母分式,再加减。

4.分式方程:1.增根:分式方程化为整式方程后,未知数取值范围扩大,可能产生使原分式方程分母为0的根,即增根。

2.验根:解分式方程必须验根,将整式方程的解代入最简公分母,若最简公分母为0,则是增根,原方程无解;若最简公分母不为0,则是原方程的解。

第十七章勾股定理1.勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方,即222c b a =+。

2.勾股定理的逆定理:若三角形三边长a 、b 、c 满足222c b a =+,则此三角形是直角三角形。

第十八章平行四边形1.平行四边形:1.定义:两组对边分别平行的四边形叫平行四边形。

2.性质:对边相等,对角相等,对角线互相平分。

3.判定:两组对边分别平行、两组对边分别相等、一组对边平行且相等、两组对角分别相等、对角线互相平分的四边形是平行四边形。

2.三角形中位线:连接三角形两边中点的线段,平行于第三边且等于第三边的一半。

3.特殊的平行四边形:1.矩形:有一个角是直角的平行四边形,四个角都是直角,对角线相等且互相平分。

判定方法有一个角是直角的平行四边形、有三个角是直角的四边形、对角线相等的平行四边形。

2.菱形:有一组邻边相等的平行四边形,四边都相等,两条对角线互相垂直且每一条对角线平分一组对角。

判定方法有一组邻边相等的平行四边形、四条边相等的四边形、对角线互相垂直的平行四边形。

八年级16章分式知识点

八年级16章分式知识点

八年级16章分式知识点在数学学科中,分式是一个重要的概念。

在初中阶段,分式的具体内容通常在高年级进行学习,比如八年级第16章就是分式知识点的学习内容。

在这一章节中,学生将学习如何理解分式的概念,如何用分式解决实际问题,以及分式的简化和运算等知识点。

本文将详细介绍八年级第16章分式知识点的内容。

1. 章节概述在八年级第16章,学生需要掌握以下四个方面的内容:1.1 分式的概念分式是一个形如“a/b”的表达式,其中“a”和“b”是数。

分式的意义是将一个数“a”分为“b”份。

例如,“3/4”表示将数3分成4份,每一份为“3/4”。

1.2 分式的运算对于两个分式“a/b”和“c/d”,我们可以进行加、减、乘、除这四种运算。

具体来说,加法和减法可以通过通分实现,乘法可以直接相乘分子和分母,而除法则通过取倒数来实现。

1.3 分式的简化当分子和分母没有公因数时,分式就已经简化了。

但如果存在公因数,则需要通过约分来简化分式。

约分的过程是将分子和分母同时除以它们的最大公因数。

1.4 分式的应用分式在实际生活中有着广泛的应用,比如在化学中用于计算化学反应中物质的量,或者在经济学中用于计算利率等。

2.分式的概念分式是数学中非常重要的一个概念。

在具体的表达式中,分式通常表示将一个整体分为若干份的比例关系。

在八年级的16章中,学生需要掌握分式的基本概念,包括如何理解分式的意义,以及如何将分式表示为最简形式等。

3.分式的运算分式的运算分为四种,包括加法、减法、乘法和除法。

4种运算的具体规则如下:3.1 加法和减法在分式加法和减法中,需要先使两个分母相同,然后再将两个分式的分子进行相加或相减,最后化简得到最简分式。

具体来说,假设分式为a/b和c/d,则它们的和为(ad+bc)/bd,差为(ad-bc)/bd。

3.2 乘法分式的乘法比较简单,只需要将两个分式的分子和分母分别相乘,然后约分即可。

具体来说,假设分式为a/b和c/d,则它们的积为ac/bd。

八年级数学下册知识点总结

八年级数学下册知识点总结

八年级数学下册知识点总结第十六章 分式 1. 分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子BA 叫做分式。

分式有意义的条件是分母不为零,分式值为零的条件分子为零且分母不为零 2.分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。

(0≠C ) 3.分式的通分和约分:关键先是分解因式 4.分式的运算: 分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。

分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

分式乘方法则: 分式乘方要把分子、分母分别乘方。

,a b a b a c ad bc ad bc c c c b d bd bd bd±±±=±=±= 分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。

异分母的分式相加减,先通分,变为同分母分式,然后再加减混合运算:运算顺序和以前一样。

能用运算率简算的可用运算率简算。

5. 任何一个不等于零的数的零次幂等于1, 即)0(10≠=a a ;当n 为正整数时,n n a a1=- ()0≠a 6.正整数指数幂运算性质也可以推广到整数指数幂.(m,n 是整数)(1)同底数的幂的乘法:n m n m aa a +=⋅; (2)幂的乘方:mn n m a a =)(;(3)积的乘方:n n n b a ab =)(;(4)同底数的幂的除法:n m n m a a a -=÷( a ≠0);(5)商的乘方:n nn ba b a =)(();(b ≠0) 7. 分式方程:含分式,并且分母中含未知数的方程——分式方程。

解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。

解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。

人教版初二数学第十六章 分式知识梳理

人教版初二数学第十六章 分式知识梳理

第十六章 分式第一节 分式一、分式的定义一般地,如果A 、B 表示两个整式,并且B 中含有字母,那么式子BA 叫做分式。

*分式的分子可含可不含字母,但分母必须含字母,这是整式与分式最本质的区别。

二、分式有意义的条件:B ≠0.三、分式值为0的条件:A=0,且B ≠0.四、分式的基本性质分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变:CB C A B A ∙∙= C B C A B A ÷÷=(C ≠0,A 、B 、C 是整式) *应用分式基本性质时,注意C ≠0这个限制条件和隐含条件B ≠0 例:yx y x y x y x -+=-+)(是对的,因为使其有意义隐含了x+y ≠0且x-y ≠0 yx y x y x y x -+=-+)(是错的,因为其只隐含了x-y ≠0,并没隐含x+y ≠0. 五、分式的约分与最简分式1、约分:利用分式的基本性质,约去分式的分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分。

2、最简分式:分子与分母没有公因式六、分式的通分与最简公分母1、通分:利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把几个异分母的分式化成分母相同的分式2、最简公分母:取各分母的所有因式的最高次幂的积作公分母。

第二节 分式的运算一、分式的乘除1、分式乘除法①乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母db c a d c b a ∙∙=∙②除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘cb d acd b a d c b a ∙∙=∙=÷ 2、分式乘方:要把分子、分母分别乘方ba b a =)((n 是正整数,b ≠0) 3、分式乘方、乘除混合运算:先乘方,再乘除,遇到括号先算括号里的。

二、分式的加减1、同分母分式相加减:分母不变,分子相加减:ac b a c a b ±=± 2、异分母分式相加减:先通分,变为同分母的分式,再加减:acad bc ac ab ac bc c d a b ±=±=± 三、整数指数幂1、零指数幂:a º=1(a ≠0)2、整数指数幂:a ⁿ=a1(a ≠0) 3、科学记数法:绝对值<1的数可表示为a ×10ⁿ的形式,n 为负整数4、整数指数幂的运算:引入负整数、0指数幂后,与整数幂法则同样适用第三节 分式方程一、分式方程概念分母中含有未知数的方程二、解分式方程的一般思路把分式方程转化为整式方程,即方程两边同乘最简公分母。

八年级分式知识点归纳总结

八年级分式知识点归纳总结

八年级分式知识点归纳总结分式作为数学中重要的概念之一,在八年级的数学学习中占据着重要的地位。

了解和掌握分式的相关知识点对于学生的数学学习至关重要。

本文将就八年级分式的各个知识点进行总结和归纳,并提供一些解题技巧和注意事项。

一、分式的基本概念分式由分子和分母构成,可以用来表示两个数之间的比值关系。

其中,分子表示被分割的部分,分母表示分割的总数。

例如,$\frac{3}{4}$表示将一个整体分成4份后的3份。

二、分式的化简与简化当分式的分子和分母存在公因数时,可以对分子和分母进行因式分解后约分,从而简化分式。

例如,$\frac{6}{8}$可以化简为$\frac{3}{4}$。

三、分式的四则运算1. 分式的加法和减法:当分式的分母相同时,只需对分子进行相加或相减即可;当分式的分母不同时,需要找到它们的最小公倍数,然后进行通分,最后再进行加法或减法。

2. 分式的乘法:将两个分式的分子相乘,分母相乘。

3. 分式的除法:将两个分式的第二个数取倒数,然后进行乘法运算。

四、分式的混合运算分式与整数或代数式进行混合运算时,可以先化简分式,再进行相应的运算。

例如,$2\frac{1}{3} + \frac{4}{5}$可以先化简为$\frac{7}{3} + \frac{4}{5}$,然后进行通分得到$\frac{35}{15} + \frac{12}{15}$,最后得到$\frac{47}{15}$。

五、分式方程的解法对于分式方程的解法,我们需要通过化简和变形将其转化为整式方程。

例如,$\frac{x}{3} + \frac{1}{5} = 1$可以将其通过通分得到$\frac{5x + 3}{15} = 1$,然后通过等式两边的乘法和加法运算,解得$x = 4$。

六、分式的应用分式在实际问题中有广泛的应用。

例如,在比例问题中,可以将比例关系用分式表示;在容器问题中,可以将容积与总量的比例用分数表示;在时间问题中,可以将时间与速度的关系用分式表示等等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新课标人教版八年级数学知识点总结第十六章 分式1. 分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子BA 叫做分式。

2. 分式有意义、无意义的条件:分式有意义的条件:分式的分母不等于0;分式无意义的条件:分式的分母等于0。

3. 分式值为零的条件:当分式的分子等于0且分母不等于0时,分式的值为0。

(分式的值是在分式有意义的前提下才可以考虑的,所以使分式A B为0的条件是A =0,且B ≠0.)(分式的值为0的条件是:分子等于0,分母不等于0,二者缺一不可。

首先求出使分子为0的字母的值,再检验这个字母的值是否使分母的值为0.当分母的值不为0时,就是所要求的字母的值。

)4. 分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变。

用式子表示为 (0≠C ),其中A 、B 、C 是整式注意:(1)“C 是一个不等于0的整式”是分式基本性质的一个制约条件;(2)应用分式的基本性质时,要深刻理解“同”的含义,避免犯只乘分子(或分母)的错误;(3)若分式的分子或分母是多项式,运用分式的基本性质时,要先用括号把分子或分母括上,再乘或除以同一整式C ;(4)分式的基本性质是分式进行约分、通分和符号变化的依据。

5.分式的通分:和分数类似,利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把几个异分母分式化成相同分母的分式,这样的分式变形叫做分式的通分。

通分的关键是确定几个式子的最简公分母。

几个分式通分时,通常取各分母所有因式的最高次幂的积作为公分母,这样的分母就叫做最简公分母。

求最简公分母时应注意以下几点:(1)“各分母所有因式的最高次幂”是指凡出现的字母(或含字母的式子)为底数的幂选取指数最大的;(2)如果各分母的系数都是整数时,通常取它们系数的最小公倍数作为最简公分母的系数;(3)如果分母是多项式,一般应先分解因式。

C B C A B A ⋅⋅=C B C A B A ÷÷=6.分式的约分:和分数一样,根据分式的基本性质,约去分式的分子和分母中的公因式,不改变分式的值,这样的分式变形叫做分式的约分。

约分后分式的分子、分母中不再含有公因式,这样的分式叫最简公因式。

约分的关键是找出分式中分子和分母的公因式。

(1)约分时注意分式的分子、分母都是乘积形式才能进行约分;分子、分母是多项式时,通常将分子、分母分解因式,然后再约分;(2)找公因式的方法:① 当分子、分母都是单项式时,先找分子、分母系数的最大公约数,再找相同字母的最低次幂,它们的积就是公因式;②当分子、分母都是多项式时,先把多项式因式分解。

易错点:(1)当分子或分母是一个式子时,要看做一个整体,易出现漏乘(或漏除以);(2)在式子变形中要注意分子与分母的符号变化,一般情况下要把分子或分母前的“—” 放在分数线前;(3)确定几个分式的最简公分母时,要防止遗漏只在一个分母中出现的字母;7.分式的运算:分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。

分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

用式子表示是:提示:(1)分式与分式相乘,若分子、分母是单项式,可先将分子、分母分别相乘,然后约去公因式,化为最简分式;若分子、分母是多项式,先把分子、分母分解公因式,看能否约分,然后再相乘;(2)当分式与整式相乘时,要把整式与分式的分子相乘作为积的分子,分母不变(3)分式的除法可以转化为分式的乘法运算;(4)分式的乘除混合运算统一为乘法运算。

①分式的乘除法混合运算顺序与分数的乘除混合运算相同,即按照从左到右的顺序,有括号先算括号里面的;②分式的乘除混合运算要注意各分式中分子、分母符号的处理,可先确定积的符号;③分式的乘除混合运算结果要通过约分化为最简分式(分式的分子、分母没有公因式)或整式的形式。

分式乘方法则:分式乘方要把分子、分母各自乘方。

用式子表示是: (其中n 是正整数) 注意:(1)乘方时,一定要把分式加上括号;(2)分式乘方时确定乘方结果的符号与有理数乘方相同,即正分式的任何次幂bc ad c d b a d c b a bd ac d c b a =⋅=÷=⋅;n nn ba b a =)(都为正;负分式的偶次幂为正,奇次幂为负;(3)分式乘方时,应把分子、分母分别看做一个整体;(4)在一个算式中同时含有分式的乘方、乘法、除法时,应先算乘方,再算乘除,有多项式时应先分解因式,再约分。

分式的加减法则:法则:同分母的分式相加减,分母不变,把分子相加减。

用式子表示为:a b ± c b = a ±c b法则:异分母的分式相加减,先通分,转化为同分母分式,然后再加减。

用式子表示为: a b ± c d =ad bd ± bc bd =ad ±bc bd注意:(1)“把分子相加减”是把各个分子的整体相加减,即各个分子应先加上括号后再加减,分子是单项式时括号可以省略;(2)异分母分式相加减,“先通分”是关键,最简公分母确定后再通分,计算时要注意分式中符号的处理,特别是分子相减,要注意分子的整体性;(3)运算时顺序合理、步骤清晰;(4)运算结果必须化成最简分式或整式。

分式的混合运算:分式的混合运算,关键是弄清运算顺序,与分数的加、减、乘、除及乘方的混合运算一样,先算乘方,再算乘除,最后算加减,有括号要先算括号里面的,计算结果要化为整式或最简分式。

8. 任何一个不等于零的数的零次幂等于1, 即)0(10≠=a a ;当n 为正整数时,n n aa 1=- ()0≠a注意:当幂指数为负整数时,最后的计算结果要把幂指数化为正整数。

9. 整数指数幂:若m 、n 为正整数,a ≠0,a m ÷a m +n =a m a m .a n = 1a n 又因为a m ÷a m +n =a m -﹙m +n ﹚=a -n ,所以a-n =1a n 一般地,当n 是正整数时,a -n =1a n (a ≠0),即a -n (a ≠0)是a n 的倒数,这样指数的取值范围就推广到全体整数。

整数指数幂可具有下列运算性质:(m,n 是整数)(1)同底数的幂的乘法:n m n m a a a +=⋅;(2)幂的乘方:mn n m aa =)(; (3)积的乘方:n n nb a ab =)(;(4)同底数的幂的除法:n m n m a a a -=÷( a ≠0);(5)商的乘方:n nn ba b a =)( ;(b ≠0) 规定:a 0=1(a ≠0),即任何不等于0的零次幂都等于1.10. 分式方程:含分式,并且分母中含未知数的方程叫做分式方程。

分式方程的解法:(1)解分式方程的基本思想方法是:分式方程 -----→ 整式方程. (2)解分式方程的一般方法和步骤: ①去分母:即在方程的两边都同时乘以最简公分母,把分式方程化为整式方程,依据是等式的基本性质;②解这个整式方程;③检验:把整式方程的解代入最简公分母,使最简公分母不等于0的解是原方程的解,使最简公分母等于0的解不是原方程的解,即说明原分式方程无解。

注意:① 去分母时,方程两边的每一项都乘以最简公分母,不要漏乘不含分母的项;② 解分式方程必须要验根,千万不要忘了!解分式方程的步骤 :(1) 能化简的先化简;(2)方程两边同乘以最简公分母,化为整式方程;(3)解整式方程;(4)验根.分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。

11.含有字母的分式方程的解法:在数学式子的字母不仅可以表示未知数,也可以表示已知数,含有字母已知数的分式方程的解法,也是去分母,解整式方程,检验这三个步骤,需要注意的是要找准哪个字母表示未知数,哪个字母表示未知数,还要注意题目的限制条件。

计算结果是用已知数表示未知数,不要混淆。

12.列分式方程解应用题的步骤是:(1)审:审清题意;(2)找: 找出相等关系;(3)设:设未知数;(4)列:列出分式方程;(5)解:解这个分式方程;(6)验:既要检验根是否是所列分式方程的解,又要检验根是否符合题意;(7)答:写出答案。

应用题有几种类型;基本公式是什么?基本上有五种: (1)行程问题 基本公式:路程=速度×时间 而行程问题中又分相遇问题、追及问题.(2)数字问题:在数字问题中要掌握十进制数的表示法.(3)工程问题 基本公式:工作量=工时×工效. 去分母转化(4)顺水逆水问题 v 顺水=v 静水+v 水. v 逆水=v 静水-v 水.11.科学记数法:把一个数表示成na 10⨯的形式(其中101<≤a ,n 是整数)的记数方法叫做科学记数法.用科学记数法表示绝对值大于1的数时,应当表示为a ×10n 的形式,其中1≤︱a ︱<10,n为原整数部分的位数减1;用科学记数法表示绝对值小于1的数时,则可表示为a ×10-n 的形式,其中n 为原数第1个不为0的数字前面所有0的个数(包括小数点前面的那个0),1≤︱a ︱<10.。

相关文档
最新文档