精品 八年级数学上册 分式及分式方程2

合集下载

2021版八年级数学上册 第二章《分式与分式方程》分式方程(2)教案 人教版五四制

2021版八年级数学上册 第二章《分式与分式方程》分式方程(2)教案 人教版五四制

制程(2)教案人教版五四制制制2归纳: 像这样分母中含未知数的方程叫做分式方程.注意:分母是否含有末知数是区别分式方程与整式方程的关键。

3巩固练习:下列方程中,哪些是分式方程?哪些整式方程?(1) (2)(3) ( 4)(5) (6) 第三步:探究分析1提问:如何来解分式方程vv -=+206020100呢? (让学生观察方程的特点,引导学生将分式方程转化为整式方程) 2归纳:解分式方程的基本思想和解法分式方程------整式方程------解整式方程-----检验 3练习( x=9 ) (巩固知识 )( 增根 x=5)(师生共同解决去分母所得整式方程的解不是原分式方程的解的原因,并让学生懂得解分式方程验根的必要性及验根的方法)(增根 x=1) (强化提高,提出注意事项) 第四步:学习小结2(1)23x x -=437x y +=13(2)2x x=-3(3)2x x π-=2131x x x++=105126=-+x x )(323)1(-=x x 251051)2(2-=-x x 11)2)(1(3)3(--=+-x xx x 制1解分式方程的基本思想:把分式方程“转化”为整式方程,再利用整式方程的解法求解 2解分式方程的方法:在方程的两边同乘最简公分母,就可约去分母,化成整式方程 3解分式方程的解的两种情况:① 所得的根是原方程的根、②所得的根不是原方程的根 4原方程的增根:在方程变形时,有时可能产生不适合原方程的根,这种根叫做原方程的增根5产生增根的原因:在把分式方程转化为整式方程时,分式的两边同时乘以了零6验根的方法:把求得的根代入最简公分母,看它的值是否为零。

使最简公分母值为零的根是............增根..,不为零的根是原方程的根 7解分式方程的一般步骤:(1).在方程的两边都乘最简公分母,约去分母,化成整式方程;――化整(2).解这个整式方程;――解整(3). 把整式方程的根代入最简公分母,看结果是不是零,使最简公分母为零的根是原方程的增,必须舍去。

2021秋八年级数学上册第二章分式与分式方程2、4分式方程第3课时分式方程的应用鲁教版五四制

2021秋八年级数学上册第二章分式与分式方程2、4分式方程第3课时分式方程的应用鲁教版五四制

5×20×(1+20%)×2
4y00+2
400·(10-2)=24
000.
解得 y=480.
经检验,y=480 是原方程的根,且符合题意.
故原计划安排的工人人数为 480 人.
11.【 中考·日照】某市为创建全国文明城市,开展 “美化绿化城市”活动,计划经过若干年使城区 绿化总面积新增360万平方米.该项活动自 2013年初开始实施后,实际每年绿化面积是原 计划的1.6倍,这样可提前4年完成任务.
解:问题1 设A型“小黄车”的成本单价为x元,则B型“小黄车” 的成本单价为(x+100)元,依题意得50x+50(x+ 100)=25 000. 解得x=200.∴x+100=300. 故A,B两种型号“小黄车”的成本单价分别是200 元和300元.
问题 2:投放方式 该公司决定采取如下投放方式:甲街区每 1 000 人 投放 a 辆“小黄车”,乙街区每 1 000 人投放8a+a240 辆“小黄车”,按照这种投放方式,甲街区共投放 1 500 辆,乙街区共投放 1 200 辆,如果两个街区共 有 15 万人,试求 a 的值.
(1)甲、乙两种货车每辆可装多少件帐篷?
解:设甲种货车每辆车可装 x 件帐篷,乙种货车每辆 车可装 y 件帐篷,依题意有x1=0x0y0+=2800y,0, 解得xy==8100.0,经检验,xy==81000,是原方程组的解,且 符合实际.故甲种货车每辆车可装 100 件帐篷,乙种 货车每辆车可装 80 件帐篷.
(2)该同学打算用自己的100元压岁钱购买这种笔 和本子,计划100元刚好用完,并且笔和本子 都买,请列出所有购买方案.
解:设恰好用 100 元可购买这种笔 m 支,购买这种本子 n 本,由题意得 10m+6n=100,整理得 m=10-35n. ∵m,n 都是正整数,∴n=5 时,m=7;n=10 时,m =4;n=15,m=1.∴有三种方案: ①购买这种笔 7 支,购买这种本子 5 本; ②购买这种笔 4 支,购买这种本子 10 本; ③购买这种笔 1 支,购买这种本子 15 本.

八年级数学上册第二章分式与分式方程1认识分式第2课时分式的基本性质pptx课件鲁教版五四制

八年级数学上册第二章分式与分式方程1认识分式第2课时分式的基本性质pptx课件鲁教版五四制
x
y
y
错解解析:上述解法出错的原因是把分子、分母首项的
符号当成了分子、分母的符号.
x
正确解析:
x
y
y
x
y
x
y
x
x
y
.
y
归纳
当分式的分子、分母是多项式时,
若分子、分母的首项系数是负数,应先
提取“-”并添加括号,再利用分式的
基本性质化成题目要求的结果;变形时
要注意不要把分子、分母的第一项的符
号误认为是分子、分母的符号.
b
(1)
2x
by
y
2 xy

0 ;
b
解:(1)因为y≠0,所以
2x
ax
(2)因为x≠0,所以
bx
ax
(2)
bx
a
.
b
b y
by
;
2 x y 2 xy
ax x a
.
bx x b
归纳
应用分式的基本性质时,一定要确定分式
在有意义的情况下才能应用.应用时要注
意是否符合两个“同”:一是要同时作
“乘法”或“除法”运算;二是“乘(或除
定义 把分式分子、分母的公因式约去,这种变形叫
分式的约分.
约分的步骤:
(1)约去系数的最大公约数;
(2)约去分子分母相同因式的最低次幂.
特别解读
1. 约分的依据是分式的基本性质,关键是确定分子和
分母的公因式;
2. 约分是针对分式的分子和分母整体进行的,而不是
针对其中的某些项,因此约分前一定要确认分子和
1
D.缩小到原来的
20
5.
x 2- y 2
当x=6,y=-2时,则式子 ( x- y ) 2

八年级数学分式方程(2)Microsoft PowerPoint 演示文稿

八年级数学分式方程(2)Microsoft PowerPoint 演示文稿

2
3
m
思考:(1)分式方程在什么情况下无解?
(2)分式方程的增根来自于哪个方程?
(3)将你的想法在小组内交流。
(4)解出本题
考考你
x3 m 有增根,求m 若关于x的方程 的值. x2 x2
你做对了吗?
自我挑战
问题2:若关于x的方程 x 有解,求k的取值范围。 1 x 1
x
k
16.3分式方程(2)
分式方程的解法
复习:解分式方程的步骤是?
解分式方程的一般步骤如下:
分式方程
目标
去分母
整式方程
解整式方程
x=a
检验
a是分式 方程的解
最简公分 母不为0
最简公 a不是分式 分母为0 方程的解
解下列分式方程
(1)
(2)
1 x5 4x 1 x4
x x 1
1
3 ( x 1)( x 2 )
2
思考:(1)分式方程在什么情况下有解? (2)将你的想法在小组内交流。 (3)解出本题
检测反馈
1.关于x的分式方程 a=
a x a x 1 2
的根是-1,则
2.若关于的方程 x 3 m 有解,则m的取值范 围是 x 2 2 x
3.解方程:
7
2
x x

6 x 1
2

1 xx
小组交流:(1)由上面两个方程化得的整 式方程的解是否都是原分式方程的解? (2)解分式方程时一定要做什么?怎么做?
练一练
1.
x x2 6 x2 1
2.
5x 4 x2

4 x 10 3x程 无解, x 1 x 1 x 1 求m的值。

人教版八年级数学上册课件:15.3 分式方程(第二课时)

人教版八年级数学上册课件:15.3 分式方程(第二课时)
设,注意单位要统一,选择一个未知量用未知数表示, 并用含未知数的代数式表示相关量. (3)列:即列方程,根据等量关系列出分式方程. (4)解:即解所列的分式方程,求出未知数的值. (5)验:即验根,要检验所求的未知数的值是否适合分式 方程,还要检验此解是否符合实际意义. (6)答:即写出答案,注意单位和答案完整.
3.(2019新疆)两个小组同时从甲地出发,匀速步行到乙 地,甲乙两地相距7500米,第一组的步行速度是第二 组的1.2倍,并且比第二组早15分钟到达乙地.设第 二组的步行速度为x千米/小时,根据题意可列方程是 (D)
4.某学校食堂需采购部分餐桌,现有A、B两个商家,A
商家每张餐桌的售价比B商家的优惠13元.若该校花 费2万元采购款在B商家购买餐桌的张数等于花费1.8 万元采购款在A商家购买餐桌的张数,则A商家每张餐
(1)这两次各购进这种衬衫多少件?
(2)若第一批衬衫的售价是200元/件,老板想让这两批衬 衫售完后的总利润不低于1950元,则第二批衬衫每件 至少要售多少元? (2)设第二批衬衫每件售价y元.根据题意,得 30×(200-150)+15(y-140)≥1950, 解得y≥170. 答:第二批衬衫每件至少要售170元.
桌的售价为( A )
A.117元
B.118元
C.119元
D.120元
5.某园林队计划由6名工人对180平方米的区域进行绿 化,由于施工时增加了2名工人,结果比计划提前3小 时完成任务,若每人每小时绿化面积相同,求每人每 小时的绿化面积.设每人每小时的绿化面积为x平方
米,请列出满足题意的方程是

6.某校学生捐款支援地震灾区,第一次捐款总额为 6600元,第二次捐款的总额为7260元,第二次捐款的 总人数比第一次多30人,而且两次人均捐款额恰好相 等,则第一次捐款的总人数为 300 人.

分式方程(第二课时) 课件(共26张PPT) 初中数学人教版八年级上册

分式方程(第二课时)   课件(共26张PPT)  初中数学人教版八年级上册

方程两边同时乘以6x,得 2x+x+3=6x .解得 x=1.
检验:当x=1时,6x≠0.
所以原分式方程的解为 x=1.
由上可知,若乙队单独施工1个月可以完成全部任务,对比甲 队1个月完成任务的 1 ,可知乙队的施工速度快.
3
探究新知
【问题2】某次列车平均提速 v km/h.用相同的时间,列车提速前行驶 s km,提速后比提速前多行驶 50 km,提速前列车的平均速度为多少?
知识练习
解分式方程:(1) 7 1 x 1 ; (2) x 1 x 1 1.
x2 2x
x 1 x2 1
解:(1) 7 1 x 1 , x2 2x
解:(2) x 1 x 1 1, x 1 x2 1
去分母得: 7 x 2 1 x ,
去分母得: x 12 x 1 x2 1 ,
B.300
C.400
D.500
解析:设改造后每天生产的产品件数为 x,则改造前每天生产的
产品件数为 x 100 ,
根据题意,得: 600 400 , x x 100
解得: x 300 , 经检验 x 300 是分式方程的解,且符合题意, 答:改造后每天生产的产品件数 300.故选:B.
练习 3 A,B 两种机器人都被用来搬运化工原料,A 型机器人比 B
个月的工程量 = 总工程量(记为1).
1 3
+
1 6
1
+ 2x
探究新知
甲队施工1个月的工程量 + 甲队施工半个月的工程量 + 乙队施工半 个月的工程量 = 总工程量(记为1).
解:设乙队单独施工1个月能完成总工程的 根据工程的实际进度,得 1 1 1 1

八年级数学上册第二章分式与分式方程复习课件(30张PPT)

八年级数学上册第二章分式与分式方程复习课件(30张PPT)
解这个方程得:x=30
经检验:x=30 是原方程的解, 所以 1.5x=45 答:实际有 45 人参加了植树活动。
评注:1、分式方程解应用题应相应地增加检验的过程。 2、要注意灵活设未知数。
列方程解应用题:
例4、甲、乙两人分别从相距36千米的 A、B两地同时相向而行,甲从A地出 发到1千米时发现有一物品遗忘在A地 ,立即返回,取过物品后又立即从A地 向B地行进,这样两人恰好在A、B两 地中点处相遇,又知甲比乙每小时多 走0.5千米,求甲、乙两人的速度。
一、分式的概念:
x2 4 1. 若分式 (x 1)(x 2)
若有意义,则x应满足( B )
A、x≠-1 C、x≠2
B、x ≠-1且x ≠2 D、x ≠-1或x ≠2
若值为0,则x应满足( B )
A、x=2
B、x =-2
C、 x 2 D、x =-1或x =2
二、分式的基本性质
1.若把分式 2x 的yx 和y 都扩大两倍,则分式的值( ) B 3x y
(3)
m2+4m+4
m2 - 4
7.通分
(1) x 与 y
6a2b
9ab2c
a-1
(2) a2+2a+1 与
6 a2-1
计算: 8 9
10
算一算
11、解方程
(1) 2 1 x2 x
(2) x 1 1 3 x2 2x
12、列方程,解应用题: 甲、乙两城间的铁路路程为1600千米,经过技
术改造,列车实施了提速,提速后比提速前速度增 加20千米/时,列车从甲城到乙城行驶时间减少了4 小时,这条铁路在现有条件下安全行驶速度不得超 过140千米/时.请你用学过的数学知识说明在这条 铁路的现有的条件下列车还可以提速.

八年级上册数学分式和分式方程

八年级上册数学分式和分式方程

八年级上册数学分式和分式方程一、分式的概念。

1. 定义。

- 一般地,如果A、B(B≠0)表示两个整式,且B中含有字母,那么式子(A)/(B)就叫做分式。

例如(x + 1)/(x),(2)/(x - 1)等都是分式。

- 整式和分式的区别在于分母是否含有字母,整式的分母不含有字母,而分式的分母含有字母。

2. 分式有意义、无意义和值为零的条件。

- 分式有意义的条件:分母不为零。

例如对于分式(1)/(x - 2),当x-2≠0,即x≠2时,分式有意义。

- 分式无意义的条件:分母为零。

如在分式(3)/(x + 1)中,当x + 1=0,即x=-1时,分式无意义。

- 分式值为零的条件:分子为零且分母不为零。

对于分式(x)/(x - 3),当x = 0且x-3≠0(即x≠3)时,分式的值为零。

二、分式的基本性质。

1. 基本性质。

- 分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变。

即(A)/(B)=(A× C)/(B× C),(A)/(B)=(A÷ C)/(B÷ C)(C≠0)。

例如(2)/(3)=(2×2)/(3×2)=(4)/(6),对于分式(x)/(x + 1),(x)/(x + 1)=(x×2)/((x + 1)×2)=(2x)/(2x + 2)。

2. 约分和通分。

- 约分:把一个分式的分子与分母的公因式约去,叫做分式的约分。

例如对于分式(6x^2y)/(9xy^2),分子分母的公因式是3xy,约分后得到(2x)/(3y)。

- 通分:把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。

例如将(1)/(x)和(1)/(x + 1)通分,先找最简公分母为x(x + 1),则(1)/(x)=(x+1)/(x(x + 1)),(1)/(x + 1)=(x)/(x(x + 1))。

三、分式的运算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13.已知 ,化简分式 的结果为
14.
15.如果记 =f(x),并且f(1)表示当x=1时y的值,即f(1)= ;f( )表示当x= 时y的值,即f( )= ;……那么f(1)+f(2)+f( )+f(3)+f( )+…+f(n)+f( )=(结果用含n的代数式表示).
三、综合题:
16.化简:(1) (2)
10.A、B两地路程为150千米,甲、乙两车分别从A、B两地同时出发,相向而行,2小时后相遇,相遇后,各以原来的速度继续行驶时到达A地,求甲车原来的速度和乙车的速度.
11.某书店老板去图书批发市场购买某种图书.第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?
A. 1999B. 2000C. 2001D.-2
5.设m>n>0,m2+n2=4mn,则 的值等于( )
A.2 B. C. D.3
6.已知 ,则直线 一定经过()
A.第一、二象限B.第二、三象限C.第三、四象限D.第一、四象限
7.若a使分式 没有意义,那么a的值为()
A.0 B. 或0 C. D.
A. B. C. D.
2.计算: 3.化简:
4.解分式方程:
5.分式 中x取什么值时,分式的值为0?x取什么值时,分式无意义?
6.先化简,再求值: ,其中 .
7.已知 ( ≠0, ≠0),求 的值。
8.当m为何值时,方程 - = 会产生增根?
9.已知方程 ,是否存在 的值使得方程无解?若存在,求出满足条件的 的值;若不存在,请说明理由。
17.解分式方程:(1) (2)
(3) 18.已知 ,求 的值。
19.如果x2-3x+1=0,求 的值。
20.已知a、b、c为实数, , , ,求分式 的值。
21.已知a、b均为正数,且 ,求 的值。
22.已知a+b+c=0,求 的值。
23.某开发公司生产的960件新产品需要精加工后才能投放市场.现有甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工完这批产品比乙工厂单独加工完这批产品多用20天,而甲工厂每天加工的数量是乙工厂每天加工数量的,公司需付甲工厂加工费用每天80元,需付乙工厂加工费用每天120元.
(1)甲、乙两个工厂每天各能加工多少件新产品?
(2)公司制定产品加工方案如下:可以由每个厂家单独完成,也可以由两个厂家合作完成,在加工过程中,公司派一名工程师每天到厂进行技术指导,并负担每天10元的午餐补助费,请你帮公司选择一种既省时又省钱的加工方案,并说明理由.
课堂小练--分式及分式方程
姓名:
1.化简 ,其结果是( )
8.甲乙两人相距k千米,他们同时乘摩托车出发。若同向而行,则r小时后并行;若相向而行,则t小时后相遇,则较快者的速度与较慢者速度之比是()
A. B. C. D.
二、填空题:
9.当x=__________时,分式的值为零.
10.若 的值为 ,则 的值为
11.若分式 的值为正整数,则整数 的值为
12.如果分式 不论x取何值都有意义,那么m的取值范围是
12.某商人用7200元购进甲、乙两种商品,然后卖出,若每种商品均用去一半的钱,则一共可购进750件;若用 的钱买甲种商品,其余的钱买乙种商品,则要少购进50件,卖出时,甲种商品可盈利20%,乙种商品可盈利25%.(1)求甲、乙两种商品的购进价和卖出价;(2)因市场需求总量有限,每种商品最多只能卖出600件,那么该商人应采取怎样的购货方式才能获得最大利润?最大利润是多少?
分式及分式方程
一、选择题:
1.分式 中,当 时,下列结论正确的是()
A.分式的值为零B.分式无意义
C.若 时,分式的值为零D.若 时,分式的值为零
2.如果分式 的值恒为正数,则的x取值范围是( )
A. B. C. D.
3.已知 ,则 的值是( )
A. B.- C.2 D.-2
4.已知x2-5x-1997=0,则代数式的值为()
相关文档
最新文档