二十一数的整除特征
数的整除特征

如:22,33
22÷11=2(整除)
33÷11=3(整除)
如:23,34
23÷11=2.090909(不能整除)
34÷11=3.090909(不能整除)
13的整除特征
若一个整数的个位数字截去,再从余下 的数中,加上个位数的4倍,如果差是13 的倍数,则原数能被13整除。
如:665 665÷13=15(整除) 如:14 14÷13=1.07692308(不能整除)
除)
7的整除特征
被7整除若一个整数的个位数字截去,再从余下的数中, 减去个位数的2倍,如果差是7的倍数,则原数能被7 整除。如果差太大或心算不易看出是否7的倍数,就需 要继续上述「截尾、倍大、相减、验差」的过程,直 到能清楚判断为止。
如:133 13-3×2=7 , 7÷7=1(整除) 如:12 12÷7=1.741857(不能整除)
数的整除特征
研究内容: 2、3、5、7、9、11、13等数的整除特征 同学们,你们有没有在做题时遇到除数是2、
3、5、7、9、11、13的情况呢?如果有, 是不是很难算呢?那么今天就让我们来 揭开他们的秘密吧!
2的整除特征
被2整除的数是偶数。 如:2,4,6,8 2÷2=1(整除) 4÷2=2(整除) 6÷2=3(整除) 8÷2=4(整除) 如:3,5 3÷2=1.5(不能整除) 5÷2=2.5(不能整
小测试
200÷2 21÷3 55÷5 147÷7 46÷9 67÷11 123÷13
答案是前四个可以,后三个不行。
你都算对了吗?
除)
3的整除特征
被3整除的数必须各个位数上的数加起来 为3的倍数。
如:147=1+4+7=12 147÷3=49(整除) 如:136=1+3+6=10 136÷3=45.33333333.......(不能整除)
数的整除的特征

一、数的整除的特征1.前面我们已学过奇数与偶数,我们正是以能否被2整除来区分偶数与奇数的。
因此,有下面的结论:末位数字为0、2、4、6、8的整数都能被2整除。
偶数总可表为2k,奇数总可表为2k+1(其中k为整数)。
2.末位数字为零的整数必被10整除。
这种数总可表为10k (其中k为整数)。
3.末位数字为0或5的整数必被5整除,可表为5k(k为整数)。
4.末两位数字组成的两位数能被4(25)整除的整数必被4(25)整除。
如1996=1900+96,因为100是4和25的倍数,所以1900是4和25的倍数,只要考察96是否4或25的倍数即可。
由于4|96能被25整除的整数,末两位数只可能是00、25、50、75。
能被4整除的整数,末两位数只可能是00,04,08,12,16,20,2 4,28,32,36,40,44,48,52,56,60,64,68,72,76,80,84,88,92,96,不可能是其它的数。
5.末三位数字组成的三位数能被8(125)整除的整数必能被8(125)整除。
由于1000=8×125,因此,1000的倍数当然也是8和125的倍数。
如判断765432是否能被8整除。
因为765432=765000+432显然8|765000,故只要考察8是否整除432即可。
由于432=8×54,即8|432,所以8|765432。
能被8整除的整数,末三位只能是000,008,016,024, (9)84,992。
由于125×1=125,125×2=250,125×3=375;125×4=500,125×5=625;125×6=750;125×7=875;125×8=10000故能被125整除的整数,末三位数只能是000,125,250,3 75,500,625,750,875。
6.各个数位上数字之和能被3(9)整除的整数必能被3(9)整除。
能被2、3、5、7、9、11、13、17、19整除的数的特征

能被2、3、5、7、9、11、13、17、19整除的数的特征能被2整除的数的特征是个位上是偶数,能被3整除的数的特征是所有位数的和是3的倍数(例如:315能被3整除,因为3+1+5=9是3的倍数)能被4(或25)整除的数的特征:末两位数能被4(或25)整除。
能被8(或125)整除的数的特征:末三位数能被8(或125)整除。
能被5整除的数个位上的数为0或5,能被7整除的数的特征若一个整数的个位数字去掉,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。
如果数字仍然太大不能直接观察出来,就重复此过程。
能被9整除的数的特征是所有位数的和是9的倍数能被11整除的数的特征把一个数由右边向左边数,将奇位上的数字与偶位上的数字分别加起来,再求它们的差,如果这个差是11的倍数(包括0),那么,原来这个数就一定能被11整除。
例如:判断491678能不能被11整除。
奇位数字的和9+6+8=23偶位数位的和4+1+7=1223-12=11因此,491678能被11整除。
这种方法叫“奇偶位差法”。
能被13整除的数的特征把一个整数的个位数字去掉,再从余下的数中,加上个位数的4倍,如果和是13的倍数,则原数能被13整除。
如果数字仍然太大不能直接观察出来,就重复此过程。
如:判断1284322能不能被13整除。
128432+2×4=12844012844+0×4=128441284+4×4=13001300÷13=100所以,1284322能被13整除。
【其它方法:能被7(11或13)整除的数的特征:一个整数的末三位数与末三位以前的数字所组成的数之差(以大减小)能被7(11或13)整除。
】例1:判断1059282是否是7的倍数?例2:判断3546725能否被13整除?能被17整除的数的特征把一个整数的个位数字去掉,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。
能被整除的数的特征

能被整除的数的特征 Revised by BLUE on the afternoon of December 12,2020.能被2、3、5、7、9、11、13、17、19整除的数的特征能被2整除的数的特征是个位上是偶数,能被3整除的数的特征是所有位数的和是3的倍数(例如:315能被3整除,因为3+1+5=9是3的倍数)能被4(或25)整除的数的特征:末两位数能被4(或25)整除。
能被8(或125)整除的数的特征:末三位数能被8(或125)整除。
能被5整除的数个位上的数为0或5,能被7整除的数的特征若一个整数的个位数字去掉,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。
如果数字仍然太大不能直接观察出来,就重复此过程。
能被9整除的数的特征是所有位数的和是9的倍数能被11整除的数的特征把一个数由右边向左边数,将奇位上的数字与偶位上的数字分别加起来,再求它们的差,如果这个差是11的倍数(包括0),那么,原来这个数就一定能被11整除。
例如:判断491678能不能被11整除。
奇位数字的和9+6+8=23偶位数位的和4+1+7=1223-12=11因此,491678能被11整除。
这种方法叫“奇偶位差法”。
能被13整除的数的特征把一个整数的个位数字去掉,再从余下的数中,加上个位数的4倍,如果和是13的倍数,则原数能被13整除。
如果数字仍然太大不能直接观察出来,就重复此过程。
如:判断1284322能不能被13整除。
128432+2×4=12844012844+0×4=128441284+4×4=13001300÷13=100所以,1284322能被13整除。
【其它方法:能被7(11或13)整除的数的特征:一个整数的末三位数与末三位以前的数字所组成的数之差(以大减小)能被7(11或13)整除。
】例1:判断1059282是否是7的倍数例2:判断3546725能否被13整除能被17整除的数的特征把一个整数的个位数字去掉,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。
数字21的奥秘解析它的数学特征与规律

数字21的奥秘解析它的数学特征与规律数字21的奥秘解析:它的数学特征与规律数字在我们生活中扮演着重要的角色,代表着不同的意义和价值。
其中一个数字,21,引发了许多人的好奇心。
在这篇文章中,我们将解析数字21的奥秘,探讨它的数学特征与规律。
一、数字21的特征数字21由两个数位组成,分别是2和1。
这两个数位有着不同的特征和含义。
下面我们将分别探讨这两个数位的特征。
1. 数字2的特征数字2是一个偶数,它可以被2整除。
它也是第一个能够被除以1和自身以外的数字整除的数字。
数字2还是一个素数,因为它没有其他的正因子。
在几何学中,数字2代表了一个点的位置。
它是最简单的几何形状,也是线段的两端点。
此外,数字2还与平衡和和谐的概念相关联。
2. 数字1的特征数字1是一个奇数,它不能被2整除。
它是最小的自然数,也是唯一一个既是正整数又是负整数的数字。
数字1还是单位元素,它不会改变任何数值通过加法或乘法。
在几何学中,数字1代表了一个单位长度。
它是最简单的线段,也是所有几何形状的构建块。
数字1还与独立和个人的概念相关联。
二、数字21的数学规律数字21由数字2和数字1组成,它们的组合形成了数字21的数学规律。
下面我们将探讨数字21的一些数学规律。
1. 数字21的因数数字21可以被1、3、7和21整除。
这些数字被称为数字21的因数,因为它们能够整除数字21并得到整数结果。
2. 数字21的倍数数字21是3和7的倍数。
这意味着数字21可以被3和7整除而没有余数。
3. 数字21的平方与立方数字21的平方是441,立方是9261。
平方和立方是数字21的幂运算的结果,用于表示数字21的乘法和幂运算。
4. 数字21的素数因子数字21只有一个素数因子,即7。
素数因子是指能被整除且不能被其他数字整除的质数。
5. 数字21的两位数特征数字21是一个两位数,它处于两位数的范围内。
两位数有着自己的特征和规律,而数字21正好处于这个范围中。
三、数字21在生活中的应用数字21不仅仅是一个数学概念,它在我们的生活中也有着各种应用。
最新能被1—31整除的数的特征资料

能被1—31整除的数的特征能被质数整除的数的特征(1—31)7-2 11-1 13+4 17-5 19+2 23+7 29+3 31-3能被2整除:偶数。
能被3整除:各个数位的和,是3的倍数。
能被5整除:个位为0或5。
能被7整除:方法1(能被7—31的质数的整除类似):非个位数减去个位数的2倍,差是7的倍数。
例如,6139是否7的倍数?613-9×2=595,59-5×2=49,所以6139是7的倍数。
方法2(能被7、11、13整除相同):末三位数与非末三位数的差,是7的倍数。
例如,6139是否7的倍数?139-6=133,所以6139是7的倍数。
能被11整除:方法1(能被7—31的质数的整除类似):非个位数减去个位数,差是11的倍数。
方法2(能被7、11、13整除相同):末三位数与非末三位数的差,是11的倍数。
方法3:奇数位的和减去偶数位的和,差是11的倍数。
能被13整除:方法1(能被7—31的质数的整除类似):非个位数加上个位数的4倍,和是13的倍数。
方法2(能被7、11、13整除相同):末三位数与非末三位数的差,是13的倍数。
能被17整除:方法1(能被7—31的质数的整除类似):非个位数减去个位数的5倍,差是17的倍数。
方法2(能被17、19整除类似):末三位数与3倍的非末三位数的差,是17的倍数。
能被19整除:方法1(能被7—31的质数的整除类似):非个位数加上个位数的2倍,和是19的倍数。
方法2(能被17、19整除类似):末三位数与7倍的非末三位数的差,是19的倍数。
能被23整除:方法1(能被7—31的质数的整除类似):非个位数加上个位数的7倍,和是23的倍数。
方法2(能被23、29整除相同):末四位数与5倍的非末四位数的差,是23的倍数。
能被29整除:方法1(能被7—31的质数的整除类似):非个位数加上个位数的3倍,和是29的倍数。
方法2(能被23、29整除相同):末四位数与5倍的非末四位数的差,是29的倍数。
数的整除特征特点

数的整除特征特点 It was last revised on January 2, 2021
数的整除特征特点
一、尾数判断法:
(1) 能被 2、 5整除的数的特征:个位数字能被2或5整除。
(2) 能被4、25 整除的数的特征:末两位能被4或25整除。
(3) 能被8、125整除的数的特征:末三位能被8或125整除。
二、数字求和法
(1)能被3、9整除的数的特征:各位数字之和能被3或9整除。
三、奇偶位求差法
(1)能被11整除的数的特征:“奇位和”与“偶位和”的差能被11整除。
四、三位截断法
(1)能被7、11、13整除的数的特征:“末三位数字组成的数”与“末三位以前的数字组成的数”之差能被7或11或13整除。
整除特征:
7:个位数字去掉,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。
(如果数字太大仍然不能直接观察出来,就重复此过程。
)
13:个位数字去掉,再从余下的数中,加上个位数的4倍,如果和是13的倍数,则原数能被13整除。
17:个位数字去掉,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。
19:个位数字去掉,再从余下的数中,加上个位数的2倍,如果和是19的倍数,则原数能被19整除。
数的整除特征特点

数的整除特征特点
一、尾数判断法:
(1) 能被2、5整除的数的特征:个位数字能被2或5整除。
(2) 能被4、25 整除的数的特征:末两位能被4或25整除。
(3) 能被8、125整除的数的特征:末三位能被8或125整除。
二、数字求和法
(1)能被3、9整除的数的特征:各位数字之和能被3或9整除。
三、奇偶位求差法
(1)能被11整除的数的特征:“奇位和”与“偶位和”的差能被11整除。
四、三位截断法
(1)能被7、11、13整除的数的特征:“末三位数字组成的数”与“末三位以前的数字组成的数”之差能被7或11或13整除。
整除特征:
7:个位数字去掉,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。
(如果数字太大仍然不能直接观察出来,就重复此过程。
)13:个位数字去掉,再从余下的数中,加上个位数的4倍,如果和是13的倍数,
则原数能被13整除。
17:个位数字去掉,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。
19:个位数字去掉,再从余下的数中,加上个位数的2倍,如果和是19的倍数,则原数能被19整除。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二十一数的整除特征
同学们都知道,两个整数做除法运算时(除数不为0),它们的商有时是整数,有时不是整数.例如:
对于整数a与b(b≠0),若存在整数q,使等式a=bq成立,则称b 整除a,或a能被b整除.这时,称a是b的倍数,b是a的约数,并记作
整数的整除性质:
1.如果整数a、b都能被整数c整除,那么(a+b)与(a-b)也能被c整除.
2.几个整数相乘,如果其中有一个因数能被某一个整数整除,那么它们的积也能被这个数整除.
3.如果一个整数能被两个互质数中的每一个整除,那么这个数也能被这两个互质数的积整除.反过来,如果一个整数能被两个互质数的积整除,那么这个数也能分别被这两个互质的数整除.
数的整除特征:
1.末位数字是偶数的整数能被2整除;末位数字是0或5的整数能被5整除;末两位数是4(或25)的倍数的整数能被4(或25)整除;末三位数是8(或125)的倍数的整数能被8(或125)整除.
2.各位数字之和能被3(或9)整除的整数,能被3(或9整除).
3.若一个整数的奇数位数字的和与偶数位数字的和的差能被11整除,则这个数能被11整除.
问题21.1四位数57A1能被9整除,求A.
分析四位数57A1的各位数字的和应是9的倍数.
解5+7+A+1=A+13.
∵四位数57A1能被9整除,
∴A+13应是9的倍数,
∵0≤A≤9,∴13≤A+13≤22.
故 A+13=18,∴A=18-13=5.
问题21.2 六位数a8919b能被33整除,求a与b.
分析此六位数应同时是3与11的倍数.
解33=3×11.∵a8919b能被33整除,
∴ a8919b同时是3与11的倍数.
故a+8+9+1+9+b=27+a+b应是3的倍数,
且(a+9+9)-(8+1+b)=9+a-b应是11的倍数.
∵9+a-b是11的倍数,
∴ a-b=2.故a-b是偶数.
∵ a+b与 a-b同为奇数或同为偶数,
∴a+b为偶数.
∵ 27+a+b是3的倍数,∴a+b是3的倍数.
∵ a≠0,∴a+b≠0.
∵a-b=2,∴a+b≠18.
故a+b=6或 12.又a-b=2,
∴ a=4,b=2或a=7,b=5.
问题21.3 在568后面补上三个数字,组成一个六位数,使它分别能被3、4、5整除,且使这个数值尽可能小.求这个六位数.
分析根据一个整数分别被3、4、5整除的特征,通过分析推理,探求应补上的三个数字.
解设所求的六位数为568abc.
568abc能被5整除,∴ c=0或 5.
∵568abc能被4整除,∴c=0.
要使568abc的数值尽可能地小,则二位数bc=20.
568abc能被3整除,
5+6+8+a+b+c=21+a是3的倍数.
要使568abc尽可能地小,故a=0.
所以,所求的六位数为568020.
问题21.4 任意一个三位数连着写两次得到一个
六位数,这个六位数一定同时能被7、11、13整除.这是为什么?
分析用字母表示这个六位数.
所以这个六位数能同时被7、11、13整除.
问题21.5 有72名学生,共交课间餐费a527b元,每人交了多少元?
分析先求a和b代表的数字.
解把单位由元改为分,可a527b为72的倍数.
因为72=8×9,所以a527b应同为8和9的倍数.
因为a527b为8的倍数,所以27b为8的倍数,故b=2.
因为a527b为9的倍数,所以a+5+2+7+b=16+a为9的倍数,故a=2.
因此,a527b=25272. 25272÷72=351(分).
答:每人交了3.51元.
问题21.6 从0、3、5、7四个数字中任选三个,排成能同时被2、3、5整除的三位数.这样的三位数共有几个?
分析能同时被2、3、5整除的自然数,其个位数字应为0,各位数字之和应是3的倍数.
解因为所求的三位数能同时被2、5整除,所以这个三位数的个位数字为0.
因为所求的三位数能被3整除,所以这个三位数的各位数字之和应是3的倍数.
故所求的三位数为570或750,共2个.
问题21.7 用1、2、3、4、5、6、7、8、9(每个数字用一次)组成三个能被9整除的、和尽可能大的三位数,这三个三位数分别是多少?
分析所求的三个三位数能被9整除,那么它们的各位数字之和分别能被9整除.
解1+2+3+4+5+6+7+8+9=45.
因为所求的三个三位数都能被9整除,所以它们的各位数字之和分别能被9整除,故这三个三位数中有两个的数字和都是18,一个的数字和是9.
要使数字和是9的三位数尽可能大,百位上的数字必须为6,十位上的数字为2,个位上的数字为1,所以这个三位数是 621.
要使数字和是18的两个三位数尽可能大,一个的百位上数字为9,另一个百位上数字为8,十位上数字分别为5与7,个位上数字分别为4与3.故这两个三位数是954与873.
因此,所求的三个三位数分别是621、954、873.
问题21.8 已知A、B、C、D是各不相同的数字,
A+B+C=18,
分析依题意,C=3或C=8.分这两种情况进行讨论.
若 C=3,则B+D=23-3=20,这与 B+D<18矛盾.故C≠3.
若C=8,则B+D=23-8=15.故
从而A=1或A=4.
问题21.9 一个六位数的各位数字都不相同,最左边一个数字是3,且此六位数能被11整除.这样的六位数中的最小的数是多少?
分析用字母表示所求六位数的个位数字.
解依题意,设所求的六位数为30124a,
因为六位数30124a能被11整除,
所以(a+2)-(4+1+3)=a-6应是11的倍数.
故a=6.因此,所求的最小六位数是301246.
被6整除.请说明道理.
分析依题意,a+b+c+d+e是3的倍数,e是2的倍数.
解6=2×3.
的倍数,a+b+c+d+e是3的倍数.
因为
2×(a+b+c+d)-e=2×(a+b+c+d+e)-3e,
而2×(a+b+c+d+e)、3e都能被6整除,
所以 2×(a+b+c+d)-e能被6整除.。