西门子802S数控车床的变频主轴设计与调试

合集下载

西门子802s-c数控车床操作说明书.

西门子802s-c数控车床操作说明书.

西门子802s/c系统操作说明书图1-1 SINUMERIK 802S/C base line 操作面板图1-2 NC 键盘区(左侧)图1-3机床控制面板区域(右侧)1.1 屏幕划分图1-4 屏幕划分符号说明:屏幕中的缩略符分别具有如下含义:表1-1 符号说明图中元素缩略符含义MA 加工PA 参数(1)当前操作区域PR程序DI 通讯DG 诊断STOP 程序停止(2)程序状态RUN程序运行RESE程序复位开机和回参考点操作步骤第一步,接通CNC 和机床电源。

系统引导以后进入“加工”操作区JOG 运行方式。

出现“回参考点”窗口。

3 参数设定在CNC进行工作之前,必须通过参数的输入和修改对机床、刀具等进行调整:输入刀具参数及刀具补偿参数;输入/修改零点偏置;输入设定数据。

3.1输入刀具参数及刀具补偿参数—“参数”操作区功能刀具参数包括刀具几何参数、磨损量参数和刀具型号参数。

不同类型的刀具均有一个确定的参数数量。

每个刀具有一个刀具号(T 号)。

参数设定软键选择接下去渐低的或渐高的刀沿号选择接下去渐低的或渐高的刀具号计算刀具长度补偿值用“扩展键”扩展软键功能所有的刀具补偿值复位为零建立一个新的刀沿,设立刀补参数。

新刀补建立到当前刀具上,并自动分配下一个刀沿号(D1-D9)。

在内存中最多可以建立30 个刀沿删除一个刀具所有刀沿的刀补参数建立一个新刀具的刀具补偿参数。

注意:最多可以建立15 个刀具。

打开一个对话窗口,显示设定的所有刀具号。

输入待搜索的刀具号,按“确认键” 开始搜索。

刀具寻找到后打开刀具补偿窗口。

3.1.2刀具补偿参数刀具补偿分为刀具长度补偿和刀具半径补偿。

参数表结构因刀具类型不同而不同3.1.3对刀确定刀具补偿值功能利用此功能可以计算刀具T 未知的几何长度。

前提条件换入该刀具。

在JOG 方式下移动该刀具,使刀尖到达一个已知坐标值的机床位置,这可能是一个已知位置的工件。

其坐标值可以分为两个部分:可存储的零点偏置和偏移值(Offset)过程偏移值登记到“偏移值”区域。

西门子802DSL数控转台调试与优化问题研究

西门子802DSL数控转台调试与优化问题研究

西门子802DSL数控转台调试与优化问题研究【摘要】文章以西门子802dsl数控系统为例,分析了s120驱动器控制转台伺服电机的调试和优化过程。

【关键词】数控机床;转台;伺服调试;驱动器优化;增益0.前言随着工业技术的快速发展,数控机床产业已经成为我国国民经济发展的基础性产业,是国防军工发展的战略性产业,是高新技术产业发展的载体,更是国家竞争力的重要标志之一,已经成为我国机床制造业发展的总趋势,目前在国内,三菱、fanuc、sinumerik数控系统广泛应用于各类数控机床上。

对于机床制造商来说,数控系统的驱动伺服参数调整是非常有必要的,而且也是一个难题。

本文结合笔者在采用西门子s120型数字交流伺服驱动的数控转台上的调试经验,对一些具体的伺服参数调整和优化过程作出了分析说明。

1.转台的结构机床转台的结构采用端面闭式静压导轨+径向滚动轴承结构,采用闭式静压导轨,可以提高端面跳动精度,吸收震动,承受双向载荷和倾覆力矩,滚动轴承可以方便控制径向精度,确保工作台在负载情况下的高刚度和高运动精度,工作平稳无爬行,承载能力高等特点,转台的回转角度是通过伺服电机经精密减速机构进行驱动,并且采用圆光栅进行全闭环控制,达到角度的分度精度要求。

2.转台电机的配置该转台的伺服电机不是采用s120标准的带有drive-cliq 接口的电机,因此首先需要经过smc20进行编码器的接口转换,另外在系统的拓扑识别过程中,驱动器对该电机无法识别,需要手动进行电机数据的配置,配置方法有两种:一种是通过电机的型号,在样本查出电机的类型,电机的代码,以及编码器的代码,然后再系统上按[shift]+[alarm],进入系统画面,选择[机床数据]—[驱动器数据]—[sinamics ibn]在显示的界面输入相应的电机代码、类型、以及编码器类型,然后点右侧垂直菜单的保存参数,最后一定要将p0010先设置成1,在将p3900修改为3,待到p3900自动变成0时将驱动器断电以确保电机数据生效。

Siemens 802DSL系统伺服全闭环及主轴编码器调试步骤

Siemens 802DSL系统伺服全闭环及主轴编码器调试步骤

在PC机上使用CTRL+E,
进入专家模式,
• 然后将P140参数设置 为3。如下图:
再次选择SERVO_03 X轴的[Configuration]驱动配
置。
出现如图所示画面。
在ENCODER 3处选择EDS2:如下图所示:
• 选择 进入配 置画面,连续按 直至出现图所示画面:
• 选择 • 选择 • 选择
• 进入轴机床数据的SP 主轴数据,设置如下 参数: • 30100=0(模拟主轴) • 30110=3 • 30120=1 • 30130=1
• • • •
30200=1 30220=1 30230=1 30240=1
• 31020=5000 • 31040=1
• 32250=100 • 32260=400(工作台 最高转速)。 • 设置完后,断开再接 通机床电源。
打开后,出现如图所示画面。
• 在画面左上角选择如 图所示图标。
根据下图所示分别设置相应数据。设置后,选择 [OK]。
• 软件左侧将显示如上 图所示菜单树。
• 在软件上选择 进行 同系统的连接。
连接后,显示上图所示画面,选择[Load to PG]将系 统内数据下载至PC机中。
• 下载后,软件左侧将 出现如图所示图示:
(输入数据)
在出现的画面中,按下图选择参数。 选择后,按[OK]结束。
然后再次按压CTRL+E进入专家画面:设置如下参 数: 设置P922=999
设置P480[0]=%0 设置P480[2]=R2050[5]
设置P2051[5]=r481[2]
P2061[6]=R482[2] P2061[8]=R483[2]
选择[直接连接]
• 建立后将显示如图所 示建立画面。 802DSL系统的IP地址 和子网络表征码无法 更改,为系统默认设 置。

西门子802S数控车床的变频主轴设计与调试

西门子802S数控车床的变频主轴设计与调试

西门子802S数控车床变频主轴设计与调试摘要主轴运行的是否平稳直接影响数控车床加工的精度。

通过对西门子802S数控车床主轴的研究、分析,从而掌握数控应用系统设计的一般方法。

主轴控制系统由西门子802S数控系统、变频器和主轴电机组成,通过PLC控制主轴的正反转、CNC控制主轴的转速。

关键词:数控车床;主轴;西门子802SDesigning Spindle Control Systemfor a Siemens 802S CNC LatheAbstractWhether or not the smooth running of the spindle directly affects the accuracy of CNC lathe.T o grasp the general design method of CNC application system, the Spindle control system of Siemens CNC Lathe was researched and analyzed, which had Siemens 802S CNC system, inverter and the spindle motor, where PLC controlling the direction, and CNC controlling the speed.Keywords: CNC Lathe;Spindle;Siemens 802S system目录引言 (2)第一章数控系统的介绍 (3)1.1 数控系统发展简史 (3)1.1.1 数控NC阶段 (3)1.1.2 计算机数控(CNC)阶段 (3)1.2 数控技术未来发展方向 (4)1.2.1 向开放式、基于PC的第六代方向发展 (4)1.2.2 向高速化和高精度化发展 (4)1.2.3 向智能化方向发展 (4)第二章西门子802S数控车床系统 (6)2.1 西门子802S的系统 (6)2.2 人机界面 (7)2.3 步进进给系统 (8)2.4 主轴驱动系统 (8)2.5 刀架控制系统 (9)第三章西门子802S数控车床主轴的设计 (10)3.1 设计方案 (10)3.2 变频器MICROMASTER 420 (11)3.2.1 变频器的选型 (11)3.2.2 变频器的接口 (12)3.2.3 变频器的主要参数设置 (12)3.4 控制电路的设计 (12)3.5 西门子802S的主轴参数调试 (13)第四章 PLC程序设计 (15)4.1 PLC控制流程图 (15)4.2 PLC的I/O分配 (16)4.3 PLC的部分参数设定 (18)致谢............................................................ 错误!未定义书签。

西门子802D系统数控机床模拟主轴控制与调试

西门子802D系统数控机床模拟主轴控制与调试

2019年第1期No.1 2019JOURNALOF ANHUI VOCATIONAL COLLEGE OF ELECTRONICS & INFORMATION TECHNOLOGY安徽电子信息职业技术学院学报第18卷(总第100期)General No.100 Vol.18摘 要:主要研究了西门子802D 系统数控机床电气连接与模拟量主轴的PLC 编程。

从机床操作面板信号、主轴正反转方向信号及伺服使能信号三个方面着手,以西门子主轴控制子程序为基础,系统地介绍了PLC 程序编制。

经过主轴参数设置、程序调试,实现了主轴控制功能。

关键词:西门子802D 数控机床 模拟主轴 PLC 程序 中图分类号:TG519.1 文献标识码:BSimulated Spindle Control and Debugging of Siemens 802D CNC Machine ToolLei Nannan西门子802D系统数控机床模拟主轴控制与调试雷楠南(三门峡职业技术学院 , 河南 三门峡 472000 )[文章编号] 1671-802X(2019)01-0004-06模拟或数字主轴;如图1所示为配置3个伺服进给轴、1个模拟量主轴时的电气连接图[4]18-19。

图1 西门子802D 系统电气连接图模拟量主轴控制时,通常需选配MCPA 模块。

 MCPA模块上的X1、X2接口用于连接机床操作面板;X1021接口连接24V直流稳压电源;X701 接口的X701.1、X701.6连接变频器的模拟量输入端,用于产生模拟量给定信号;X701.5、X701.9用于主轴使能控制;X701.4、X701.3连接至I/O模块用于主轴正、反转方向控制。

主轴转速的检测是通过安装西门子TTL增量编码器,通过SM30连接到系统的 DriveCLiQ 接口。

若选配西门子1Vpp Sin/Cos增量编码器,则通过SM20连接到系统的 DriveCLiQ 接口[5]。

西门子802s-c数控车床操作说明书

西门子802s-c数控车床操作说明书

西门子802s/c系统操作篇锚机连接(页面较大,图片较多,请耐心等待)SINUMERIK 802S/C base line 操作面板NC 键盘区(左侧):机床控制面板区域(右侧):1.1屏幕划分符号说明屏幕中的缩略符分别具有如下含义:表1-1 符号说明表1-1 符号说明(续)开机和回参考点 2操作步骤第一步,接通CNC 和机床电源。

系统引导以后进入“加工”操作区JOG 运行方式。

出现“回参考点”窗口。

3 参数设定在CNC 进行工作之前,必须通过参数的输入和修改对机床、刀具等进行调整:输入刀具参数及刀具补偿参数输入/修改零点偏置输入设定数据3.1输入刀具参数及刀具补偿参数—“参数”操作区功能刀具参数包括刀具几何参数、磨损量参数和刀具型号参数。

不同类型的刀具均有一个确定的参数数量。

每个刀具有一个刀具号(T 号)。

参见章节8.6“刀具和刀具补偿”。

参数设定软键选择接下去渐低的或渐高的刀沿号选择接下去渐低的或渐高的刀具号计算刀具长度补偿值用“扩展键”扩展软键功能所有的刀具补偿值复位为零建立一个新的刀沿,设立刀补参数。

新刀补建立到当前刀具上,并自动分配下一个刀沿号(D1-D9)。

在内存中最多可以建立30 个刀沿删除一个刀具所有刀沿的刀补参数建立一个新刀具的刀具补偿参数。

注意:最多可以建立15 个刀具。

打开一个对话窗口,显示设定的所有刀具号。

输入待搜索的刀具号,按“确认键”开始搜索。

刀具寻找到后打开刀具补偿窗口。

3.1.2刀具补偿参数刀具补偿分为刀具长度补偿和刀具半径补偿。

参数表结构因刀具类型不同而不同3.1。

3对刀确定刀具补偿值功能利用此功能可以计算刀具T 未知的几何长度前提条件换入该刀具。

在JOG 方式下移动该刀具,使刀尖到达一个已知坐标值的机床位置,这可能是一个已知位置的工件。

其坐标值可以分为两个部分:可存储的零点偏置和偏移值(Offset)过程偏移值登记到“偏移值”区域。

选择相应的零点偏置(比如:G54),没有零点偏置时选择G500。

SIEMENS 802S 系统数控车床编程方法

SIEMENS 802S 系统数控车床编程方法

编程指令集


D:刀具补偿号 G5:中间点圆弧插补 G158:可编程偏置 G70/G71*:英制/公制 G90*/G91:绝对尺寸/增量尺寸 G94/G95*:每分进给/每转进给 G96/G97:恒定切削速度/取消…… G96 S(m/min)__LIMS=__F(mm/r)__ G450*/G451:圆弧过渡/交点过渡 G22/G23*:半径/直径

G158:可编程的零点偏置
N10... N20 G158 X3 Z5 ;可编程零点偏移 N30 L10 ;子程序调用,其中包含待偏移的几何量 ... N70 G158 ;取消零点偏移 ...
G2, G3:圆弧插补

圆心坐标和终点坐标 G2 X... Z... I... K... 半径和终点坐标 G2 X... Z... CR= 圆心和张角 G2 AR=... I... K... 张角和终点坐标 G2 AR=... X... Z...

G33:恒螺距螺纹切削
1. 起始点偏移只在第一个螺纹段有效
2. 在G33螺纹切削中,轴速度由主轴转速和螺距的大小确定。在此F下 编程的进给率保持存储状态。但机床数据中规定的轴最大速度(快 速定位)不允许超出。
3. 说明注意:在螺纹加工期间,主轴修调开关必须保持不变;进给修 调开关无效。
G4:暂停

刀具与刀具补偿



刀具调用后,刀具长度补偿立即自动生效;如果 没有编程D号,则D1值自动生效,如果编程D0, 则刀具补偿值无效; 举例:N01 T1 N20 G0 X Z …… N80 T6 …… N160 G0 Z D2 刀具半径补偿必须通过执行G41、G42建立
补偿存储器内容
几何尺寸:长度、半径;

西门子802S操作说明

西门子802S操作说明

.西门子802s/c系统操作篇NC 键盘区(左侧):机床控制面板区域(右侧):1.1 屏幕划分符号说明屏幕中的缩略符分别具有如下含义:表 1-1 符号说明(1)当前操作区域(2)程序状态(3)运行方式图中元素缩略符含义MA 加工PA 参数PR 程序DI 通讯DG 诊断STOP 程序停止RUN 程序运行RESET 程序复位JOG 点动方式MDA 手动输入,自动执行AUTO 自动方式表 1-1 符号说明(续)图中元素缩略符含义SKP 程序段跳跃跳步的程序段在其段号之前用一斜线示,这些程序段在程序运行时跳过不执行。

DRY 空运行轴在运行时将执行设定数据“空运行进给率”中规定的进给值。

ROV 快速修调修调开关对于快速进给也生效。

(4)状态显示SBL单段运行此功能生效时零件程序按如下方式逐段运行:每个程序段逐段解码,在程序段结束时有一暂停,但在没有空运行进给的螺纹程序段时为一例外,在此只有螺纹程序段运行结束后才会产生一暂停。

SBL 功能只有处于程序复位状态时才可以选择。

M1程序停止此功能生效时程序运行到有 M01 指令的程序段时停止运行。

此时屏幕上显示“停止 M00/M01有效”。

PRT程序测试(无指令给驱动)1_1000INC步进增量系统处于 JOG 运行方式时不显示程序控制而是显示所选择的步进增量。

开机和回参考点 2操作步骤第一步,接通 CNC 和机床电源。

系统引导以后进入“加工”操作区 JOG 运行方式。

出现“回参考点”窗口。

3 参数设定在 CNC 进行工作之前,必须通过参数的输入和修改对机床、刀具等进行调整:输入刀具参数及刀具补偿参数输入/修改零点偏置输入设定数据3.1输入刀具参数及刀具补偿参数—“参数”操作区功能刀具参数包括刀具几何参数、磨损量参数和刀具型号参数。

不同类型的刀具均有一个确定的参数数量。

每个刀具有一个刀具号(T 号)。

参见章节8.6“刀具和刀具补偿”。

参数设定软键选择接下去渐低的或渐高的刀沿号选择接下去渐低的或渐高的刀具号计算刀具长度补偿值用“扩展键”扩展软键功能所有的刀具补偿值复位为零建立一个新的刀沿,设立刀补参数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

西门子802S数控车床变频主轴设计与调试摘要主轴运行的是否平稳直接影响数控车床加工的精度。

通过对西门子802S数控车床主轴的研究、分析,从而掌握数控应用系统设计的一般方法。

主轴控制系统由西门子802S数控系统、变频器和主轴电机组成,通过PLC控制主轴的正反转、CNC控制主轴的转速。

关键词:数控车床;主轴;西门子802SDesigning Spindle Control Systemfor a Siemens 802S CNC LatheAbstractWhether or not the smooth running of the spindle directly affects the accuracy of CNC lathe.T o grasp the general design method of CNC application system, the Spindle control system of Siemens CNC Lathe was researched and analyzed, which had Siemens 802S CNC system, inverter and the spindle motor, where PLC controlling the direction, and CNC controlling the speed.Keywords: CNC Lathe;Spindle;Siemens 802S system目录引言 (2)第一章数控系统的介绍 (3)1.1 数控系统发展简史 (3)1.1.1 数控NC阶段 (3)1.1.2 计算机数控(CNC)阶段 (3)1.2 数控技术未来发展方向 (4)1.2.1 向开放式、基于PC的第六代方向发展 (4)1.2.2 向高速化和高精度化发展 (4)1.2.3 向智能化方向发展 (4)第二章西门子802S数控车床系统 (6)2.1 西门子802S的系统 (6)2.2 人机界面 (7)2.3 步进进给系统 (8)2.4 主轴驱动系统 (8)2.5 刀架控制系统 (9)第三章西门子802S数控车床主轴的设计 (10)3.1 设计方案 (10)3.2 变频器MICROMASTER 420 (11)3.2.1 变频器的选型 (11)3.2.2 变频器的接口 (12)3.2.3 变频器的主要参数设置 (12)3.4 控制电路的设计 (12)3.5 西门子802S的主轴参数调试 (13)第四章 PLC程序设计 (15)4.1 PLC控制流程图 (15)4.2 PLC的I/O分配 (16)4.3 PLC的部分参数设定 (18)致谢............................................................ 错误!未定义书签。

参考文献. (20)附录1 PLC程序 (21)附录2 电气原理图 (31)前言数控技术是先进制造业技术的基础,在机械及相关行业的应用已呈普及的趋势。

作为数控加工的主体设备,数控机床是一种机电一体化的高新技术产品,目前已成为金属加工的主体企业的必要装备。

随着数控技术在我国的普及和发展,迫切需要培养大量高素质、能力强的数控技术人才,以加强对学生能力素质的培养。

本次设计的课题是“西门子802S数控车床主轴的设计”,主轴在车床中有这很重要的地位,主轴的好坏直接影响到在加工时的精度。

802S数控车床主轴是用PLC对变频器的控制来改变电机的速度,来带动主轴的运行。

本说明书由4个章节构成。

第一章介绍了数控系统的发展史、数控技术未来发展方向;第二章介绍了西门子802S车床系统的组成,如人机界面和各驱动系统;第三章介绍了系统设计方案、控制电路的设计、主轴参数的调试等;第四章介绍了PLC程序设计思路和控制流程、I/O 地址的分配、PLC的部分参数的设定。

第一章数控系统的介绍1.1 数控系统发展简史1.1.1 数控NC阶段早期计算机的运算速度低,对当时的科学计算和数据处理影响还不打,不能适应机床实时控制的要求。

人们采用数字逻辑电路搭成一台机床专用计算机作为数控系统,被称为硬件连接数控(HARD-WIRED NC),简称为数控(NC)。

这个阶段历经了三代发展:第一代NC是电子管NC。

它是1948年美国怕森兹公司为研制新型直升机桨叶,在MIT的协助下,于1952年完成的。

由电子管、继电器、模拟电路构成的三坐标连续轨迹控制的数控铣床,用作数控机床的原型机或样品机。

第二代NC是晶体管NC。

1958年,晶体管取代了电子管,并广泛采用印制线路板。

第三代NC是采用小规模集成电路的NC。

1965年的三代—小规模集成电路。

1.1.2 计算机数控(CNC)阶段通用小型计算机已出现并成批生产,于是将它移植过来作为数控系统的核心部件,从此进入了计算机数控(NCN)阶段(把计算机前面应有的“通过”两个字省略了)。

到1971年,美国INTEL公司在世界上第一次将计算机的两个最核心的部件—运算器和控制器,采用大规模集成电路技术集成在一块芯片上,称之为微处理器(MICROPROCESSOR),又可称为中央处理单元(简称CPU)。

到1974年,微处理器被应用于数控系统。

这是因为小型计算机功能太强,控制一台机床能力有富裕,不如采用微处理器经济合理,而且当时的小型机可靠性也不理想。

早期的处理器的速度和功能虽还不高,但可以通过多处理器结构来解决。

由于微处理器是通用计算机的核心部件,故仍称为计算机数控。

到了1990年,PC机(个人计算机,国内习惯称微机)的性能已发展到很高的阶段,可以满足作为数控系统核心部件的要求。

数控系统从此进入了基于PC的阶段。

计算机数控阶段也经历了三代:即1970年的第四代—小型计算机;1974年的第五代—微处理器和1990年的第六代—基于PC。

1.2 数控技术未来发展方向1.2.1 向开放式、基于PC的第六代方向发展基于PC所具有的开放性、低成本、高可靠性、软硬件资源丰富等特点,更多的数控系统厂家会走上这条道路。

至少采用PC机作为它的前端机,来处理人机界面、编程和联网通信等问题,由原有的系统承担数控的任务。

PC机所具有的友好的人机界面将普及到所有的数控系统,远程通讯、远程诊断和维修将更加普遍。

日本、欧盟和美国等针对开放式的CNC,正在进行前后台标准的研究。

1.2.2 向高速化和高精度化发展这是适应机床向高速和和高精度方向发展的需要。

要求数控系统高速处理并计算出伺服电机的移动量,并要求伺服电机能快速地做出反应。

为使在极短的空程内达到高速度和在高行程速度下保持高定位精度,必须具备高加、减速度和高精度的位置检测系统和伺服品质。

通过减少数控系统的误差和采用补偿技术来提高极度。

1.2.3 向智能化方向发展随着人工智能在计算机领域的不断渗透和发展,数控系统的智能化程度将不断提高。

(1)用自适应控制技术。

数控系统能检测过程中的一些重要信息,并自动调整系统的有关参数,达到改进系统运行状态的目的。

(2)引入专家系统指导加工。

将熟练工人和专家的经验,加工的一般规律与特殊规律存入系统中,以工艺参数数据库伟支撑,建立具有人工智能的专家系统。

当前,已开发出来模糊逻辑控制和带自学习功能的人工神经网络电火花加工数控系统。

(3)引入故障诊断专家系统。

当数控机床某部分出现故障时,故障诊断专家系统会进行判断、反馈,产生报警,或显示故障代号、故障部位等信息。

(4)智能化数字伺服驱动装置。

通过自动识别负载而自动调整参数,使驱动系统获得最佳的运行。

第二章西门子802S数控车床系统西门子802S数控车床系统由西门子802S数控系统、步进进给系统、主轴驱动系统、刀架等组成。

2.1 西门子802S的系统SINUMERIK 802数控系统是西门子公司开发的数控系统,用于数控车床、数控铣床、加工中心、数控磨床等。

该系统分为802S、802C、802D三种类型,其中SINUMERl 802S采用步进电动机驱动系统,同时具备一个±10V模拟接口用于连接主轴驱动;SINUMERl 802C采用模拟伺服驱动系统,采用标准的±10V模拟接口,可直接带动模拟驱动;SINUMERl 802D采用数字进给驱动电动机和数字主轴电动机,最多可控制4个数字进给轴和一个主轴。

SIEMENS 802S配OP020独立操作面板与MCP机床操作面板,显示器为7in或5.7in单色液晶显示。

集成内置式PLC最大可以控制64点输入与64点输出,PLC的I/O模块与ECU间通过总线连接;系统体积小,结构紧凑,性能价格比高。

数控系统与外部模块的连接,见图2-1。

图2-1 系统结构图2.2 人机界面数控系统的人机界面由显示器、操作面板、机床控制面板组成,见图2-2。

图2-2 系统操作面板编程和机床控制动作的按键以及8英寸LCD显示器,同时还提供12个带有LED 的用户自定义键。

工作方式选择(6 种),进给速度修调,主轴速度修调,数控启动与数控停止,系统复位均采用按键形式进行操作。

2.3 步进进给系统步进进给系统采用的是(STEPDRIVE C),是单轴型控制器,控制五相步进电机。

步进电机的步距角为0.36度。

驱动接口采用25芯D型插座。

每个驱动器接受三个信号,一个为脉冲信号,一个为方向信号,一个为使能信号。

发出的脉冲控制电机运行,每个上升沿使电机向前走一步,脉冲数决定电机转角,脉冲频率决定电机的转速。

2.4 主轴驱动系统主轴驱动系统采用的是SIEMENS 611U,是目前SIEMENS常用的交流数字式伺服驱动系统,其基本结构与611A相似,采用模块化安装方式,主轴与各伺服驱动单元共用电源。

用于进给驱动的伺服驱动模块有单轴与双轴两种结构型式,带有PROFIBUS DP总线接口。

驱动器内部带有FEPROM(non-volatile data memory,非易失可擦写存储器),用于存储系统软件与用户数据,驱动器的调整、动态优化可以在W1NDOWS环境下,通过SimoComU软件自动进行,安装、调整十分方便。

驱动器由整流电抗器(或伺服变压器)、电源模块(NE module)、功率模块(Power module)、611控制模块等组成:电源模块自成单元,功率模块、611控制模块、PROFIBUS DP总线接口模块组成轴驱动单元。

各驱动器单元间共用611直流母线与控制总线,并通过PROFIBUS DP总线,与SIEMENS 802D/810D/840D系统相连接,组成数控机床的伺服驱动系统。

2.5 刀架控制系统刀架是经济型的四方位简易刀架,它的机械结构简单,调试和使用方便,结构如2-3所示。

其功能为:有四个刀位,能装夹四把不同的功能刀具,方刀架回转90°时,刀具变换一个位置,但方刀架的回转和刀位号的选择是由加工程序指令控制。

相关文档
最新文档